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Abstract—Intelligent Autonomous Systems (IAS) are highly
cognitive, reflexive, multitasking, trustworthy (secure as well as
ethical), and rich in knowledge discovery. IAS are deployed in
dynamic environments and connected with numerous devices
of different types, and receive large sets of diverse data. They
often receive new types of raw data that was not present in
either training or testing data sets thus they are unknown
to the learning models. In a dynamic environment, these
unknown data objects cannot be ignored as anomalies. Hence
the learning models should provide incremental guarantees to
IAS for learning and adapting in the presence of unknown data.
The model should support progressive enhancements when
the environment behaves as expected or graceful degradations
when it does not. In the case of graceful degradations, there
are two alternatives: (1) weaken the acceptance test of data
object (operating at a lower capacity) or (2) replace primary
system with a replica or an alternate system that can pass
the acceptance test. In this paper, we provide a combinatorial
design—MACROF configuration—built with balanced incom-
plete block design to support graceful degradations in IAS and
aid them to adapt in dynamic environments. The architecture
provides stable and robust degradations in unpredictable oper-
ating environments with limited number of replicas. Since the
replicas receive frequent updates from primary systems, they
can take over primary system’s functionality immediately after
an adverse event. We also propose a Bayesian learning model
to dynamically change the frequency of updates. Our experi-
mental results show that MACROF configuration provides an
efficient replication scheme to support graceful degradations
in autonomous systems.

Keywords-cognitive autonomy; incremental learning; grace-
ful degradations; combinatorial design; Bayesian learning;

I. INTRODUCTION

Smart and autonomous systems are taskable, rich with
knowledge, reflective, and ethical [1]. IAS should be cog-
nizant of their dynamic operating environment, interactions
with the different types of devices in that environment,
history of these interactions, and knowledge derived from
that history of interactions. Based on this database of rich
knowledge discovery, IAS should be able to understand and
predict scenarios and reflect to adapt to those new scenarios.
IAS should perform these tasks for an extended period of
time in unpredictable, partially observable, dynamic, and
approximately modeled environment with no or very little
human intervention.

One of the most important properties of IAS is their re-
flexivity. With live monitoring their actions, identifying cur-
rent and potential problems, they should be able to optimize,
reconfigure, and repair autonomously as a reflexive response.
The system should understand, learn, and adapt to advance
their reflexive response overtime. This includes acquiring
new knowledge and transforming their current operational
behaviors by augmenting their knowledge discovery on how
to operate on uncertain and dynamic environments to per-
form specific tasks. These advances can be the culmination
of reflexive actions based on history of transactions in
and with the operating environment, observation of other
entities (including humans) with the system and operating
environment, or manual instructions set by human entities.
As a result, IAS should continually make changes to their
operating behavior and adapt to the new contexts in which
they are operating, even if the particulars of that operating
context are not specified in the initial model, and the new
data points were not present in the training and testing sets.
The system needs to incrementally learn and adapt to process
and integrate these unknown items into the system or block
them as anomalies in case of hostile objects.
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Figure 1. Reflexivity workflow with incremental learning in Intelligent
Autonomous Systems (IAS)



There are several definitions of incremental learning in
literature. Incremental learning is referred as a methodology
that allows systems to gracefully integrate new type of
information (objects or classes) without incurring the loss
of accuracy in the model and without having to retrain the
model from the scratch [2]. It is also referred to as gradual
extension of current classes with new types of classes to rec-
ognize and classify new objects i.e. incremental multi-class
learning [3]. Incremental learning allows an autonomous
system to retrain itself based on the new information re-
ceived from neighboring entities, its new interactions with
those entities, changes occurred in the operating context, and
changes in its own operating behavior due to the influence
of hostile entities such as attacks.

One of the most important constraints of reflexivity prop-
erties of IAS is that they need to update their learning
model and adapt to the new scenario without disrupting the
underlying critical processes. Based on this criteria, reflexive
workflow (Figure 1) can be designed with incremental
learning that is accomplished by graceful degradations and
progressive enhancements. Graceful degradation is nothing
but a design principle that allows the system to continue
its operations in lower capacity i.e. gradually degrade to
accommodate dynamic changes that occur in the system or
in operational contexts [4] [5]. Progressive enhancement is
also a design principle where the system gradually accepts
and enhances the role of new scenarios and data objects
without shutting down the system [6] [7].
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Figure 2. Graceful Degradations in IAS

Graceful degradation of IAS can be designed using repli-
cas and acceptance tests (Figure 2). Each primary module of
IAS will have alternates or replicas. In case of an unexpected
output or input that was not present in the training or testing
datasets and it was not factored into the learning model, the
system lowers the acceptance criteria for the input/output
and continue to function. In case of catastrophic failure of

a primary module, the replica of the primary module takes
over the functionalities and continue to process the data and
operate.

In this paper, we propose a robust and fault-tolerant
replication scheme—MACROF—using combinatorial bal-
anced incomplete blocks. This design can aid the cognitive
autonomy of IAS by autonomous updates to the replicas and
replacement of primary IAS module in case of significant
disruptions for the critical processes. We have identified the
following research contributions from MACROF model,

1) MACROF model provides an autonomous system with
the capability to gracefully degrade under uncertain
circumstances by limiting the primary module’s func-
tionality instead of shutting the system down, while
the replicas continue to function and move the process
forward.

2) Replicas can be used for other processes while primary
module is busy and replicas can update the primary
module when it becomes available again. This enables
the processes to progress in parallel—an intrinsic
benefit of this model.

3) With frequent updates from the primary module, the
scheme offers reliability with autonomous replacement
of primary module and take over its functionalities
while preserving the primary module’s state i.e. recov-
ery point. Thus the processes can continue to progress
from the recovery point without restarting from the
beginning. This can help autonomous systems to be a
stateful [8].

4) Through Bayesian learning [9], the frequency of up-
dates are changed dynamically depends on the impor-
tance of data objects for each processes.

5) Replicas in this model aid progressive enhancement
of unknown data objects. Replicated modules can be
used for retraining and testing the model with new
datasets before introducing the unknown data objects
to the primary module.

6) The MACROF model does not depend on a centralized
server module thus the systems can operate coherently
on their own by functioning based on their local
constraints. This creates a distributed computing en-
vironment where autonomous learning can be done at
individual system-level, and the governing predictive
model can be updated.

7) Replicas also provide Moving Target Defense (MTD)-
style [10] reflexive mechanism. If each replica has
different configuration, the primary module’s tasks
can be shifted to replicas periodically to limit the
attackers of observational space for planning attacks
and thwart those attacks specifically designed for a
particular observed configuration.

8) The cost of replicas can be considerably minimized
in autonomous systems with large number of modules



based on the failure rate. Thus the scheme is scalable
and several extensions are possible.

The rest of the paper is organized as Section II elaborates
on the related work of incremental learning and combi-
natorial balanced incomplete blocks. Section III introduces
the MACROF model and covers the parameter analysis of
the scheme with proofs. Section IV provides experimental
results and replication cost estimates. Section V discusses
extensions of the design and future work. Finally, we discuss
our contributions and conclude in Section VI.

II. RELATED WORK

Our work addresses reflexivity in autonomous systems
that has received attention from and is related to several top-
ics from incremental learning to combinatorial mathematics
based system designs.

A. Incremental Learning

Incremental learning involves graceful degradations and
progressive enhancements of autonomous systems. When the
acceptance test of an input or output of a primary module
fails and the system can still function, then the system
gradually reduces its functionality and operates at a lower
capacity to accept the unknown data input or output result.
When the system is incapable of operating with unknown
data input, then it shifts its functionality to one of its replica
while the primary module gets retrained and tested with
new input. In progressive enhancements, the participation
of unknown data objects is increased gradually while the
system is retrained to accept them completely. In both of
these cases, the system continues to carryout its critical
functionalities without being disrupted or shutdown.

A conceptual framework for adaptive graceful degrada-
tions in autonomous vehicles is provided in [11] [12]. The
authors introduce a framework that when failure occurs in a
critical functionality of the vehicle such as a vision program
that detects pedestrians, depends on the situation, the system
adapts to either notify the driver or operate at a lower
capacity depends on the environment. If an autonomous
vehicle is operating in interstate roads or national highways,
it can simply notify the diver about the failure and continue
to operate at the same level. But if it is operating in urban
areas, it will notify the driver and the vision program will
be operating at a degraded level (may be with lower frame
rate) on another live processing mode and at the same
time slows down the vehicle. Similar studies of graceful
degradations have been conducted in autonomous vehicles
[13] and in Unmanned Arial Vehicles (UAVs) [14]. Similar
to our research, graceful degradations have been studied
for fault-tolerant robotic systems [15]. In this particular
study, a failure in robotic arm is analyzed to determine
whether its a local failure or a system fault. Based on
the result, gracefully degrade the operation of the robotic
arm. Graceful degradations are widely used in approximate

computing models as well. In [16], the process of discov-
ering hardware blocks in computing systems that display
graceful degradations under voltage overs-scaling is studied.
The study identifies the causes of degradations and analyzes
the effects of degradations in computing systems with mul-
timedia algorithms. The authors in the study [17] propose a
graceful degradation model in Cooperative Adaptive Cruise
Control (CACC) while operating under unreliable wireless
communication system. When the system receives messages
with packet loss, the system gets degraded to conventional
Adaptive Cruise Control (ACC) to stabilize the system and
avoid futher failures.

Progressive enhancements are studied as a design prob-
lem in adaptive systems. In [18], the authors introduce
a framework that combines behavior models with diverse
associated assumptions and risks. In this framework, when
the environmental assumptions and parameter thresholds
are violated then the system goes into degraded mode but
after a period of degraded functionality the system starts to
progressively recover to support higher level of functionality.
Adaptive web designs are proposed in [19]. The guidelines
for designing websites are set such that the website should
progressively enhance their functionality when the browser
compatibility changes. Similar enhancements for web de-
signs have been proposed in [20] [21].

Incremental learning is an active field of interest in
artificial intelligence community. Incremental learning plays
a vital role in mimicking cognition of living organisms in
machines. In particular, Support Vector Machines (SVMs)
are used in numerous object recognition problems [22] [23].
Thus many extensions of SVMs have been proposed for in-
cremental learning. Incremental binary SVMs were proposed
in [24]. The model saves and updates Karush–Kuhn–Tucker
(KKT) conditions. This approach was extended in [25]
and multi-class incremental learning in object recognition
was introduced. Memory-controlled online visual recogni-
tion through incremental SVMs were introduced in [26].
Since updates are very expensive in large-scale systems,
the authors proposed classifiers with fast and inexpensive
updates with multi-class extensions in [27] [28].

Combinatorial designs are used in several optimization
and balancing problems [29] with numerous applications in
computing systems. In [30], the authors use the design to
extract parallelism in mobile CPUs/GPUs since the design
provides a robust communication mechanism that lets the
processing elements and their duplicates to interact simulta-
neously. A similar structure is used in [31] where model
provides back up data when the primary data module is
down (same replica mechanism is used in our study). The
model prevents data loss by combinatorially replicating the
data in computing devices. The model proposed in [32]
uses combinatorial block designs to support object-oriented
connects in distributed fault-tolerant systems.

In this work, we implement a similar combinatorial



balanced structure to provide graceful degradations in au-
tonomous systems. Using combinatorial optimization can
provide balanced workload and reliable backups through
replicas. MACROF’s communication links can provide dy-
namic changes to the frequency of updates through Bayesian
inference and the updated replicas can be used for other
functionalities when primary module is in good condition.

III. MACROF AUTONOMOUS SYSTEM DESIGN

A combinatorial Structure is a subset satisfying certain
conditions. Each block (distributed module or a cluster)
contains systems and their replicas that are distributed based
on balanced incomplete block designs (BIBD) [33] in com-
binatorial mathematics. The systems and their replicas in
the distributed blocks are strategically connected to receive
updates from primary modules. Replicas can be used to aid
other functionalities in the system when primary module is
in working condition.

The combinatorial MACROF model is defined as follows:
a distributed environment with a set of A systems is a
collection of M R-subsets such that each system appears
exactly in C subsets and each pair of systems appears
precisely in O subsets. In addition, F is the frequency of
updates dynamically set by Bayesian learning. The standard
notation of the model can be represented as (M, A, C, R, O,
F)-configuration or MACROF configuration (Figure 3).
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Figure 3. MACROF Autonomous System Design with Distributed Au-
tonomous Blocks (DAB), Communication Channels (CC), and Systems (S)

As an example of this setting, consider an autonomous
system, AS, with a set of seven primary modules (Figure
3). AS = {S1, S2, S3, S4, S5, S6, S7} represents the design
of (M = 7, A = 7, C = 3, R = 3, O = 1, F )-configuration.
In this configuration, there are seven DABs (subsets) each
with three systems: DAB1 = {S1, S5, S7}, DAB2 = {S1,
S2, S6}, DAB3 = {S2, S3, S7}, DAB4 = {S1, S3, S4},
DAB5 = {S2, S4, S5}, DAB6 = {S3, S5, S6}, and DAB7

= {S4, S6, S7}.

In this setting, a set of systems are connected through
communication channels to their replicas the corresponding
subset in each distributed processing block. Primary module
can be assigned methodically or with Round-robin (RR)
scheduling algorithm. The interactions can happen locally
in each DAB. Given any random pair of systems Si and Sj ,
there is always a DABi that contains them. For example,
in an IAS, if the learning model in system S6 needs to
interact with S4 and S7, then both of those systems can be
found locally in DAB7. This enables the system to interact
fast and simultaneously the replicas of all three systems
are updated. The replicas stay updated to take over the
primary module at anytime. Even when some functionalities
fail in primary module, the previous state of the progress is
maintained at the replicas and they can update the primary
module with current state instead of it having to restart from
the beginning. These local interactions and simultaneous
updates enable IAS to have an effective and fault-tolerant
replacement model for The advantage of this combinatorial
setting will be explained in parameter evaluation.

Table I
POSSIBLE COMBINATORIAL DESIGNS

M A C R O
12 9 4 3 1
13 13 4 4 1
21 21 5 5 1
26 13 6 3 1
31 31 6 6 1
35 15 9 3 1
55 55 8 8 1
73 73 9 9 1
91 91 10 10 1

132 132 12 12 1

Other than (M = 7, A = 7, C = 3, R = 3, O =
1, F )-configuration there are other combinatorial pairwise
balanced designs are possible (Table I). An incident matrix
can capture the relationship between DABs and systems in
them.



1 2 3 4 5 6 7 8 9 10 11 12

S1 1 0 0 1 0 0 1 0 0 1 0 0
S2 1 0 0 0 1 0 0 1 0 0 1 0
S3 1 0 0 0 0 1 0 0 1 0 0 1
S4 0 1 0 1 0 0 0 0 1 0 1 0
S5 0 1 0 0 1 0 1 0 0 0 0 1
S6 0 1 0 0 0 1 0 1 0 1 0 0
S7 0 0 1 1 0 0 0 1 0 0 0 1
S8 0 0 1 0 1 0 0 0 1 1 0 0
S9 0 0 1 0 0 1 1 0 0 0 1 0


The incident matrix specifies the combinatorial design (M
= 12, A = 9, C = 4, R = 3, O = 1, F )-configuration with
12 DABs.

The frequency F is determined based on Bayesian in-
ference by combining prior knowledge with observed data.



In MACROF model the structure is known. The frequency
factor can determined based on user preference set at training
or dynamically based on the type of data. Given labeled data
(Di) and context (Cj), the frequency of occurrence can be
calculated for data items.

P (Cj |Di) = LikelihoodRatio · Prior (1)

LikelihoodRatio =
P (Di)

Cj
(2)

Prior = P (Ci) (3)

Thus the frequency of the updates will be determined
based on the context Cj where if it is an important (as
specified by labeled data) then the frequency of updates
will be changed to the predicted probability of that specific
context occurring again.

PosteriorP (Cj |Di) =
P (Di)

Cj
· P (Cj) (4)

The posterior probability gets updated for every new context
with interval of update. For example, if Cj has over 50%
chance of occuring again in 5 minutes then the time epoch
for update will be 5 minutes until the posterior probability is
changed for that particular context. Thus F can be defined
as a time interval,

F = tP (Cj+1|Di+1) − tP (Cj |Di) (5)

This Bayesian inference can be extended to unknown
data items as well with a modification of Expectation-
Maximization (EM) algorithm [34].

A. Evaluation of MACROF Parameters

The individual parameters in MACROF configuration can
be defined as follows: M is number of distributed au-
tonomous blocks with autonomous systems, A is number
of systems, R is number of subset split of the systems, C
is the number of times Si is replicated, O number of times
that a random pair systems Si and Sj appear together in the
system. The parameters that can be adjusted in this design
are M and C.

C =
O · (A− 1)

R− 1
(6)

Theorem 1: In combinatorial design of MACROF, every
system has C number of DABs containing a particular
system Si.
Proof:Let (z, γ) be a MACRO configuration. Suppose z ∈ Z
and Cz denote the number of DABs containing Si. Define
a set,

K = {(x, Y ) : x ∈ Z, x 6= z, Y ∈ γ, {z, x} ⊆ Y } (7)

There are A− 1 ways to choose x ∈ Z s.t. x 6= z for each
such x, s.t. there are O blocks Y s.t. {z, x} ⊆ Y . Hence,

|K| = O(A− 1) (8)

Then, there are Cz ways to choose a DAB Y s.t. z ∈ Y . For
each choice of Y , there are R − 1 ways to choose x ∈ Y ,
x 6= z. Hence,

|K| = Cz · (R− 1) (9)

Combining equations (8) and (9), we get,

O(A− 1) = Cz · (R− 1) (10)

From equation (10), we can get equation (6). Thus Cz is
independent of z resulting in equation (6). C is also called
the Replica Number.
Similarly, M can be derived with,

M =
A · C
R

=
O · (A2 −A)
R2 −R

(11)

Theorem 2: A combinatorial MACROF design has exactly
M DBAs.
Proof: Let (z, γ) be a combinatorial MACROF configuration
and |M | = |γ|. Define a set,

K = {(z, Y ) : z ∈ Z, Y ∈ γ, z ∈ Y } (12)

There are A ways to choose z ∈ Z. For each such z, there
are C blocks Y s.t. z ∈ Y . Hence,

|K| = A · C (13)

Then, there are M ways to choose a block Y ∈ Y . For each
choice of Y there are R ways to choose z ∈ Y . Hence,

|K| =M ·R (14)

Combining equation (13) and (14), we get,

M ·R = A · C (15)

It is nothing but the desired result. The parameters (except
F ) are not independent in MACROF model. They have to
satisfy the following equations,

M ·R = A · C (16)

C · (R− 1) = O · (A− 1) (17)

M ≥ A (18)

Corollary 1: If there exists a MACROF configuration then
O(A − 1) ≡ 0 (mod R − 1) and O · A(A − 1) ≡ 0(mod
R · (R− 1)).
Proof: This is an obvious corollary. For example, a design
with A = 8, R = 3, and O = 1 does not exist because O ·
(A− 1) = 7 6≡ 0(mod 2).

Practical implementation of balanced block designs in
combinatorial mathematics do not require perfectly balanced
blocks. As it can be seen from equations (6) and (11), the
design constraints are directly propositional to O. For O



> 1, complex and fault-tolerant operations are possible but
they may come at the cost of complexity and redundancy.
The number of connections R subsets is a fixed parameter
used for the construction of autonomous blocks. To reduce
the complexity, R should be kept relatively small. Consider
an example design with O = 1 and R = 3. Then,

M ≈ 1

6
·A2 (19)

C ≈ 1

2
·A (20)

Thus a design with 20 autonomous entities would require
around 60 DBAs. Here number of communication channels
attached to DBAs per each system should be around 10.

IV. EXPERIMENTAL RESULTS

We conducted experiments with a simulator proposed in
[35] that is built with (7, 7, 3, 3, 1)-configuration with
a few modifications embedded in the code. The modified
simulator can be found in [36]. We set F to clock tick of
the underlying operating system. The simulator is built for
extracting parallelism with sequential processing with repli-
cated data storage elements such as MACROF configuration.
It is equipped with storage elements (such as registers)
to hold data objects. A sequential processing module is
also embedded into the simulator to run similar processes
that will be run by MACROF configuration. These storage
elements act as independent autonomous modules. We mea-
sure the performance of the graceful degradation structure
through number of updates it requires to complete a specific
process and update the replicated systems. These number of
updates are compared with a sequential processing module
without the combinatorial structure.

A compiler loads specified instructions for each program
into both sequential processing and combinatorial process-
ing structure. When a particular process is being run in
the system, MACROF design enables the local elements
to interact simultaneously without waiting for data from
primary modules. This (a) avoids data dependence and (b)
increases fault-tolerance—if data is corrupted in one storage
element, its replica can replace it. Each storage element is
updated with new values when the process progresses. These
processes are written in assembly instructions and loaded
into the simulator: sum (P1), binary search (P2), copying
data (P3), print (P4), double copy (P5), moving data (P6),
Fibonacci creation (P7), Fibonacci search (P8), and scalar
product (P9).

To complete a particular process, depends on the complex-
ity of the processes, the distributed combinatorial MACROF
model performs well with considerable speed, incurring less
number of updates than the sequential processing with repli-
cations (Figure 4). One of the main overhead in MACROF
design is the replication cost when the system increases in
scalability. We hypothesize that when the design is increased
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Figure 4. Updates for MACROF compared to a non-MACROF sequential
processing

in its number of DABs and systems, the updates for the
replicated systems can be reduce considerably. By keeping
track of the failure rate of primary modules in a given
time interval, the updates to replicas can be reduced. For
example, if there are 700 DBAs with 300 replicas and the
failure rate is 10 per day, then only 10-20 replicas may need
updating where as other replicas can be updated in batches
later on. The replicas that are not in use can be used for
other purposes. The increase in number of interconnections
may increase the complexity during the design phase but
it is relatively easier to keep track once the construction is
complete. Table II shows the overhead of updates incurred
by non-MACROF processing for each process.

Table II
UPDATES REQUIRED FOR NON-MACROF MODEL

ID Process ×MACROF Updates are Required
P1 FIBSEARCH 1.3
P2 DOUBLE 1.4
P3 FIBB 1.5
P4 SEARCH 1.8
P5 COPY 1.8
P6 SCALAR 2
P7 SUM 2.1
P8 PRINT 3
P9 MOVEMENT 3.1

V. DISCUSSION AND FUTURE WORK

The presented combinatorial design aids incremental
learning in autonomous systems by allowing graceful degra-
dations by the replacement of primary modules through
replicas. Depends on the number of autonomous modules the
cost incurred by the design may increase with the complexity
of interconnections. But MACROF configuration provides a
robust and fault-tolerant replication scheme. The Bayesian



model presented can dynamically change the frequency of
updates and predict failure rate. This information can be
used to reduce the number of active replicas as well as their
updates. This feature provides flexibility to the users to set
their batch updates in their convenient intervals.

Our future research involves the following tasks:
• Integrate deep learning models to handle unknown data

(data that was not present during training or testing
or initial implementation). In particular, we intend to
investigate Open Set Learning methods [37].

• We plan to implement Moving Target Defense (MTD)-
style [38] resiliency mechanisms with MACROF. Each
replica can be loaded with different configuration and
the processes can be moved from one replica to another
to thwart any attacks based on particular configuration.
Even though the replicas increase the attack surface,
the combinatorial structure opens up possibilities for
various configurations with replicas and robust updates
to them.

• Implement MACROF in untrusted cloud. Clients Pull
from Primary server to stay in Sync. A Virtual Machine
/ computing system can act as both server / client.
Polling algorithms [39] will be used to select a primary
server. To maintain the data synchronization between
all the entities, client will poll the data from the server.
There are two kinds of polling: (a) lightweight poll
to check if there is any update (say every 1 second,
return true or false) and (b) Heavyweight poll to get
the data from the server (for every minute or whenever
lightweight poll returns true - whichever occurs earlier).
Lightweight poll can be done using HTTP / unsecured
lightweight call and Heavyweight call should be done
with HTTPS / secure protocol so that updated meta data
is properly authenticated. Data can be made available
from server using REST protocol. All the data will be
stamped with UTC timezone time stamp, so that clients
can see the latest data if a conflict arises.

VI. CONCLUSION

In this paper, we presented MACROF—a combinatorial
distributed design—for intelligent autonomous systems to
enable incremental learning aid cognitive autonomy. The
scheme offers a robust and reliable replication scheme
without incurring much overhead in terms of frequency of
updates. The frequency of updates to replicas from primary
module is dynamically changed based on Bayesian learning
model. These replicas allow the autonomous system to
gracefully degrade and operate at a lower capacity in case of
benign operational contexts but effectively replace primary
module in case of malignant operational contexts. The model
updates the IAS’s predictive model with new and unknown
operational contexts where it can be retrained and tested.
MACROF can also be used for processing data in parallel
with the help of replicas. The cost of replicas is considerably

reduced when the system is scaled for higher number of
systems with DABs. We have presented experimental results
obtained through a simulator where MACROF performs
considerably well in incurring updates overhead.
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