
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 6, NO. 6, DECEMBER 2022 1335

Decision Making in Monopoly Using a Hybrid Deep
Reinforcement Learning Approach

Trevor Bonjour , Marina Haliem , Aala Alsalem , Shilpa Thomas, Hongyu Li,
Vaneet Aggarwal , Senior Member, IEEE, Mayank Kejriwal , Member, IEEE,

and Bharat Bhargava , Life Fellow, IEEE

Abstract—Learning to adapt and make real-time informed
decisions in a dynamic and complex environment is a challenging
problem. Monopoly is a popular strategic board game that requires
players to make multiple decisions during the game. Decision-
making in Monopoly involves many real-world elements such as
strategizing, luck, and modeling of opponent’s policies. In this
paper, we present novel representations for the state and action
space for the full version of Monopoly and define an improved
reward function. Using these, we show that our deep reinforce-
ment learning agent can learn winning strategies for Monopoly
against different fixed-policy agents. In Monopoly, players can take
multiple actions even if it is not their. turn to roll the dice. Some
of these actions occur more frequently than others, resulting in a
skewed distribution that adversely affects the performance of the
learning agent. To tackle the non-uniform distribution of actions,
we propose a hybrid approach that combines deep reinforcement
learning (for frequent but complex decisions) with a fixed-policy
approach (for infrequent but straightforward decisions). We de-
velop learning agents using proximal policy optimization (PPO)
and double deep Q-learning (DDQN) algorithms and compare the
standard approach to our proposed hybrid approach. Experimen-
tal results show that our hybrid agents outperform standard agents
by 20% in the number of games won against fixed-policy agents.
The hybrid PPO agent performs the best with a win rate of 91%
against fixed-policy agents.

Index Terms—Monopoly, deep reinforcement learning, decision
making, proximal policy optimization, double deep Q-learning.

I. INTRODUCTION

D ESPITE numerous advances in deep reinforcement learn-
ing (DRL), the majority of successes have been in two-

player, zero-sum games, where it is guaranteed to converge to
an optimal policy [1], such as Chess and Go [2]. Rare (and
relatively recent) exceptions include Blade & Soul [3], no-press

Manuscript received 25 January 2022; accepted 14 March 2022. Date of
publication 16 May 2022; date of current version 28 November 2022. This work
was supported in part by Defense Advanced Research Projects Agency (DARPA)
and in part by Air Force Research Laboratory (AFRL) under the Contract No.
W911NF2020003. (Trevor Bonjour and Marina Haliem contributed equally to
this work.) (Corresponding author: Trevor Bonjour.)

Trevor Bonjour,Marina Haliem, Aala Alsalem, Vaneet Aggarwal, and Bharat
Bhargava are with Purdue University, West Lafayette, IN 47907 USA (e-
mail: tbonjour@purdue.edu; mwadea@purdue.edu; alsalema@purdue.edu; va-
neet@purdue.edu; bbshail@purdue.edu).

Shilpa Thomas, Hongyu Li, and Mayank Kejriwal are with the University of
Southern California, Los Angeles, CA 90007 USA (e-mail: shilpath@usc.edu;
lihongyu@isi.edu; kejriwal@isi.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TETCI.2022.3166555, provided by the authors.

Digital Object Identifier 10.1109/TETCI.2022.3166555

diplomacy [4], Poker1 [6], and StarCraft [7], [8]. In particular,
there has been little work on agent development for the full
4-player game of Monopoly, despite it being one of the most
popular strategic board games in the last 85 years.

Monopoly is a turn-based real-estate game in which the
goal is to remain financially solvent. The objective is to force
the opponents into bankruptcy by buying, selling, trading, and
improving (building a house or a hotel) pieces of property. A
player is only allowed to improve property when they achieve a
monopoly. A monopoly is when a player owns all the properties
that are part of the same color group. The game resembles the
real-life business practice of cornering the market to achieve a
real-estate monopoly.

During the game, a player can take multiple actions even when
it is not their turn to roll the dice. Imagine you are in the middle of
playing Monopoly with friends. It is not your turn to roll the dice,
but one of your friends just acquired a property that will give
you a monopoly. You know you will need that property if you
want to have a chance at winning the game. You initiate a trade
request, but you need to make an offer that they will probably
accept. You need to think about an amount of money you could
offer, or if you have a property that might be of interest to them
to offer as an exchange for the property of interest. Maybe you
need to mortgage or sell a property to generate cash for the trade
- would it even be worth it in the long run. This scenario is a
snapshot in time of how many different decisions one needs to
make during Monopoly. This complexity makes it a fascinating
but challenging problem to tackle.

Previous attempts [9], [10] at Monopoly overlook these com-
plexities and consider a simplified version of the game. In both,
the authors model Monopoly as a Markov Decision Process
(MDP). [9] gives a novel representation for the state space. [10]
find that a higher-dimensional representation of the state im-
proves the learning agent’s performance. However, both these
attempts consider a very limited set of actions: buy, sell, do
nothing in case of [9] and only buy, do nothing in case of [10].
Unlike previous attempts, we do not simplify the action space
in Monopoly. Instead, we consider all possible actions (Table I),
including trades, to make the game as realistic as possible. This
consideration makes the task more challenging since we now
need to deal with a high-dimensional action space.

1We note that, even in this case, a two-player version of Texas Hold ’em was
initially assumed [5] but later superseded by a multi-player system.

2471-285X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5050-0220
https://orcid.org/0000-0002-9782-6591
https://orcid.org/0000-0003-1560-0116
https://orcid.org/0000-0001-9131-4723
https://orcid.org/0000-0001-5988-8305
https://orcid.org/0000-0003-3803-8672
mailto:tbonjour@purdue.edu
mailto:mwadea@purdue.edu
mailto:alsalema@purdue.edu
mailto:vaneet@purdue.edu
mailto:vaneet@purdue.edu
mailto:bbshail@purdue.edu
mailto:shilpath@usc.edu
mailto:lihongyu@isi.edu
mailto:kejriwal@isi.edu
https://doi.org/10.1109/TETCI.2022.3166555

1336 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 6, NO. 6, DECEMBER 2022

TABLE I
ACTIONS IN MONOPOLY

We observe that neither of the earlier state representations
contains enough information for the agent to learn winning
strategies for Monopoly when considering all the actions. To
deal with the high-dimensional action space, we develop an
enhanced state space that provides a higher representation power
and helps the agent consistently get high win rates against other
fixed-policy baseline agents. [10] use a sparse reward function
where the agent receives a reward at the end of each game. Our
experiments show that a sparse reward function is not ideal and
cannot handle the complexities accompanying the full version
of Monopoly. [9] use a dense reward function where the agent
receives a reward within a game after taking any action. We
formulate a dense reward function that performs better than the
one given by [9].

In Monopoly, some actions occur more frequently than others
resulting in a skewed distribution. For instance, a player is
allowed to trade with other players at any point in the game, but a
player can only buy an unowned property when they land on the
property square. This rare occurrence of a particular state-action
pair increases the computational complexity for a standard DRL
agent. There is already some evidence emerging that a pure DRL
approach may not always be the only (or even best) solution
for solving a complex decision-making task. Recently hybrid
DRL approaches have surfaced that result in faster convergence,
sometimes to a better policy, in other domains such as opera-
tions [11], robotics [12], [13], and autonomous vehicles [14]–
[16]. To deal with the non-uniform distribution of actions, we
propose a hybrid DRL approach for Monopoly. Specifically, we
use a fixed-policy approach for infrequent but straightforward
decisions and use DRL for frequent but complex decisions. We
show that our hybrid agents have a faster convergence rate and
higher win rates against baseline agents when compared to the
standard DRL agents.

We summarize the key contributions of the paper as follows:
� We consider all decisions that a player may need to make

during Monopoly and develop a novel and comprehensive
action space representation (Section IV-B).

� We design an enhanced state space representation (Sec-
tion IV-A) and an improved reward function (Section IV-C)
for Monopoly, using which the learning agents converge
sooner and to a better policy in contrast to previous attempts
(Section III).

� We develop standard DRL-based agents (Section V-A) that
learn winning strategies for Monopoly against different
fixed-policy agents. The standard DRL agents win at least
25% more games than the best fixed-policy agent.

� We devise a hybrid approach (Section V-B) to solve the
complex decision-making task using DRL for a subset of
decisions in conjunction with fixed-policy for infrequent
actions. During training, the hybrid agents converge sooner
and to a better policy as compared to the standard DRL
agents. Our experiments (Section VII) show that the hybrid
agent outperforms the standard learning agent by more than
20% in the number of games won against the fixed-policy
agents.

� We develop a complete four-player open-sourced
simulator for Monopoly (Section VI-A) together with
three different fixed-policy baseline agents. The baseline
agents (Section VI-B) are implemented based on common
winning strategies used by human players in Monopoly
tournaments.

II. BACKGROUND

A. Monopoly

Monopoly is a board game where players take turns rolling
a pair of unbiased dice and make decisions based on their
position on the board. Fig. 1 shows the conventional Monopoly
game board that consists of 40 square locations. These include
28 property locations, distributed among eight color groups
(22 real-estate properties), four railroads, and two utility, that
players can buy, sell, and trade. Additionally, there are two tax
locations that charge players a tax upon landing on them, six
card locations that require players to pick a card from either

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

BONJOUR et al.: DECISION MAKING IN MONOPOLY USING A HYBRID DEEP REINFORCEMENT LEARNING APPROACH 1337

Fig. 1. Monopoly game board.

the community chest card deck or the chance card deck, the
jail location, the go to jail location, the go location, and the free
parking location. Our game schema also specifies all assets, their
corresponding purchase prices, rents, and color. Each square
shows the purchase prices that correspond to an asset in Fig. 1.
In Monopoly, players act as property owners who seek to buy,
sell, improve or trade these properties. The winner is the one
who forces every other player into bankruptcy.

B. Markov Decision Process

An MDP is defined by the tuple 〈S,A, T ,R〉 where S is the
set of all possible states and A is the set of all possible actions.
The transition function T : S ×A× S → [0, 1] is the probabil-
ity that an action a ∈ A in state s ∈ S will lead to a transition to
state s′ ∈ S . The reward function R : S ×A× S → R defines
the immediate reward that an agent would receive after executing
action a resulting in a transition from state s to s′.

C. Reinforcement Learning

Solving an MDP yields a policy π : S → A, which is a
mapping from states to actions. An optimal policy π∗ maximizes
the expected sum of rewards. Reinforcement Learning (RL)
is a popular approach to solve an MDP [17] without explicit
specification of the transition probabilities. In RL, an agent
interacts with the environment in discrete time steps in order
to learn the optimal policy through trial and error.

DRL [18] makes use of deep neural networks to approximate
the optimal policy or the value function to deal with the limita-
tions of traditional RL methods. The use of deep neural networks
as function approximators enables powerful generalization but
requires critical decisions about representations. Poor design
choices can result in estimates that diverge from the optimal
policy [19]–[21]. Existing model-free DRL methods are broadly
characterized into policy gradient and value-based methods.

Policy gradient methods use deep networks to optimize the
policy directly. Such methods are useful for physical con-
trol where the action space is continuous. Some popular pol-
icy gradient methods are Deep deterministic policy gradient
(DDPG) [22], asynchronous advantage actor-critic (A3C) [23],

trust region policy optimization (TRPO) [24], proximal policy
optimization (PPO) [25].

Value based methods, on the other hand, are based on esti-
mating the value of being in a given state. Deep Q-Network
(DQN) [26] is a well-known value-based DRL method. There
have been many extensions of the DQN algorithm over the past
few years, including double DQN (DDQN) [27], distributed
DQN [28], prioritized DQN [29], dueling DQN [30], asyn-
chronous DQN [23], and rainbow DQN [31].

In this paper, we implement both a policy gradient method
(PPO) and a value based method (DDQN) to train our standard
DRL and hybrid agents (Section V).

III. RELATED WORK

Despite the popularity of Monopoly, a learning-based ap-
proach for decision-making for the full game has not been
studied previously. There are older attempts to model Monopoly
as a Markov Process such as [32]. [9] and more recently [10] pro-
pose modeling Monopoly as an MDP. However, both attempts
consider a simplified version of the game. Specifically, both
consider a limited set of actions (buy, sell, do nothing) with
neither work considering trades between players. In [9], an RL
agent is trained and tested against a random and a fixed-policy
agent. [9] employs a Q-learning strategy along with a neural
network. In recent work [10], authors apply a feed-forward
neural network with the concept of experience replay to learn
to play the game. Their approach supports the idea that no
single strategy can maintain high win rates against all other
strategies.

Settlers of Catan is a similar board game that involves trades
between players. In both, the action distribution is not uniform:
certain action types (making trades) are more frequently valid
than others. In Monopoly, a player is allowed to trade with other
players at any point in the game. However, a player can only buy
an unowned property (currently owned by the bank) when they
land on the property square. [33] use a model-based approach,
Monte Carlo Tree Search (MCTS), for Settlers of Catan. The
authors in [33] address the skewed action space by first sampling
from a distribution over the types of legal actions followed by
sampling individual actions from the chosen action type.

There is evidence emerging in other domains that hybrid
DRL techniques reduce the computational complexity of the
decision-making task and may provide a better alternative to a
pure DRL approach. In [15], authors combine DQN (for high-
level lateral decision-making) with the rule-based constraints
(to ensure safety) for autonomous driving to achieve a safe and
efficient lane change behavior. The authors in [15] use the rules to
ensure safety after the DRL has taken a decision. The rule-based
method does not select an action instead it just returns whether
it is safe to take the action returned by the DQN agent. [12]
presents a framework for robots to pick up the objects in clutter
by combining DRL and rule-based methods. They divide the task
of picking up objects into two parts - pushing and grasping. They
make use of the DDPG algorithm with a continuous output for
pushing other objects out of the way and use a rule-based method
to decide whether to grasp or not. [11] propose an algorithm

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

1338 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 6, NO. 6, DECEMBER 2022

for the power-increase operation that uses an A3C agent for
the continuous control module and a rule-based system for the
discrete control components.

In this work, we use DRL to solve decision-making in
Monopoly. Like [9], [10], we represent Monopoly using an MDP,
but unlike previous attempts, we do not simplify the game. To
make the game as realistic as possible, we consider all possible
actions (Table I), including trades. The inclusion of all actions
makes the decision-making task more challenging since we need
to deal with a high-dimensional action space. We also provide
an improved state space representation and reward function
when compared to the previous attempts. To handle the non-
uniform action space, we propose a hybrid agent that combines
a fixed-policy (or rule-based) approach for decisions involving
rare actions with DRL for decisions involving remaining actions.
Though the idea of hybrid DRL exists in literature, the separation
of actions between DRL and fixed-policy is domain-specific.
In [11], [12] this distinction is made on the basis that a subset of
actions is continuous. In our case, the distinction is not obvious
since all our actions are discrete. We are the first to propose the
frequency of actions as a criterion for the selection of actions
for rule-based and DRL respectively. In this work, we explicitly
show that using a hybrid approach is better than using a standard
one when all other variables are kept constant. In addition, we
also show a comparison of using a policy gradient and value
based method for our hybrid agent.

IV. MDP MODEL FOR MONOPOLY

We design novel state and action space representations and
utilize a combination of dense and sparse reward functions to
model the full 4-player game of Monopoly as an MDP.

A. State Space

We represent the state as a combination of player and property
representation. For the player representation, we consider the
current location, amount of cash with the player, a flag denoting
if the player is currently in jail and another flag for whether
the player has a get out of jail free card. Since all other cards
force a player to take an action immediately and are not part
of the decision-making process, we do not consider them in the
state space. For the property representation, we include the 28
property locations. These constitute 22 real-estate properties,
four railroad properties, and two utility properties. The property
representation consists of owner representation, a flag for a
mortgaged property, a flag denoting whether the property is part
of a monopoly, and the fraction of the number of houses and
hotels built on the property to the total allowed number. We
represent the owner as a 4-dimensional one-hot-encoded vector
with one index for each player with all zeros indicating the bank.
In Monopoly, one can only build a house or a hotel on proper-
ties that belong to a color group. Thus for the non-real-estate
properties, these values are always zero. We do not include the
other locations from the board (Fig. 1) as they do not warrant
a decision to be taken by the agent. Overall, the state space
representation is a 240-dimensional vector: 16 dimensions for

the player representation and 224 dimensions for the property
representation.

B. Action Space

We consider all actions that require a decision to be made by
the agent. We do not include compulsory actions, like paying
tax, moving to a specific location because of a chance card,
or paying rent when you land on a property owned by another
player. An exhaustive list of actions considered can be found
in Table I.

We broadly classify the actions in Monopoly into three
groups, those associated with all 28 properties, 22 color-group
properties, or no properties. We represent all actions that are
not associated with any properties as binary variables. Note that
we only have one action that pertains to using a card: Use get
out of jail card. We do not consider any other card since all the
other cards require the player to take the action mentioned on
the card immediately. Only a get out of jail card can be used at
a later time, requiring the player to decide on when to use it.
Since improvements (building a house or a hotel) in Monopoly
are only allowed for properties belonging to a color group, we
represent both improve property and sell house or hotel as a
44-dimensional vector where 22 dimensions indicate building a
house with the other 22 indicating building a hotel on a given
property. Actions that are associated with all properties, except
for buy property and make trade offer, are represented using a
28-dimensional one-hot-encoded vector with one index for each
property. A player is only allowed to buy an unowned property
when they directly land on the property square. Hence, though
the action is associated with all properties, the decision to buy
or not can be represented using a binary variable.

Trades are possibly the most complex part of the game. A
player is allowed to trade with other players anytime during the
game. A trade offer has multiple parameters associated with it:
it needs to specify the player to whom the trade is being offered.
It may further include an offered property, a requested property,
the amount of cash offered, and the amount of cash requested.
We divide the trade offers into three sub-actions: sell property
trade offers, buy property trade offers, and exchange property
trade offers. For the buy/sell trade offers, we discretize the cash
into three parts: below market price (0.75 × purchase price),
at market price (1 × purchase price) and, above market price
(1.25 × purchase price). Since we have three other players, 28
properties, and three cash amounts, we represent these using a
252-dimensional (3×28×3) vector. To keep the dimensions in
check for exchange trade offers, we use the market price for
both assets. Thus, we only need to account for the properties
and the player. We represent the exchange trade offers using
a 2268-dimensional (3×28×27) vector. Altogether, the action
space has 2922 dimensions.

One thing to note here is that not all actions are valid all the
time. Depending on the phase (Section VI-A) of the game, only
a subset of possible actions is allowed (Table I).

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

BONJOUR et al.: DECISION MAKING IN MONOPOLY USING A HYBRID DEEP REINFORCEMENT LEARNING APPROACH 1339

C. Reward Function

We use a combination of a dense and a sparse reward function
((1)). In order to reward or penalize a player for the overall
policy at the end of each game, we use a constant value of ±c
for a win/loss respectively.

r =

{
±c for a win/loss

rx if the game is not over
(1)

where rx is the in-game reward for player x and c is a constant
scalar. In order to choose the value of c, we ran an experiment
with different values and chose the one that gives us the best
results in terms of convergence time and the number of wins.
More details are presented in Section VII.

During a single game, we use a reward function ((4)) defined
as the ratio of the current players’ net-worth ((2)) to the sum of
the net worth of other active players. We update the net worth
of each active player after they take any action.

nwx = cx +
∑
a∈Ax

pa (2)

where nwx is the net worth of player x, cx is the current cash
with player x, pa is the price of asset a, and Ax is the set of
assets owned by player x. The value for pa is calculated as:

pa = (bp −mv) ∗ b+ nh ∗ ph + nH + pH (3)

where bp is the base price (as shown in Fig. 1) of an asset, mv

is the mortgage value, b denotes a bonus constant, nh and ph
denote the number of houses and the price of each house on a
given property and, nH and pH denote the number of hotels and
price of each hotel built on the property. If an asset is mortgaged,
mv equals the mortgaged owed on the property. If the asset is
not mortgaged, then this value is zero. Since, in Monopoly, it is
often better to have property than have cash of the same value,
we give a bonus constant to encourage the agent to buy more
properties. b = 1.5 if the asset is not part of a Monopoly and
b = 2 if the asset is part of a Monopoly. For the in-game reward
we have:

rx =
nwx∑

y∈Xi\xnwy
(4)

where rx is the in-game reward for player x and X is the set of
all active players. This reward value is bounded between [0,1]
and helps distinguish the relative value of each state-action pair
within a game.

V. APPROACH

We approach Monopoly from a single agent perspective and
treat the other players as part of the environment. We adopt a
DRL approach to tackle the decision-making task. As we saw in
the previous section (Section IV-B), there are multiple actions
an agent can take at any given stage of the game resulting in
a complex learning problem. We propose two learning-based
approaches, a policy gradient method (PPO) and a value based
method (DDQN). In both cases, we train a standard agent that
uses a model-free DRL paradigm for all decisions and a hybrid

agent that uses DRL for a subset of actions in conjunction with
a fixed-policy for remaining actions.

A. Standard DRL Agents

1) Actor-Critic PPO Agent: We implement the actor-critic
PPO algorithm with a clipped surrogate objective function [25].
To estimate the advantage, we make use of the truncated ver-
sion of generalized advantage estimation used in [23]. The
actor-critic PPO implementation makes use of two independent
networks - the actor network and the critic network. PPO is an
on-policy algorithm in which the agent follows a policy dictated
by the actor network for a fixed number of time-steps (much
less than the episode length). The actor network parameters
are initialized randomly, and the agent explores by sampling
actions according to the latest version of its stochastic policy. As
the training proceeds, the policy typically becomes less random
since the update rule encourages it to exploit rewards. The critic
network is responsible for calculating the value of a given state
which is used in the advantage estimation when optimizing the
objective function. More details on the approach are presented
in Appendix A-A (Supplementry material).

2) DDQN Agent: A common issue with using vanilla DQN
is that it tends to overestimate the expected return. Double
Q-learning [34] overcomes this problem by making use of a
double estimator. To avoid over-estimation of the Q-values, we
implement the DDQN [27] algorithm to train our agent. Similar
to the standard DQN approach, DDQN makes use of an experi-
ence replay [35] and a target network. Similar to [26], we make
use of the ε-greedy exploration policy to select actions. Initially,
the agent explores the environment by randomly sampling from
allowed actions. As the learning proceeds and the agent learns
which actions are more successful, its exploration rate decreases
in favor of more exploitation of what it has learned. We mask the
output of the network to only the allowed actions to speed up the
training process. The action masking ensures that the learning
agent selects a valid action at any given time. More details on
the approach are presented in Appendix A-B (Supplementry
material).

B. Hybrid Agents

Standard DRL techniques have a high sample complexity.
DRL requires each state-action pair to be visited infinitely often,
the main reason we use ε-greedy in the DDQN agent. If some
states are rare, we do not want to force the agent to explore them
- especially if the related decisions are straightforward and we
have an idea of what actions might be good in the given state.
When playing Monopoly, a player can only buy an unowned
property (property still owned by the bank) when they exactly
land on the property square. During our simulations, we ob-
served that the buy property action is seldom allowed. Similarly,
accept trade offer is only valid when there is an outstanding
trade offer from another player. The resulting rare-occurring
action-state pairs further increase the sample and computational
complexity of the learning task. We hypothesize that by using a
rule-based approach for the rare occurring but simple decisions

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

1340 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 6, NO. 6, DECEMBER 2022

and a learning-based approach for the more frequent but complex
decisions, we can improve the overall performance.

We design hybrid agents that integrate the DRL approaches
presented earlier (Section V-A) with a fixed-policy approach.
We use a fixed-policy to make buy property and accept trade
offer decisions. For all other decisions, we use DRL. During
training, if there is an outstanding trade offer, the execution flow
shifts from the learning-based agent to a fixed-policy agent to
decide whether to accept the trade offer or not. The agent accepts
an offer if the trade increases the number of monopolies. If
the number of monopolies remains unchanged, the agent only
accepts if the net worth of the offer is positive. The net worth of
an offer is calculated using:

nwo = (po + co)− (pr + cr) (5)

where nwo denotes the net worth of the trade offer, po is the
price of the property offered, co is the amount of cash offered,
pr is the price of the property requested, and cr is the amount of
cash requested.

Similarly, whenever the agent lands on a property owned by
the bank, the fixed-policy agent decides whether or not to buy the
property. The agent buys the property if it results in a monopoly
as long as it can afford it. For all other properties, if the agent
has $200 more than the property price, it decides to buy. Our
experiments show that in both cases, the hybrid agent converges
faster and significantly outperforms the standard DRL agent
when playing against other fixed-policy agents.

VI. EXPERIMENTAL SETUP

A. Monopoly Simulator

We develop an open-sourced, complete simulator for a four-
player game of Monopoly using Python, available on GitHub.2

The simulator implements the conventional Monopoly board
with 40 locations shown in Fig. 1 and enforces rules similar to
the US version of the game,3 barring some modifications. We do
not consider the game rules associated with rolling doubles (for
example, a double can get a player out of jail). We treat them
as any other dice roll. Trading is an integral part of Monopoly.
Players can use trades to exchange properties with or without
cash with one or more players. We enforce the following rules
for trading:
� Players can trade only unimproved (no houses or hotels)

and unmortgaged properties.
� Players can make trade offers simultaneously to multiple

players. The player who receives a trade offer is free to ei-
ther accept or reject it. The trade transaction gets processed
only when a player accepts an offer. Once a trade transac-
tion is processed, we terminate all other simultaneous trade
offers for the same property.

� A player can have only one outstanding trade offer at a
time. A player needs to accept or reject a pending offer
before another player can make a different trade offer.

2[Online]. Available: https://github.com/mayankkejriwal/GNOME-p3
3[Online]. Available: https://www.hasbro.com/common/instruct/monins.pdf

In the conventional setting, players can take certain actions
like mortgaging or improving their property even when it is
not their turn to roll dice. If multiple players take simultaneous
actions, the game could become unstable. To avoid this and to
be able to keep track of all the dynamic changes involved in the
game, we divide the gameplay into three phases:
� Pre-roll: The player whose turn it is to roll the dice is

allowed to take certain actions before the dice roll in this
phase. To end the phase, the player needs to conclude
actions.

� Out-of-turn: Once the pre-roll phase ends for a player, the
other players can make some decisions before this player
rolls the dice. Every player is allowed to take actions in a
round-robin manner in this phase until all players decide
to skip turn or a predefined number of out of turn rounds
are complete.

� Post-roll: Once the player rolls dice, their position is up-
dated based on the sum of the number on the dice. This
player then enters the post-roll phase. If the player lands
on a property that is owned by the bank, they need to decide
whether or not to buy during this phase.

Table I shows the game phases associated with each action. If
a player has a negative cash balance at the end of their post-roll
phase, they get a chance to amend it. If they are unsuccessful
in restoring the cash balance, bankruptcy procedure begins fol-
lowing which the player loses the game.

B. Baseline Agents

We develop baseline agents that, in addition to buying or
selling properties, can make trades. We base the policies of
these agents on successful tournament-level strategies adopted
by human players. Several informal sources on the Web have
documented these strategies though they do not always agree4

A complete academic study on which strategies yield the highest
probabilities of winning has been lacking. Perhaps the complex
rules of the game have made it difficult to formalize analytically.

We develop three fixed-policy agents: FP-A, FP-B, and FP-C.
All three agents can make one-way (buy/sell) or two-way (ex-
change) trades with or without cash involvement. They are also
capable of rolling out trade offers simultaneously to multiple
players. By doing so, the agent increases the probability of a
successful trade, so it can acquire properties that lead to mo-
nopolies of a specific color group more easily. The fixed-policy
agents try to offer properties that hold a low value (for example,
a solitary property) to the agent itself but may be of value (gives
the other player a monopoly) to the other player and vice versa
when making trade requests. To yield a higher cash balance, the
agents seek to improve their monopolized properties by building
houses and hotels.

All three agents place the highest priority in acquiring a
monopoly but differ on the priority they base on each property.
FP-A gives equal priority to all the properties, FP-B and FP-C
give a high priority to the four railroad properties. Additionally,

4Two resources include http://www.amnesta.net/monopoly/ and
https://www.vice.com/en/article/mgbzaq/10-essential-tips-from-a-monopoly-
world-champion.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

https://github.com/mayankkejriwal/GNOME-p3
https://www.hasbro.com/common/instruct/monins.pdf
http://www.amnesta.net/monopoly/
https://www.vice.com/en/article/mgbzaq/10-essential-tips-from-a-monopoly-world-champion
https://www.vice.com/en/article/mgbzaq/10-essential-tips-from-a-monopoly-world-champion

BONJOUR et al.: DECISION MAKING IN MONOPOLY USING A HYBRID DEEP REINFORCEMENT LEARNING APPROACH 1341

Fig. 2. Comparison of win rate (number of wins every 100 games) for different
values of c in the reward function (1) for hybrid PPO agent.

FP-B places a high priority on the high rent locations: Park Place
and Boardwalk and assigns a low priority to utility locations. On
the other hand, FP-C places high priority on properties in the
orange color group (St. James Place, Tennessee Avenue, New
York Avenue) or in the sky-blue color group (Oriental Avenue,
Vermont Avenue, Connecticut Avenue). An agent tries to buy or
trade properties of interest more aggressively, sometimes at the
risk of having a low cash balance. It may also end up selling a
lower priority property to generate cash for a property of interest.

VII. EXPERIMENTS AND RESULTS

A. Training of PPO Agents

We train both the standard PPO agent and the hybrid PPO
agent using the actor critic PPO algorithm. We use the same
architecture and parameters for both agents in order to draw a
fair comparison. We use the state, action, and reward functions
presented in Section IV. In the case of the hybrid agent, how-
ever, we permanently mask the actions that use a fixed-policy.
During training, the agents play against the three fixed-policy
agents. We train the learning agents for 2000 games each and
randomize the turn order to remove any advantage one may get
due to the player’s position. Details on the network architecture
and parameters are provided in Appendix B-A (Supplementry
material).

1) Experiment 1 - Constant Value for Reward: In order to
see the effect of the constant value c on the performance of the
agent, we train the hybrid PPO agent with different values of
c ∈ {0, 1, 10, 20, 50, 100}. The win rate (wins per 100 games)
is given in Fig. 2. Since PPO is an on-policy algorithm and
relies more on the in-game reward, we see that the value of c
(received during win/loss) does not have a major impact on the
performance of the agent. We keep c = 0 for the PPO agents for
all the following experiments.

2) Experiment 2 - Standard PPO vs. Hybrid PPO: We com-
pare the performance of the standard PPO agent to that of the
hybrid PPO agent during training. The win rate (wins per 100
games) for each agent during training is shown in Fig. 5. As
mentioned earlier, the difference between the two settings is
that for the standard PPO agent, all the decisions are taken by
the learning agent, whereas for the hybrid PPO agent, a subset of
decisions is taken by following a fixed-policy approach. We see

Fig. 3. Comparison of win rate (number of wins every 100 games) for standard
PPO and hybrid PPO agent during training. The hybrid agent converges sooner
and to a better policy as compared to the standard agent.

Fig. 4. Comparison of win rate (number of wins every 100 games) for different
values of c in the reward function (1) for hybrid DDQN agent.

Fig. 5. Comparison of win rate (number of wins every 100 games) for standard
DDQN and hybrid DDQN agent during training. The hybrid agent converges
sooner and to a better policy as compared to the standard DRL agent.

from the graph that the hybrid PPO agent converges sooner and
to a better policy when compared to the standard PPO agent.

B. Training of DDQN Agents

Previous attempts at Monopoly [9], [10] use Q-value based
methods to solve the MDP task. In order to compare our ap-
proach to the previous approaches5 and to see how a value based
algorithm behaves, we train both the standard agent and the
hybrid agent using the DDQN algorithm. For the two agents to
be comparable, we use the same architecture and parameters for
both. We use the state, action, and reward functions presented
in Section IV. Like in the PPO case, we permanently mask

5We omit the comparison of action space representations since the agent does
not win a single game against the fixed-policy agents when using a simpler
action space presented in [9], [10].

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

1342 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 6, NO. 6, DECEMBER 2022

Fig. 6. Comparison of win rates of the hybrid DDQN agent during training
using our proposed state space representation (Section IV-A) to that previously
given by Bailis et al. [9] and Arun et al. [10].

the actions that use a fixed-policy for the hybrid DDQN agent.
Details on the network architecture and parameters are provided
in Appendix B-B (Supplementry material).

1) Experiment 1 - Constant Value for Reward: In order to
see the effect of the value of the constant c for the reward
function ((1)), we run an experiment with different values of
c ∈ {0, 1, 10, 20, 50, 100} when training the hybrid agent. The
hybrid agent is trained for 6000 games against the three fixed-
policy agents for each value of c. We present the results for the
win rate (wins per 100 games) in Fig. 4. Since DDQN is an
off-policy algorithm and uses a larger experience buffer, we see
that, unlike the PPO agent, the value of c affects the performance
of the DDQN agent. We get the fastest convergence and best win
rates on average for c = 10. For all the following experiments
we fix the value of c at 10.

2) Experiment 2 - Standard DDQN vs. Hybrid DDQN: In
order to compare the standard DRL agent to the hybrid agent,
we run an experiment to show how the two agents behave during
training and show a comparison of the win rate while training.
During training, the agents play against the three fixed-policy
agents. We train the learning agents for 10000 games each and
use an exponential decay function for the exploration rate. We
randomize the turn order during training (and testing) to remove
any advantage one may get due to the player’s position. The
win rate (wins per 100 games) for each agent during training is
shown in Fig. 5.

3) Experiment 3 - Comparison of State Space Representa-
tions: We perform an experiment to show the comparison of
using different state space definitions for the DDQN agent. We
compare our state space definition Section IV-A to the state space
representation proposed by Bailis et al. [9] and Arun et al. [10].
Fig. 6 shows a comparison of win rates of the hybrid agent during
training using the three different state representations. Please
note, we use our action space representation (Section IV-B) and
reward function (Section IV-C) for all three training runs and
only change the state space representation.

3) Experiment 4 - Comparison of Reward Functions: We run
an experiment to show how the choice of the reward function
affects the performance of the learning agent. We compare our
reward function Section IV-C to the reward functions proposed
by Bailis et al. [9] and Arun et al. [10]. Fig. 7 shows a comparison
of the win rates of the hybrid agent during training using the
three different reward functions. For these training runs, we use

Fig. 7. Comparison of win rates of the hybrid DDQN agent during training
using our proposed reward function (Section IV-C) to that previously given by
Bailis et al. [9] and Arun et al. [10].

our state and action space representations and only change the
reward functions.

C. Evaluation of Learning Agents

We run multiple experiments to evaluate the different learning
agents. In the case of the standard PPO agent, all decisions are
made using the pre-trained actor network. The actor network
makes a subset of the decisions for the hybrid PPO agent and
follows a fixed-policy for the remaining actions. We use the
pre-trained policy network to take all the decisions in the case
of the standard DDQN agent and a subset of decisions in the case
of the hybrid DDQN agent. We set the exploration rate to zero
for both the standard and the hybrid DDQN agents. For each
experiment, we use different combinations of agents to play the
four-player Monopoly game. Each experiment is run for five
iterations of 2000 games each. The order of play is randomized
for each game.

1) Experiment 1 - PPO vs. Fixed-Policy: For the first experi-
ment, we evaluate the performance of the two PPO agents when
playing against the three fixed-policy agents. We provide the
results for the standard PPO agent and the hybrid PPO agent
in Tables II and III respectively. We observe that the standard
PPO agent has a win rate of 69.95% while that of the hybrid
PPO agent is 91.65%. The result is in line with what we saw
during training. The hybrid PPO agent outperforms the standard
PPO agent by more than 20% when playing against fixed-policy
agents.

2) Experiment 2 - DDQN vs. Fixed-Policy: We perform a
similar evaluation for the DDQN agents as we do for PPO agents
in the first experiment. We run five iterations of 2000 games each
against the three fixed-policy agents for both learning agents.
The standard DRL agent achieves a win rate of 47.41% as
shown in Table IV. The hybrid agent significantly outperforms
the standard agent and achieves a win rate of 76.91% as shown
in Table V.

3) Experiment 3 - Hybrid vs. Standard vs. Fixed-Policy: To
test how the standard and the hybrid agents perform against each
other, we evaluate a setting where the standard and hybrid agents
play against each other as well against two fixed-policy agents.
We present the results from one of those settings in Table VI
for the PPO agents and in Table VII for the DDQN agents. In
both cases, we observe that the hybrid agents have a higher win

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

BONJOUR et al.: DECISION MAKING IN MONOPOLY USING A HYBRID DEEP REINFORCEMENT LEARNING APPROACH 1343

TABLE II
RESULTS FOR STANDARD PPO AGENT AGAINST FIXED-POLICY AGENTS OVER

FIVE RUNS OF 2000 GAMES EACH

TABLE III
RESULTS FOR HYBRID PPO AGENT AGAINST FIXED-POLICY AGENTS OVER

FIVE RUNS OF 2000 GAMES EACH

TABLE IV
RESULTS FOR STANDARD DDQN AGENT AGAINST FIXED-POLICY AGENTS

OVER FIVE RUNS OF 2000 GAMES EACH

TABLE V
RESULTS FOR HYBRID DDQN AGENT AGAINST FIXED-POLICY AGENTS OVER

FIVE RUNS OF 2000 GAMES EACH

TABLE VI
RESULTS FOR HYBRID AND STANDARD PPO AGENTS AGAINST FIXED-POLICY

AGENTS OVER FIVE RUNS OF 2000 GAMES EACH

TABLE VII
RESULTS FOR HYBRID AND STANDARD DDQN AGENTS AGAINST

FIXED-POLICY AGENTS OVER FIVE RUNS OF 2000 GAMES EACH

TABLE VIII
RESULTS FOR PPO AGENTS AGAINST DDQN AGENTS OVER FIVE RUNS OF

2000 GAMES EACH

rate (88.72% and 56.86%) than the standard agents (5.97% and
13.87%). We present results for additional settings in Appendix
C (Supplementry material).

4) Experiment 4 - PPO vs. DDQN: For our final evaluation,
we evaluate how the four learning agents perform when playing
against each other. We see from Table VIII that the standard
agents barely win any games. The hybrid PPO agent performs
the best with a win rate of 69.06% and the hybrid DDQN comes
in second with a win rate of 28.56%.

D. DISCUSSION

From the results, we see that the learning agents outperform
the fixed-policy agents by some margin. Although only two
action choices separate the standard and the hybrid agents,
we observe that the hybrid agents significantly outperform the
standard agents. Evidently, instead of letting the agent explore
the rare state-action pair it may be better suited if these are
replaced by rule-based logic, especially if we know what actions
might be good in the given state. Additionally, we see from Fig. 3
and Fig. 5, the hybrid agents converge sooner and to a better
policy than the standard DRL agents. From Fig. 6 and Fig. 7 we
see that our state representation and design of reward function
improves the performance of the DDQN learning agent when
compared to previous attempts. Though we see a similar pattern
for both value based and policy gradient based methods, we note
that the hybrid PPO agent outperforms the hybrid DDQN agent.

VIII. CONCLUSION

We present the first attempt at modeling the full version of
Monopoly as an MDP. Using novel state and action space repre-
sentations and an improved reward function, we show that our
DRL agent learns to win against different fixed-policy agents.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

1344 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 6, NO. 6, DECEMBER 2022

The non-uniform action distribution in Monopoly makes the
decision-making task more complex. To deal with the skewed
action distribution we propose a hybrid DRL approach. The
hybrid agents use DRL for the more frequent but complex deci-
sions combined with a fixed-policy for the infrequent but simple
decisions. Experimental results show that the hybrid agents
significantly outperform standard DRL agents for both policy
based (PPO) and value based methods (DDQN). We evaluate the
learning agents in different settings and see that the hybrid agents
consistently get a high win rate. The hybrid PPO agent performs
the best in all scenarios with a win rate of 91% against the
baseline agents and a win rate of 69.06% against other learning
agents. In this work, we integrate a fixed-policy approach with
a learning-based approach, but other hybrid approaches may be
possible. For instance, instead of using a fixed-policy agent,
the seldom occurring actions could be driven by a separate
learning agent that could either be trained jointly or separately
from the principal learning agent. In the future, we plan to
explore other hybrid approaches, train multiple agents using
Multi-Agent Reinforcement Learning (MARL) techniques, and
extend the Monopoly simulator to support human opponents.

ACKNOWLEDGMENT

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of DARPA, AFRL, or the U.S. Government. The authors thank
their team members on this project for all the discussions to
develop this paper. Some of the ideas in this paper are based on
our learning from the SAIL-ON meetings.

REFERENCES

[1] A. Celli, A. Marchesi, T. Bianchi, and N. Gatti, “Learning to correlate
in multi-player general-sum sequential games,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 13 076–13 086.

[2] D. Silver et al., “Mastering the game of go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] I. Oh, S. Rho, S. Moon, S. Son, H. Lee, and J. Chung, “Creating pro-level
ai for a real-time fighting game using deep reinforcement learning,” IEEE
Trans. Games, to be published, doi: 10.1109/TG.2021.3049539.

[4] P. Paquette et al., “No press diplomacy: Modeling multi agent gameplay,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 4474–4485.

[5] M. Moravĉík et al., “DeepStack: Expert level artificial intelligence in
heads up no limit poker,” Science, vol. 356, no. 6337, pp. 508–513,
2017.

[6] N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,”
Science, vol. 365, no. 6456, pp. 885–890, 2019.

[7] O. Vinyals et al., “Grandmaster level in starcraft II using multi agent
reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[8] K. Shao, Y. Zhu, and D. Zhao, “Starcraft micromanagement with reinforce-
ment learning and curriculum transfer learning,” IEEE Trans. Emerg. Top.
Comput. Intell., vol. 3, no. 1, pp. 73–84, Feb. 2019.

[9] P. Bailis, A. Fachantidis, and I. Vlahavas, “Learning to play monopoly: A
reinforcement learning approach,” in Proc. 50th Anniversary Conv. Soc.
Study Artif. Intell. Simul. Behav., 2014.

[10] E. Arun, H. Rajesh, D. Chakrabarti, H. Cherala, and K. George, “Monopoly
using reinforcement learning,” in Proc. IEEE Region 10 Conf., 2019,
pp. 858–862.

[11] D. Lee, A. M. Arigi, and J. Kim, “Algorithm for autonomous power-
increase operation using deep reinforcement learning and a rule-based
system,” IEEE Access, vol. 8, pp. 196 727–196 746, 2020.

[12] Y. Chen, Z. Ju, and C. Yang, “Combining reinforcement learning and
rule-based method to manipulate objects in clutter,” in Proc. IEEE Int.
Joint Conf. Neural Netw., 2020, pp. 1–6.

[13] H. Xiong, T. Ma, L. Zhang, and X. Diao, “Comparison of end-to-end and
hybrid deep reinforcement learning strategies for controlling cable-driven
parallel robots,” Neurocomputing, vol. 377, pp. 73–84, 2020.

[14] A. Likmeta, A. M. Metelli, A. Tirinzoni, R. Giol, M. Restelli, and D.
Romano, “Combining reinforcement learning with rule-based controllers
for transparent and general decision-making in autonomous driving,”
Robot. Auton. Syst., vol. 131, 2020, Art. no. 103568.

[15] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane change decision-making
through deep reinforcement learning with rule-based constraints,” in Proc.
IEEE Int. Joint Conf. Neural Netw., 2019, pp. 1–6.

[16] Q. Guo, O. Angah, Z. Liu, and X. J. Ban, “Hybrid deep reinforcement
learning based ECO-driving for low-level connected and automated ve-
hicles along signalized corridors,” Transp. Res. Part C, Emerg. Technol.,
vol. 124, 2021, Art. no. 102980.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[18] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process. Mag.,
vol. 34, no. 6, pp. 26–38, Nov. 2017.

[19] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Machine Learning Proceedings, New York, NY, USA:
Elsevier, 1995, pp. 30–37.

[20] S. Whiteson, “Evolutionary function approximation for reinforcement
learning,” J. Mach. Learn. Res., vol. 7, pp. 877–917, 2006.

[21] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1587–1596.

[22] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

[23] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[24] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1889–
1897.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

[26] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[27] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[28] A. Nair et al., “Massively parallel methods for deep reinforcement learn-
ing,” 2015, arXiv:1507.04296.

[29] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2015, arXiv:1511.05952.

[30] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[31] M. Hessel et al., “Rainbow: Combining improvements in deep rein-
forcement learning,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 3215–3222.

[32] R. B. Ash and R. L. Bishop, “Monopoly as a Markov process,” Math.
Mag., vol. 45, no. 1, pp. 26–29, 1972.

[33] M. S. Dobre and A. Lascarides, “Exploiting action categories in learning
complex games,” in Proc. IEEE Intell. Syst. Conf., 2017, pp. 729–737.

[34] H. Hasselt, “Double Q-learning,” in Proc. Adv. Neural Inf. Process. Syst.,
2010, pp. 2613–2621.

[35] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Mach. Learn., vol. 8, no. 3/4, pp. 293–321,
1992.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:23:12 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TG.2021.3049539

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

