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Abstract—Insider threats are one of the most difficult problems to solve, given the privileges and information available to insiders to

launch different types of attacks. Current security systems can record and analyze sequences from a deluge of log data, potentially

becoming a tool to detect insider threats. The issue is that insiders mix the sequence of attack steps with valid actions, reducing the

capacity of security systems to programmatically detect the attacks. To address this shortcoming, we introduce LADOHD, an anomaly

detection framework based on Long-Short Term Memory (LSTM) models, which learns the expected event patterns in a computer

system to identify attack sequences even when attacks span for a long time. The applicability of the framework is demonstrated on a

dataset of 38.9 million events collected from a commercial network of 30 computers over twenty days and where a 4-day long insider

threat attack occurs. Results show that LADOHD outperforms the anomaly detection system used to protect the commercial network

with a True Positive Rate of 97.29% and a False Positive Rate of 0.38%. Experiments also show that LSTMs have higher prediction

precision in variable-length sequences than methods like Hidden Markov Models, a crucial requirement in sequence-analysis-based

anomaly detection techniques.

Index Terms—Anomaly detection, endpoint detection and response (EDR), high-dimensional data, insider threats, long short-term memory

(LSTM), order-aware recognition (OAR) problem, sequence analysis, variable-length system activity event sequences

Ç

1 INTRODUCTION

Ademanding challenge for security systems is to success-
fully defend against insider threats because insiders are

in possession of credentials, have (some) knowledge of the
system operation, and are implicitly trusted as members of
the organization [1]. They are also located inside the security
perimeter, allowing them to unsuspiciously deploy attacks
such as data exfiltration, tampering with data, and deletion
of critical data [2], [3]. They commonly use sophisticated
strategies to avoid detection like those in multistage persis-
tent threats [4] and mimicry attacks [5], [6], [7]. Namely,
insiders mix malicious event sequences with benign actions
to exploit the incapacity of defensive systems to discern event
sequences after certain length, which is referred to as the
order-aware recognition (OAR) problem [8]. Existing enterprise
protection systems endeavor to counter this increased sophis-
tication in insider evasion attacks through the application of
anomaly detection methods based on advanced machine
learning. Machines in customer companies run Endpoint
Detection and Response (EDR) agents that generate high

volumes of system events that are examined through central-
ized analyticsmodules running at the security-provider com-
pany. The ultimate goal is to detect stealthy threats, including
zero-day exploits, by analyzing patterns and relationships of
the aggregated data collected from these multiple endpoints
at runtime. In current enterprise solutions, many of the col-
lectedmalicious events are correctly classified as alerts. How-
ever, others are ignored and considered benign events
despite being part of the attacks that span for a long period of
time. These undetected malicious events are usually related
to those detected and identified as alerts, but they are missed
because of the lack of optimal solutions able to find the exist-
ing relationships among distant events in a sequence. This
brings the need for precise system behavior modeling capa-
ble of capturing long-range relationships (i.e., long term
dependencies) in multiple context for event sequence analy-
sis and detection of anomalies at runtime [9].

The paradigm of anomaly detection [8], [10], [11], [12],
[13], [14], [15], [16] involves the construction of patterns of
normal behavior of systems and deems as anomalous (or
possible intrusion) any action that does not conform to the
learned patterns [17], [18]. Prior research work have been
devoted to investigate and develop anomaly detection sys-
tems using sequence analysis strategies. Some of these detec-
tion techniques are based on n-gram [17], [19], [20] and
others on Hidden Markov Model (HMM) [9], [17], [21], [22],
[23], [24], [25]. In general, these techniques learn observed
patterns in a training phase and identify as anomalous event
sequences that deviate from them during testing. In particu-
lar, HMM-based methods estimate the likelihood of events
conditioned on some number of previous events (e.g., after
observing n� 1 previous events). This allows determining
not only whether a sequence of certain length (i.e., n in this
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case) is feasible to occur, but also how likely it occurs in nor-
mal (non-attack) conditions. However, Yao et al. [8] pre-
sented a comprehensive analysis of these techniques and
showed that they are incapable to discern the order of events
in long sequences due to the OAR problem, restricting the
length n of the analyzed sequences to small values.

In this paper, we present a LSTM-based anomaly detec-
tion framework that collects and analyzes high volumes of
system events from multiple distributed EDR agents to pro-
tect against insider threats at runtime. We refer to the frame-
work as LADOHD (LSTM-based Anomaly Detector Over
High-dimensional Data) due to the high feature dimension-
ality of the produced events. LADOHD tackles the OAR
problem by leveraging the event relationship information
extracted from different endpoints as well as the properties
ingrained to LSTMs and its variants [26], [27], such as mem-
ory, short and long term dependencies, stateful representa-
tion, and capacity to process variable length sequences [28],
[29]. We hypothesize that these properties give these mod-
els the ability to detect variable-length anomalous sequen-
ces and the potential to recognize attacks deployed by
insiders that span for a long time. Specifically, our LSTM-
based technique answers the anomaly detection problem of
given a sequence of events e1; e2; . . . ; en�1, whether or not
the sequence e1; e2; . . . ; en�1; en should occur. Our technique
operates with variable values of n and detects non-conform-
ing patterns with respect to the learned models by analyz-
ing the event sequences formed by system activities. Each
possible system activity is enumerated and uniquely identi-
fied to form the vocabulary of system events. At any time t,
our detector computes the probability of each possible event
to be the next one given the previous sequence of events
observed until time t-1. The detection is then made by ana-
lyzing the distribution of these probability values.

The obtained results include quantitative measurements
of the detection capacity of the proposed technique tested
over a dataset of 38.9 million activity events. These events
were collected from multiple security endpoints running on
more than 30 machines for 28 days. It is shown through dif-
ferent experiments that our framework successfully achieve
detection with a TPR and a FPR of 97:29% and 0:38% respec-
tively. Below, our research contributions:

� We are the first presenting a comprehensive analysis
of the strengths, limitations and applicability of
LSTM-based models to counter insider threats via
anomaly detection in real-word scenarios.

� We implement a prototype of LADOHD [30] evalu-
ated with a dataset of 38.9 million activity events col-
lected from an enterprise EDR system. Results show
that our method achieves a detection rate above 97%
while keeping a FPR < 0:4%. We study the feasibility
of incorporating LADOHD as a complement module
to the EDR system as our framework detected more
malicious events under the same attack.

� A deep analysis of the features of the events gener-
ated by the EDR is presented. Features were selected
to form a vocabulary of events that allow the model
to successfully learn long-term dependencies.

� We measure how far LSTM-based models look back-
ward to rank probable events in each timestep of a

sequence. We demonstrate that LSTMs have a better
capacity than other sequence-based methods (e.g.,
HMM-based methods) to solve the OAR problem.

2 OVERVIEW AND THREAT MODEL

2.1 Overview

Strategy. LADOHD builds LSTM-based behavioral profiles
of applications using the system event sequences collected
from multiple endpoints running a renowned EDR agent.
Its goal is to detect anomalous or non-conforming execution
patterns at runtime in two phases. First, a training or obser-
vation phase, in which the profile of a selected application
is built by learning the relationships among events in pat-
terns or sequences observed when the application runs in
normal (non-attack) conditions. Second, a testing or evalua-
tion phase, in which the learned model is used to estimate
the probability of each possible event to be the next event in
a sequence given the sequence of previous events. In the lat-
ter phase, low probable events are classified as anomalous.

We assume that the generated event sequences follow a
well-structured pattern (e.g., execution path of programs)
with a consistent relationship among events. Consequently,
the resulting sequences are thought as an structured lan-
guage that can be analyzed using LSTM-based models as it
has been done via Natural Language Processing (NLP) to
solve problems such as language modeling (i.e., prediction
of the next word in a text) [31], [32].

Vocabulary of Events. LADOHD requires the definition of a
finite set of possible symbols E ¼ f1; 2; . . . ;Ng, which corre-
sponds to all the possible events related to the application of
interest that are considered in the detection process (hereafter,
we will refer to this set as vocabulary of events). At training,
LADOHD extracts all the subsequences containing the events
inE from the set of event sequences S ¼ fs1; s2; . . . sNg gener-
ated by N endpoints. These subsequences are used to train
the LSTM-Basedmodel.

The definition of the vocabulary of events E is crucial
because there is a trade-off between the granularity of the
events and the number of unseen events that appear it the
evaluation or testing phase. For our experiments, we defined
E in such a way that most of the events observed at training
are also observed at testing, reducing the number of unseen
events during the evaluation phase. Section 4 includes the
details of our definition.

Interpretation of an Event. LADOHD operates with system
events collected from multiple monitored machines. The
EDR agent running in these machines generates an event
for every activity conducted by a specified process (whether
malicious or not). Each event includes a comprehensive set
of information about the actor (process executing the action),
detailed description of the action, and information about the
target (object over which the action is executed). The pieces
of information considered during the monitoring process
and their interpretation define the vocabulary of events and
its granularity. For example, consider the scenario where a
“process A (actor) connects (action) to specific IPv4 address
X.X.X.X (target).” This event might be defined as “A con-
nects X.X.X.X”, where X.X.X.X represents any possible IPv4
address, producing a vocabulary with high granularity. The
same event, however, might be defined as “A connects X”,
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with X being either 0 or 1 to represent whether the IPv4
address is internal or external respectively. In the latter
case, due to the low granularity, the vocabulary size is sig-
nificantly reduced.

Evaluation. During the evaluation phase, given a previous
sequence of events until timestep t� 1 e1; e2; . . . ; et�1 ðei 2 EÞ,
the trained model outputs an array of probabilities of length
jEj, representing the probabilistic estimation of each event inE
to be the next event at timestep t. For the detection, LADOHD
uses this output and finds the set K of the top k most likely
events to occur at time t. When an event et 2 E is observed at
time t, it is considered benign if et 2 K, anomalous otherwise.

For any sequence s ¼ e1e2 . . . et�1, our framework com-
putes the probabilities of possible events next in the
sequence P ðeije1:i�1Þ for i ¼ 1; 2; . . .

2.2 Threat Model

We consider an insider threat who launches a multistage
advance persistent attack. The insider is assumed knowl-
edgeable in computer security and is initially assigned non-
administrative privileges in a local machine. The goal of the
attacker is stealing information by executing multiple steps,
including a user escalation followed by a data exfiltration
phase. The insider initially exploits already installed appli-
cations such as Powershell and runs malicious scripts to
establish remote connections to send the stolen data.

3 BACKGROUND AND RELATED WORK

3.1 Order-Aware Recognition (OAR) Problem

The OAR problem is an anomaly detection problem that
refers to the incapacity of distinguishing sequences after cer-
tain length [8]. Given an ordered sequence of events abcba the
corresponding set of 2-tuple adjacent events is {ab, bc, cb, ba}.
The same set results from these other two ordered sequences
cbabc and bcbab. As the 2-tuple adjacent event set is the same
for these three ordered sequences of the example, methods
able to analyze sequences of length 2 or less cannot discern
among these ordered sequences. This can be better observed
if the 3-tuple adjacent events of the sequences abcba, cbabc and
bcbab are considered, which respectively are {abc, bcb, cba},
{cba, bab, abc} and {bcb, cba, bab}. Clearly, in this case methods
able to analyze sequences of length 3 can distinguish the three
ordered sequences abcba, cbabc and bcbab as the resulting sets
are different. We investigate how feasible and until what
extend LSTM-basedmodels can solve the OAR problem. This
is an unsolved question and one of ourmain contributions.

3.2 Endpoint Detection and Response

Endpoint Detection and Response (EDR) systems work by
monitoring endpoint and network activity and storing the
corresponding logs in a central database where further anal-
ysis and alerting take place. An EDR agent is installed in
each of the protected endpoints, acting as the first line of
defense against attacks and providing the foundation for
event monitoring and reporting across the network. EDR
systems evolved from malware protection solutions, as soft-
ware vendors added data collection and exploration capa-
bilities, thanks to the increasing computing and storage
capacity of the hosts where the agents run. The present chal-
lenge for EDR systems is to significantly increase its

detection capabilities from the vast amounts of data col-
lected, especially for attacks that are recorded as long
sequences like those deployed by insider threats.

3.3 Anomaly Detection Based on Sequence
Analysis Using Non-LSTM Approaches

The methods presented in this section proposed sequence
analysis as an anomaly detection mechanism to detect con-
trol-flow violations. The methods build behavioral models
based on n-gram and n-order HMM to detect unseen or low
probable patterns.

Anomaly detection methods based on n-gram [19], [20]
work by enumerating all observed sequences of length n (n-
grams) to subsequently monitor for unknown patterns. The
scalability problem of these methods (impossibility of listing
all possible sequences and high false positive rate) is
described by Warrender et al. [17], who proposed an alterna-
tive frequency based method. In this new method each n-
gram is assigned a probability to form a histogram vector cor-
responding to a point in amultidimensional space. At evalua-
tion time, the similarity of a new sequence of length n
(represented as a vector) with respect to the observed points
is estimated to determinewhether the sequence is anomalous.
Despite its improvement in scalability, this approach and the
previous enumerating basedmethodwere proved to be effec-
tive for small value of n only (e.g., 3–15), making them not
convenient for the detection of attacks consisting of long
sequences [8].

Other previous work [9], [21], [22] focused on the applica-
tion of n-orderHMMtoprobabilistically determine how feasi-
ble a sequence of system events is. In [21], a comparison of
different hidden states configuration of first-order HMM
(n ¼ 1) for anomaly detection is presented. It was found that
both configurations full connected HMM (i.e., number of hid-
den states equal to the number of all possible events), and a
left-to-right HMM (i.e., number of hidden states corresponds
to the length of the training sequences) provide similar results
differing mainly in the required training time. Results,
although, show that the efficiency of both configurations is
significantly low having in some cases a TPR of only 55.6%.
The other two HMM based methods [9], [22] use a first-order
full connected HMM to detect anomalous sequences of sys-
tem library calls. These methods are similar to the one
described in [21], with the addition of a new HMM initializa-
tion approach for the transition, emission, and initial probabil-
ities. The information for the initialization is extracted
through static analysis of the programs. With this strategy,
the results shown a significant improvement in the TPR. All
the described HMM based methods [9], [21], [22] applied the
dynamic programming algorithm Viterbi [39] for inference.
The time complexity of this algorithm isOðjSj2Þ, with S being
the set of hidden states [40]. As the lengths of the sequences to
be processed by these methods depend on the number of
states used in the configuration, this scalability issue restricts
thesemethods to operate over short event sequences only.

3.4 Anomaly Detection Based on Sequence
Analysis Using LSTM

Some research work have endeavored to investigate the
application of LSTM-based models to anomaly detection
and similar security problems [33], [34], [35], [36]. In
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essence, these approaches work based on the same
assumptions described in Section 2.1. Although this prior
work proved the efficiency of LSTMs to accurately esti-
mate the likelihood of a given event sequence, their abil-
ity to solve the order-aware recognition problem and
their potential against modern evasion attacks seems not
to have received much attention.

Kim et al. [33] present an ensemble method of LSTM
models followed by threshold-based classifiers for intrusion
detection in flows of system calls. The resulting ensemble is
trained in a supervised manner (with both benign and mali-
cious sequences) to classify sequences as either normal or
anomalous. Details of neither the impact of sequence
lengths nor properties of LSTM models on the detection
process are included.

In [34] a multi-level approach for anomaly detection in
Industrial Control Systems (ICS) is proposed. It consists of a
bloom filter to discard events not seen during the training
phase followed by a LSTM layer to detect unexpected
events. An event is considered anomalous if its probability
is not among the top-k output probabilities of the model.
Results of the two layers combined are reported without
further analysis about the LSTM model itself and its impact
on the efficiency of the detector.

Du et al. [35] developed Deeplog, a technique to find
anomalies using information available in system logs. The
LSTM model is trained using a small portion of non-mali-
cious data to determine the next action to occur given a pre-
vious sequence of actions. For each identified action, a
different LSTM model is trained with the goal of not only
determining the expected action to occur, but also validating
the probability of the parameter value used in that action.
The model for prediction of actions is trained using a sliding
length window h. A sequence is considered anomalous if
there exists at least one action whose probability is not
among the highest top-k from the model. The limits of LSTM
models with respect to the length of the sequences is not
evaluated in this work.

A more recent work, called TIRESIAS [36], uses LSTM-
based models to predict the next step in an already detected
attack given the previous sequence of steps in such attack.
The sequences generated by 80% of the machines observed
are used to train the model and learn the order of events of
the detected attacks. No detection of attacks or malicious
sequences are included in this work, but interesting results
are presented with respect to the behavior of LSTMmodels.

Yuan et al. [37] present an intrusion detection framework
for insider threats. The framework is based on a LSTM-
CNN architecture trained in a supervised manner using the
CERT dataset [41]. The technique creates user profiles from

activity sequences collected in a daily basis. Each profile
uses a LSTM and a CNN model trained with label data. In
addition to the limitation imposed by the requirement of
labels, this work was conducted with a reduced vocabulary
comprised of only 16 possible events.

Lu et al. [38] extend the previous work and present a
LSTM-based anomaly detection technique also tested over
the CERT dataset [41]. The method profiles users with a
vocabulary of 187 possible events. The work proposes two
hyperparamenters. First, a tolerance factor g, which func-
tions as a fixed threshold used to claim as anomalous any
event that is not among the first g-top possible events at a
given timestep of the sequence. The second hyperparameter
refers to the block element size n. It indicates how many
previous events are taken into consideration to predict the
next event. The presented experiments include results for
1 � n � 10. Besides the shortcoming caused by this small
size of n, this work does not include an analysis of the
strengths and limitations of LSTM architectures on solving
the anomaly detection problem.

Table 1 presents a summary of the focus and details
found in the prior work discussed above [33], [34], [35], [36],
[37], [38] for comparison purposes with our research.
LADOHD is a LSTM-based anomaly detection mechanism
trained with benign data only applied to learn the behavior
profile of an indicated application.

4 DESIGN

Fig. 1 shows LADOHD and its workflow for the detection of
anomalies. The framework involves four components. First,
a data generation phase, in which N machines running an
EDR agent generate activity event sequences s1; s2; . . . ; sN
that are collected in a centralized database. Second, a data
selection step that extracts from the collected sequences the
events related to the application of interest and form the
subsequences (s�1; s

�
2; . . . ; s

�
M ). Third, a model generation

phase that uses the selected subsequences to form the train-
ing and validation datasets used to train the LSTM-based
model. Finally, the anomaly detector component that
deploys the trained model to determine whether the events
of a given testing sequence are anomalous.

4.1 Data Generation

A machine Mi runs an enterprise EDR agent that records
activity events as they occur in the system. These events
form a corresponding event sequence referred to as si. A
group of N monitored machines generate the set of event
sequences S ¼ fs1; s2; sNg, which is pre-processed and used
as sequential data to train the final LSTM-based model.

TABLE 1
Comparison With Existing LSTM-Based Security Solutions

Research Strategy Hunts Insider Threats LSTM-Only-Based Architecture Basic Analysis Extended Analysis

System Call Language Modeling [33] Intrusion detection ✗ ✗ ✗ ✗

Multi-level Detector (For ICS) [34] Anomaly detection ✗ ✗ ✗ ✗

Deeplog [35] Anomaly detection ✗ ✓ ✗ ✗

Tiresias [36] Attack step prediction ✗ ✓ ✓ ✗

Insider Threat Detection with DNN [37] Intrusion detection ✓ ✗ ✓ ✗

Insider Threat Detection with LSTM [38] Anomaly detection ✓ ✓ ✓ ✗

LADOHD [this work] Anomaly detection ✓ ✓ ✗ ✓
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An activity event ei in the sequences can be thought as a
m-dimensional vector of features ff1

i ; f
2
i ; . . . ; f

m
i g, where fji

represents a categorical or continuous piece of information of
the reported activity. One of these features is event type. The
EDR product generates eight event types and each has a spe-
cific set of features (including the event type itself). Namely,
the number of featuresm varies per event type. Some features
such as event type, actor, action and target are common in all the
activity events (regardless their types) as they define a com-
plete semantic for any given event ei: “this is an event of this
type in which this actor executes this action over this target.”
Table 2 summarizes the different types of events generated
by the EDR software and the features actor, target, and action
related to each type. There is a set of specific actions available
to each event type. The complete list is not included per the
request of the company owning the security product. An
example of an event ei and its interpretation considering the
four common features listed above is as follows. The process
svchost is an integral part of Windows OS that manages sys-
tem services running from Dynamic Link Libraries (DLL). Its
purpose is to speed up the startup process by loading the
required services specified in the service portion of the regis-
try. When a DLL file is loaded by svchost, an event of type
Module is generated. The actor of the generated event is
svchost, while load is the action taken over the targetDLL file.

4.2 Data Selection

LADOHD requires the definition of a finite set of categorical
events (or symbols)E, which represents the set of all possible

system activity events analyzed by the LSTM-based model.
This set is referred to as the vocabulary of events.

Vocabulary of Events Definition. It can be thought as a
transformation function FT ð�Þ that changes the event fea-
ture vector generated by the EDR agent. Given an event

ei ¼ ff1i ; f2
i ; . . . ; f

m
i g of type fti ¼ f

j2f1;2;...;mg
i and a set F of

k � m selected features for events of type fti , the feature
transformation is given by:

FT ðei; F Þ ¼ e�i ¼ ft1i ; t2i ; . . . ; tki g if F � ei
? otherwise

�
(1)

In Equation (1), e�i is the transformed version of the event ei.
Each transformed feature t

j2f1;2;...;kg
i correspond to one of the

k selected features in F . The transformation of each feature
is a design choice that controls the granularity and the total
number of possible events (i.e., vocabulary size). This is
illustrated in Table 3 with the feature target, whose final
value can be of either low or high granularity. Rows 1 and 2
are two Module events in which the same process loads two
different DLL files. Assuming ft

i (t 2 f1; 2; . . . ; kg) were the
target-related features of these Module events, ft

i might cor-
respond to either the frequency of the DLL files in the distri-
bution observed during training (low granularity) or the
individual files themselves (high granularity). In the former
case, the two Module events would be represented by the
same transformed feature vector, which translates to the
same symbol in the final categorical vocabulary of events.
In the latter case, two different symbols are produced. Simi-
larly, if fti were the target features of the Host Network
events in rows 3 and 4, ft

i might either indicate whether the
network connection is internal or external (low granularity)
or the individual destination IP addresses (high granular-
ity). With the low granularity interpretation, the Host Net-
work events pass from including the entire set of IP
addresses to including a binary piece of information, reduc-
ing the number of symbols that form the vocabulary.

Fig. 1 shows the effect of applying the definition of the
vocabulary to the selection of events. From the N original
sequences, M � N are chosen for the training phase. This is
because FT ð�Þ does not produce an output when the proc-
essed event does not include the features defined in F . For a

Fig. 1. Components of our anomaly detection framework LADOHD to counter insider threats: (1) data generation, (2) data selection, (3) model gener-
ation, and (4) anomaly detector. Below each component, there is a reference to the section providing a detailed explanation about its operation.

TABLE 2
Description of the Different Types of Events

ID Event type Actor Target No. Actions

0 Session User N/A 3
1 Process Process Process 5
2 Module Process Module (e.g., dll files) 3
3 File Process File 12
4 Directory Process Directory 14
5 Registry key Process Windows registry key 7
6 Registry value Process Windows registry value 4
7 Host Network Process IP address 3
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given sequence of activity events si, FT ð�Þ and F operate as a
filter to select which events are kept andwhat pieces of infor-
mation from it is used to generate the transformed events
that form the training subsequence s�i . For instance, in order
to build the profile of an application A, the actor feature is
included in the set F and FT ð�Þ is defined so that only events
with application A as actor are selected. Thereby, any
sequence si with events produced by different applications
is reduced to the subsequence s�i , which only includes events
whose actor is application A. Any sequence si with no event
with applicationA as actor is disregarded.

Based on the definition of FT ð�Þ and the selected features
F for each event type, there is finite set of transformed fea-
ture vectors, which are translated one-to-one to the set of
categorical symbols E ¼ f1; 2; . . . ; jEjg. Whereby, a final
subsequence s�i is comprised of these categorical symbols.

4.3 Model Generation

The selected M subsequences fs�1; s�2; :::; s�mg are used to
train the LSTM-based model following an either by-
machine or by-time split. Splitting by machine refers to
select approximately 80% of the the entire training subse-
quences for training, leaving 20% for validation. Splitting by
time, in contrast, refers to approximately select the first 80%
of events in each subsequence s�i for training, leaving the
remaining 20% of events for validation. In either splitting
strategy, the resulting training and validation subsequences
are concatenated to respectively form the unique training
and validation sequences st and sv, such that st \ sv ¼ ;.

Our LSTM-based model consists of a encoder of three
layers of LSTM followed by a linear layer as suggested in
[42]. At training, we use a timestep window w ¼ 1 to com-
pute the probability of each event of the sequence given the
previous subsequence. For better results, we apply a variety
of strategies such as Stochastic Gradient Descent with
Restart (SGDR) [43] and Cyclical Learning Rates [44]. The
hyperparamenters of the model were tuned to get the best
performance for the dataset described in Section 5: (1) a
batch size of 64, (2) an unrolling window (Batch Propaga-
tion Through Time or BPTT) of 64, (3) an embedding size of
16, and (4) 100 activations in the linear layer.

4.4 Anomaly Detector

At testing time, our trained LSTM-based model is used to
classify each event in a sequence as either benign or anoma-
lous. To classify the event et observed a timestep t, our
detector follows four steps. In step 1, the previous subse-
quence e1; e2; . . . ; et�1 observed until time t� 1 is passed as
input to our trained LSTM-based model. In step 2, the
model computes the probabilities of each event in E (vocab-
ulary of events) to be the next event in the sequence given

the previous subsequence. Step 3 is a procedure that creates
a set of probable events K � E, whose elements are the
events with the hightest probabilities. The size of the set K
can be set either statically or dynamically. For the static
assignment, we customize the parameter k to chose all the
events in the output model whose probabilities are within
the top-k probabilities. This resemble the use of a fixed
threshold that takes all the events above the smallest proba-
bility among the the top-k ones. The dynamic assignment,
in contrast, select the most probable events based on the nat-
ural division between high and low values found in the
model output. The natural division is achieved by using the
most repeated probability in the output array as threshold.
Probabilities above this threshold belong to the high-value
set, while the remaining probabilities are assigned to the set
of low values. In the final step (step 4), the event et is classi-
fied as benign if et 2 K, otherwise anomalous.

5 DATASET AND EVALUATION

Dataset. The sequences for training and testing were collected
on normal and under attack conditions respectively on differ-
ent Microsoft Windows machines and different times. The
final training (st) and validation (sv) sequences were obtained
by monitoring 30 machines, which were isolated and oper-
ated in non-attack conditions. These machines generated 38.9
million benign events that were collected in the dates indi-
cated in Fig. 2. The sparse collection timeframe was intended
to capture the behavior of different actors in normal condi-
tions as no attacks were reported in these collection periods.
The collected benign events were filtered out using the defini-
tion of the vocabulary of events to generate the final sequences
st and sv of a selected group of processes (i.e., actors). These
sequences were then used to create the corresponding appli-
cation profiles. We profiled 6 out of 695 applications present
in the benign data. We chose them based on their popularity
as attack vectors in Microsoft Windows systems as found in
collections of adversarial techniques used by the cybersecur-
ity industry, such as the MITRE ATT&CK framework [45]. A
description of the profiled processes and their capacity to be
exploited in an insider threat attack are listed below.

� cmd.exe: Starts a new instance of the command inter-
preter, which is used by adversaries to execute com-
mands and payloads.

� cscript.exe: May run scripts signed with trusted certif-
icates to proxy the execution of malicious files.

� net.exe: Leveraged by attackers to gather system and
network information or to interact with services.

� powershell.exe: Powerfull scripting environment abu-
sed by adversaries to execute scripts, modify other
processes, and perform lateralmovements.

TABLE 3
Examples of Activity Events With Different Granularities

Event type Actor Action Target (high granularity) Target (low granularity)

Module Process A Load DLL file1 Range 2 (100 � frequency of file1 � 500)
Module Process A Load DLL file30 Range 2 (100 � frequency of file30 � 500)
Host Network Process A Connect 200.12.12.10 External connection
Host Network Process A Connect 192.168.10.3 Internal connection
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� svchost.exe: Runs DLL-based services. DLLs may be
injected into processes to either evade process-based
defenses or escalate privileges.

� xcopy.exe: Copies files and directories, which can be
used in data exfiltration attacks.

The final testing sequence was obtained by monitoring a
differentWindowsmachine fromMay 8th toMay 11th, 2018.
Security experts, to which hereinafter we will refer to as Red
Team, conducted a multi-step attack on the victim machine
during the collection period of the testing sequence. A total
of 727,275 events were generated by the victim machine,
including 162 different actors. We filtered out these events
using the same definition of vocabulary of events applied to
the training data for the same 6 actors. Our intuition was that
malicious activities executed during the attack would be
reflected as either specific unseen events or subsequences of
expected events in an unexpected order in the collected test-
ing sequence. Table 4 summarizes the training, validation,
and testing data used in our experiments.

Attack. The Red Team launched an multi-stage persistent
attack consisting of a user escalation step followed by a data
exfiltration attack on this victim machine as follows:

� The Red Team was initially assigned a non-adminis-
trative user for the victim computer.

� The hacking tool Mimikatz is used to steal creden-
tials from the memory of the victim machine, per-
forming a user escalation attack.

� The Red Team roams on the network towhich the vic-
tim computer is connected and discovers other
resources (shared folders, machines, users, domains).
Remote shares are discovered and the corresponding
files are copied to the victimmachine.

� Powershell files are also copied to the machine and
then executed in order to compromise other com-
puters and extract files from them.

� An external remote connection is established from
the victim machine to bypass the firewall and send
the copied files outside the network.

Considering the number of events at testing to training
ratio (RD/BD) of each actor shown in Table 4, it is noticeable
that the Red Team conducted most of their activities through
Powershell. This behavior is not unusual in insider threat
attacks as described in [46]. Despite this observation, we
looked for anomalies in the testing sequences of svchost.exe,

cmd.exe, powershell.exe, and net.exe through LADOHD.
We only found anomalies when analyzed powershell.exe.
Whereby, we will develop the rest of this paper focusing on
the details and experiments performedwith this actor.

Vocabulary of Events. The objective was to capture as much
information as possible from the powershell.exe application.
The selection of the set of features F of each event type was
done based on the data observed in the training sequence.
We traded-off granularity with the total number of possible
events in order to avoid having a large number of events
observed only at training (and not at testing) and vice versa.
Following this guidance, each event ei was processed using
the set of features F ¼ ff1

i ; f
2
i ; f

3
i ; f

4
i ; f

5
i ; f

6
i g, where:

� f1i : Actor feature. Its corresponding t1i is a unary
piece of information defining the actor (always 0 for
powershell.exe).

� f2i : Event type feature. Its corresponding t2i might be
any of the eight event type IDs described in Table 2.

� f3i : Action feature. Its corresponding transformed
featured t3i was defined per event type. It can vary
from 0 to 13 depending on the event type as specified
in Table 2.

� f4i : Target feature. Its t
4
i depends on the event type. For

Process events t4i ¼ 0 (not powershell.exe) and t4i ¼ 1
(powershell.exe). For Module events t4i ¼ 0 (not a DLL
file) and t4i ¼ 1 (DLL file). For Registry Value events
t4i ¼ 0 (Others), t4i ¼ 1 (HKEY_USERS), and t4i ¼ 2
(HKEY_LOCAL_MACHINE). For the rest of event
types t4i operates as unitary piece of information.

� f5i : Network feature. Its t5i is ternary piece of informa-
tion about Host Network events only (0 for self con-
nection, 1 for internal connection, and 2 for external
connection). For the rest of event types this feature
operates as unitary piece of information.

� f6i : User feature. The transformed feature t6i is a
binary piece of information about the user executing
the action (0 for system-related user and 1 for non-
system-related user). For Session and Registry Value
events, f6i is a unary piece of information.

Each event e�i ¼ ft1i ; t2i ; t3i ; t4i ; t5i ; t6i g is extracted following
the definitions above. With these definitions, the vocabulary
size is 175 (E ¼ f0; 1; . . . ; 174g), from which 41 and 31 events
are present in the training and testing sequences respec-
tively. Twenty out of the 41 training events do not appear in
the testing sequence. Likewise, ten out of the 31 testing

Fig. 2. Data collection dates from 30 machines, from April 27th to July
7th of 2018. This sparse collection timeframe was intended to capture
the behavior of a variety of applications in non-attack conditions.

TABLE 4
Training and Validation Data1 to Profile the Selected

Actors and Their Corresponding Testing Data2

Benign Data (BD) Red Team Data (RD)

Actors RD/BD Ratio Training Validation Testing

svchost.exe 2.88% 9,141,431 2,077,802 323,296
cscript.exe 0.00% 995,053 226,171 0
xcopy.exe 0.00% 394,587 89,688 0
cmd.exe 5.04% 198,349 45,084 12,257
powershell.exe 87.47% 63,282 13,280 66,972
net.exe 0.93% 22,148 5,035 254

No. of Events 10,814,850 2,457,060 402,779

1From the 38,899,995 events collected from 30 machines.
2From the 727,275 events collected from the victim machine.
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events are not present in the training sequence. These 10
events are referred to as unseen events.

Ground Truth. The Red Team provided a manually gener-
ated log file enumerating the sequence of steps followed
during the execution of the attack. Each entry in this file
contains a high-level description of a step and a timestamp
indicating the day and time of its execution. Some of the
steps in the file are identifiable as actions executed with
Powershell. This information was used to find the corre-
sponding anomalous events in the testing sequence. Specifi-
cally, we identified 295 malicious events comprised of 118
entries in the log file and 177 unseen events at training.

6 EXPERIMENTS

6.1 Dynamic Versus Static Selection of the Set of
Probable Events K

RQ1. What approach (either dynamic or static selection of
K) provides a better performance? If the static method
does, what is the best value of the parameter k?

We investigate whether our technique identifies the mali-
cious events. We are particularly interested in finding which
approach provides the best anomaly detection performance.
To this end, we measure the TPR and FPR variations as we
change the number of events inK through both the dynamic
and static approaches.

Fig. 3a shows the results. In the x-axis, k� means that the
size of K is dynamically adjusted in each timestep of the
sequence. The values of the metrics TPR and FPR obtained
with the dynamic approach are plotted with a green square
and a orange circle respectively to differentiate them from
the values obtained through the static method.

The rest of values in the x-axis (from 2 to 42) correspond to
the values of the parameter k adjusted through the static
approach. The figure illustrates how the dynamic approach
outperforms the static approach for any chosen k as the for-
mer gives a high TPR of 97.29% while keeping a low FPR of
0.38%. The static approach starts with a similar TPR but a
higher FPR in comparison with the dynamic approach. As
the parameter k is statically increased, both the TPR and the
FPR decrease. The static approach achieves a similar FPR as
the dynamic when k ¼ 20. At this point however, the corre-
sponding TPR has decreased to 69.83%. The non-functional-
ity of the static method can be explained by the high variance

in the distribution of the natural division between high and
low values in the output of the model throughout the entire
sequence. Fig. 3b shows this distribution. The dynamic
approach produces sets K with sizes between 6 and 28
(inclusive) with significant differences in their frequencies.
Setting a fixed k through the static method to be used in each
timestep of the sequence goes away from the decision made
by themodel, which dynamically discriminates between low
and high values in its output probabilities.

Findings. The dynamic approach outperforms the static
method to select the set of probable events K, having a
1.39X higher TPR for the same FPR of 0.38.

6.2 Comparison With an Enterprise Endpoint
Detection and Response (EDR)

RQ2. What is the performance of LADOHD with respect to
the enterprise-level EDR system currently in production?

One of the main challenges defending against insider
threats is the similarity between benign and malicious activ-
ities. Discerning between them is a difficult task. Due to this
challenge, this section evaluates how efficient LADOHD is
by comparing it with enterprise EDR of the company
already in production. The idea is to evaluate the feasibility
of incorporating LADOHD as a complement to the monitor-
ing stack of the EDR.

The enterprise EDR is a multi-layer system that employs
signature-based engines to find threats in network traffic,
along with sandboxing and machine learning (random for-
est and clustering) to analyze suspicious files and compare
them against known, malicious files. The EDR also accesses
a reputation database with over 8 billion files, public IP
addresses, and domains, to validate its results. The EDR
system detected 8 malicious events from the activity gener-
ated by the Red Team attack, which were reported as 4
alerts. We confirmed that all alerts were true positives.

Fig. 4 shows the counts of the malicious activities exe-
cuted through Powershell reported by the Red Team in the
log file and the corresponding number of events matched in
the sequence. A total of 118 malicious events were reported
in the log file. LADOHD classified 110 of them as anoma-
lous. None of these detecte events correspond to the the 8
events detected by the EDR.

Fig. 3. Performance of the dynamic and static methods. Fig. 3a shows the TPR and FPR obtained with a dynamic K (K�) and their variations with
varying static values of it. Fig. 3b shows the distribution of the dynamic sizes ofK throughout the testing sequence. Notice its high variability.
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Unlike the current analytics modules of the EDR,
LADOHD is trained with benign data only and learns
sequence patterns of a particular application. Both uncom-
mon event sequences and unseen events are classified as
anomalous regardless the meaning of the events. The testing
sequence includes 177 unseen events. As expected, LADOHD
classified all of them as anomalous. Table 5 summarizes the
results from the significant tests run on both LADOHD and
the EDR.

Findings. LADOHD successfully detected the ongoing
attack generating more alerts than the enterprise EDR. A
relatively small number of FP cases with respect to the
sequence length were generated in the process.

6.3 Performance of LADOHDWhen Processing
Sequences Without Unseen Events

RQ3. Does the capacity LSTM-based models to detect
anomalies improve when unseen events are discarded in
advance?

We now evaluate whether processing unseen events
improve or diminish the capacity of LSTM-based models
to detect malicious events. We are interested in knowing
whether the same Red-Team-matched events classified as
anomalous in previous experiments when unseen events
are part of the sequence, are also classified as anomalous
when unseen events are ignored. We also want to validate
whether the 8 missing events related to the missing alerts
detected by the EDR can be detected by LADOHD when
unseen events are removed. To this end, we create a clean
testing sequence by removing the unseen events from the
testing sequence. We pass this new sequence to our
model, which classifies each event in it as either benign

or anomalous. Table 6 includes the results obtained with
the original testing sequence and its clean version.
Removing the unseen events does not help the model
detect new malicious events. The TP cases related to
observed events remains the same. The same phenome-
non occurs with the FPs, where an increase of only 2 is
observed.

Findings. There is neither a significant improvement nor
detriment when unseen events are discarded. Their
removal from the sequence should be determined by the
performance cost theymight cause only.

6.4 Effect of Long-Term Dependencies in the
Detection of Anomalies

RQ4. What impact does the length of the previous sequen-
ces have over the detection of anomalies?

One of the main characteristics of LSTM networks is their
capacity to learn long-term dependencies among events in a
sequence. One interesting question we aim to answer is
whether these long-term dependencies have an impact in
the classification. Namely, we want to validate whether con-
sidering subsequences of different lengths (by increasing
the number of predecessors) causes different outputs in the
classification of an event. To this end, we work with the
clean testing sequence of the Section 6.3.

Table 7 shows the results. It includes 9 randomly selected
events of these sequence classified as anomalous. These
events are referred to as targets and they correspond to the
last events of low probable subsequences in the sequence.
Fig. 5 illustrates the procedure followed in this experiment
using the target e145 (row 4 in the table) as example. We
incrementally move backward from each target until the
beginning of the sequence and find the number of predeces-
sors (length of previous sequence) that causes a change in
the classification. The number of predecessors that causes

Fig. 4. Malicious activities reported by the Red Team. These are the
activities that could be matched with events in the testing sequence.

TABLE 5
Anomaly Detection Comparison Between the EDR and

LADOHD

Solution Recall Precision F1-Score

EDR 2.79% 100.0% 0.024
LADOHD 97.29% 53.04% 0.85

TABLE 6
Change in the Detection Results Observed on LADOHDWhen
Evaluated With Both Original and Clean Testing Sequences

Testing Sequence TP FN FP TN TPR FPR

Original 287 8 254 66423 97.29% 0.38%
Clean 110 8 256 66421 93.22% 0.38%

TABLE 7
Effect of Long-Term Dependencies on the

Detection of Anomalies

Target Benign Shifters Anomalous Shifters

e142 [1] [98]
e143 [1] [75]
e144 [1] [75]
e145 [1, 67] [58, 69]
e146 [1] [54]
e147 [1] [50]
e148 [1] [47]
e1032 [1, 551, 619] [549, 587, 648]
e2292 [9] [1, 11]
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the classification to be benign are called benign shifters.
Those that cause the classification to be anomalous are
referred to as anomalous shifters. Table 7 shows that most
of the targets have multiple shifters, which prove that the
history of events is what actually has a significant impact in
the classification process. LSTM-based models have the
potential to correctly classify events regardless the length of
the previous sequence. Their outputs are in fact affected by
the hidden state. An interesting observation is the capacity
of our LSTM-based model to look backward a variable num-
ber steps to estimate the probability of a particular event.
We have cases where the model makes the final decision
based on a few number of predecessors (e.g., 2 predecessors
in the case of e142) and others in which the model considers
a large number of them (e.g., 648 predecessors in the case of
e1032). This ability to relate current events with distant past
events shows the potential of LSTMs to solve the OAR
problem.

Another question we aim to answer in this experiment
is how the probabilities of the targets change as the num-
ber of predecessors gets close to a shifter. We did not find
a clear relationship between the relative probability of the
target (with respect to the other possible events) in the out-
put of the model and the proximity to the shifters. The
probability of the target does not always increase or
decrease as the number of predecessors gets close to a benign
or anomalous shifter respectively. This phenomenon can be

explained by the fact that our model is trained to predict the
next event in the sequence and not to estimate the least prob-
able events.

Findings. LADOHD can correctly classify events regard-
less the length of the previous subsequences. The history
of events (hidden state of the model) is what actually
affects the classification. The ability to look backward
more than 600 steps (e.g., target e1032) show the potential
of this solution against the OAR problem.

6.5 Prediction Capacity of LSTM and HMM Based
Models Over Variable-Length Sequences

RQ5. How much accurate are LSTM-based models com-
pared to other solutions such as HMM in the prediction of
the next event in variable length sequences?

As the ability to discern between benign and anomalous
events depends on the precision of the predictions made by
the selected model, we want to study whether the complex
structure of LSTM-based models provides an advantage
when compared to other next-step-predicting methods able
to handle variable length sequences such as HMM. We used
the scikit-learn package to implement both a first-order full-
connected HMM (i.e., number of hidden states equal to the
number of all possible events) and a first-order left-to-right
HMM (i.e., number of hidden states corresponds to the
length of the training sequences) trained with the dataset
described in Section 5. Despite that Yeung et al. [21] show
that both configurations provide similar results, the full-
connected configuration performed better in our evaluation.
Hence, the presented results are based on this configuration.
We acknowledge that a higher order HMM might produce
more competitive results. However, we found ourselves
limited in our implementation due to the complexity and
computational cost imposed by the HMM algorithm.

We took 100 continuous subsequences of a specific length
and measure the precision of the model predicting the last
event in the sequences. The lengths were chosen to vary
from 2 to 1000. To ensure a fair comparison, we measure the
prediction precision of both models with incremental-length
subsequences extracted from both the training and testing

Fig. 5. Effect of long-term dependencies of LSTM models in the detec-
tion of anomalies. The example is based on the event e145 in Table 7.

Fig. 6. Prediction accuracy of our LSTM and the HMMmodels with sequences of incremental lengths. Fig. 6a and Fig. 6b show the accuracy variation
with subsequences extracted from the training and testing sequences respectively.
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sequences. The idea of using these two sets of subsequences
is to validate that the results do not come from any bias that
the testing data might induce. We do so because we are
interested in observing how the prediction capacity of the
models change as the lengths of the sequences increase in
ideal conditions (i.e., when sequences were observed in
training) and not in comparing which model is more effi-
cient when processing new data. Fig. 6 shows that our
LSTM-based model constantly outperform the prediction
capacity of the HMM model. Although our model performs
the best for subsequences of length < 105, it keeps predict-
ing well with larger sequences, while the precision of the
HMM-based model decreases.

Findings. LSTM-based models have a better capacity than
HMM-based models to predict the next event in a given
sequence as its length increases.

6.6 Comparison With a State-of-the-Art Detector

RQ6. How well does LADOHD perform compared to the
LSTM-based method presented in [38]?

Table 8 shows the performance comparison of LADOHD
to the detection method presented by Lu et al. [38]. This
method is a LSTM-based solution that uses a fixed k param-
eter approach and operates with a pre-established number
of predecessors N . Namely, given a sequence of length M,
M �N subsequences of length N þ 1 are generated using a
sliding windows mechanism to predict the last event in
each subsequence. To compare Lu’s method to LADOHD,
we incrementally reduced the original training sequence
(st) to train each model and evaluate their detection perfor-
mance. In each round, we removed an additional 20% of the
earliest events in the data. The goal of the experiment is to
evaluate how well the models perform for different dataset
sizes. We set the number of predecessors (N) for both
models to 10 as proposed by Lu and coinciding with our
results in experiment 6.5, where sequences of length
N þ 1 < 105 provided the best prediction precision. The
value of the parameters k in Lu’s method were found by
an exhaustive search with the F1-Score metric, while it
was dynamically set for LADOHD. Table 8 presents TPR,
FPR, and F1-Score values of both methods, showing that
LADOHD outperforms Lu’s method in all the cases. A
paired t-test between the F1-Score values of each method
indicates that LADOHD’s performance is significantly
higher with a p-value of 0.0041.

Findings. LADOHD outperforms Lu’s method for differ-
ent training dataset sizes.

7 CONCLUSION AND FUTURE WORK

This paper presents LADOHD, a generic LSTM-based anom-
aly detection framework to protect against insider threats.
for high dimensional sequential data. We evaluated the
framework with an extensive dataset of activity events gen-
erated from a controlled, real-world insider threat attack.
Each event in the dataset represents a hight dimensional vec-
tor of features. The framework filters out the events per
application and pre-specified features that define the vocab-
ulary of possible events that form the sequences analyzed by
our model. Each event in the sequence is classified as either
benign or anomalous given the previous observed subse-
quence. LADOHD reached a high TPR > 97% with a low
FPR < 0:4%, proving the effectiveness of the framework
and its potential to be incorporated as a new analytics mod-
ule to the detection stack of the EDR currently in production.
Part of our futurework is to evaluate the frameworkwith dif-
ferent datasets and determine its runtime performance in a
production environment. In addition, this work presents a
comprehensive analysis of how LSTM-based models work
and compare them to alternative solutions such as HMM-
based models. We found that LSTM-based models rank the
set of expected events in each timestep of variable-length
sequences better than HMM-based models, which favor
LSTMs in the detection of anomalies.
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