
From Byzantine Fault-Tolerance
to Fault-Avoidance: An Architectural

Transformation to Attack and Failure Resiliency
Noor O. Ahmed and Bharat Bhargava , Fellow, IEEE

Abstract—We present Byzantine Fault-Avoidance (BFA), a fault-resilient architecture designed for Byzantine Fault Tolerant (BFT)

systems to withstand against attacks and failures. BFA allows replicas to short live on a given computing platform, i.e., hardware,

hypervisors and OS, to thwart successful and in-progress attacks while simultaneously preserving the correctness condition of BFT

properties; safety and liveness. BFA combines the cloud management software stack of OpenStack (nova) and the Software Defined

Network (SDN) implementation (neutron) to control the replicas susceptibility window of attack in order to avoid Byzantine faults. The

proposed fault-avoidance scheme illustrates the defensive security solutions enabled by the underlying cloud computing fabric are far

superior than the ones implemented at the application/protocol level. Preliminary results of widely studied BFT system (BFT-SMaRT)

deployed in a cloud infrastructure (OpenStack-Kilo) indicate that BFA achieves desired BFT reliability properties and throughput over

contested environments.

Index Terms—Cloud computing, Security, Byzantine Fault Tolerant, Software Defined Networks, OpenStack, Moving Target Defense

Ç

1 INTRODUCTION

THE Byzantine Generals problem was first introduced
by Lamport [3] as an abstract notion of constructing

a provable reliability-guaranteed replicated distributed
system with the ability to cope with malfunctioning and
byzantine/arbitrary faulty components. The State Machine
Replication (SMR) approach is considered one of the effec-
tive ways of implementing a Byzantine Fault Tolerant (BFT)
system [4]. SMR resolves the interactive consistency con-
ditions for distributing single source of data to multiple chan-
nels by enforcing the replica to start in the same state, execute
client requests, and unanimously respond to it in ordered
fashion, thereby, enabling to reach agreement even in the face
of few faulty ones. Thus, satisfying the correctness condition
properties; safety and liveness. The safety property asserts
that some of the replicas remain consistent of one another,
and liveness guarantees that the clients will eventually receive
responses for their requests.

For decades, BFT research was considered theoretical due
to its impracticality for implementing it in real-world setting.
A Practical Byzantine Fault Tolerant (PBFT) system [5] that
achieves performance close to a non-replicated system was
published and open sourced to help the ever-increasing
need for reliable distributed systems. PBFT has sparked a

wide-array of research to further improve its performance,
i.e., reducing communication steps, replication costs, and
addressing security issueswhich is the focus of our work.

Performance improvement was mainly credited to the
advancement of cloud computing, for example, virtualization
techniques have been used on improving replication costs
from 3f+1 where f is the faulty replica, to f+1 in ZZ [12],
CheapBFT [13] and A2M [24]. While replicating systems on a
highly dynamic virtualized elastic cloud environment is
undeniably cost effective, it’s increasingly challenging to
guarantee reliability due to the inherent increase in attack sur-
face [15]—the set of ways an adversary can exploit/penetrate
the systems, due to the number of components built on the
virtualized cloud environment.

Amir et al. first reported in “Byzantine Replication Under
Attack” [6] that PBFT is vulnerable to performance degrada-
tion attacks. The core of such vulnerability is the quorum-
based consensus protocol where n servers exchangemessages
to coordinate with a single selected leader node/server to
reach consensus when some of the servers are faulty. A com-
promised leader can increase latency and reduce throughput
by delaying responses (state/view change or coordination
messages) just in time to avoid detection or protocol time outs
to make the system barely usable. They argued the insuffi-
ciency of the correctness condition for BFT protocol and intro-
duced Prime [7], a new BFT protocol with bounded-delay
performance criterion. Prime extends the existing BFT’s
agreement protocol with an additional step, pre-agreement,
using reliable broadcast protocol.

The difficulty of determining the upper bound of the
bounded-delay that defines an acceptable level of perfor-
mance was later addressed in BFT-Mencius [8]. BFT-Mencius

� N. Ahmed is a Computer Scientist at AFRL/RI, Rome, NY 13411.
E-mail: ahmed24@purdue.edu.

� B. Bhargava is with the Purdue University, W. Lafayette, IN 47906.
E-mail: bbshail@purdue.edu.

Manuscript received 11 Feb. 2016; revised 21 Nov. 2016; accepted 22 Dec.
2016. Date of publication 12 Mar. 2018; date of current version 8 Sept. 2020.
(Corresponding author: Noor O. Ahmed.)
Recommended for acceptance by J. Cao.
Digital Object Identifier no. 10.1109/TCC.2018.2814989

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2020 847

U.S. Government work not protected by U.S. copyright.

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0002-0206-6244
https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0003-3803-8672
https://orcid.org/0000-0003-3803-8672
mailto:
mailto:

introduced an Abortable Timely Announced Bounded-
Delay broadcast protocol that is on the order of real com-
munication delays. Other notable works that address this
issue include; Aadvark [9], which proposed a change in
leadership when suspected, i.e., when the leaders’ perfor-
mance is slowing down. Along the same lines of work,
Spinning [10] constantly rotates the leaders’ role after
every patch of accepted client request for execution, simi-
lar in spirit to BFA.

However, all of these approaches have concentrated on
the application protocol layer which is often defeated when
the attack is originated outside the application (OS kernel).
With the ever increasing sophisticated attacks in recent
years due to the computing landscape differences between
the traditional computing platforms and the virtualized
cloud environments (i.e., many moving parts) with its pro-
grammable network model (i.e., SDN), defending replicated
system (i.e., BFT) with the existing solution approaches is
extremely challenging. For instance, in a cloud platform, a
compromised BFT leader/server not only disrupts the reli-
ability of the BFT protocol but can also wage several attacks
on the SDN controllers and the data plane forwarding
flows, specifically, a compromised host can poison the
entire network topology or even take control of the entire
infrastructure [31].

The fundamental problem of BFT security issue is that
fault-tolerance and attack-tolerance techniques is a double
edge-sword. On one hand, replication is the ultimate solu-
tion for availability and fault-tolerance. On the other hand,
replication increases the overall system attack vector (i.e.,
increased number of nodes to be protected and resist
attacks). Therefore, we believe shifting from a perceived
over-emphasis on improving BFTs’ protocols to designing
architecturally resilient replicated systems that reflect on
the underlying computing fabric is critical.

We present an attack and failure resilient architecture
designed for BFT systems to avoid byzantine faults through
controlling their exposure attack window while simulta-
neously preserving the correctness condition of BFT proper-
ties; safety and liveness. We accomplish such control by
allowing replicas (including the leader) to exist only for a
short period to complete n client requests on a given under-
lying computing platform, then vanish and appear on a dif-
ferent platform with different characteristics, i.e., guest OS,
Host OS, hypervisor, hardware, etc. As a result, we enable a
tight architectural-level integration of attack-tolerant to fault-
tolerant protocols through avoidance. Thus, we view our
approach as Byzantine Fault-Avoidance (BFA). This solu-
tion approach is commonly referred as a Moving Target
Defense (MTD) [25].

Our approach combines recent advances in cloud plat-
form management capabilities, specifically, VM provision-
ing/de-provisioning and the programmable networking
model (software defined networking) to reduce the node’s
exposure time to attack. We deploy BFTSMaRT [32], an
open source BFT implementation, on Mayflies [2], a bio-
inspired generic MTD framework for distributed systems
introduced by the same authors, on a private cloud setting
built with OpenStack-Kilo [33], and discuss the implemen-
tation details of BFT to BFA transformation. To illustrate
the practical effectiveness of BFA, we show the protocol

evolving with the correct behavior with a negligible over-
head while on the move across platforms.

We make three contributions in this work:

1) We propose the first practical Byzantine Fault-
Avoidance (BFA) architecture using the cloud plat-
form technologies.

2) We provide a dynamic BFT VM/replica refresh algo-
rithms for replicas on virtualized cloud platforms to
control their exposure to attacks.

3) We introduce an attack/failure avoidance scheme
for any deterministic system with state and some
operations without any modification while preserv-
ing it’s correctness conditions.

We have organized the paper as follows: we first give
a brief overview of a BFT system and cloud ecosystem in
Section 2, followed by the threat scope and assumptions
that we consider in Section 3. We present BFA systemmodel
in Section 4, followed by the design and implementation in
Sections 5 and 6. We present preliminary experimental eval-
uations in Section 7 . Finally, we discuss the related work
and the conclusion in Sections 8 and 9 respectively.

2 BACKGROUND

In this section we give a brief overview of BFT architecture
and cloud eco-systems to set the context of our architectural
transformation scheme to attack and failure resiliency.

2.1 Byzantine Fault-Tolerance Systems

Byzantine Fault Tolerance (BFT) is a well-established
reliability guaranteed distributed system based on state-
machine replication model. PBFT [30] is the first practical
implementation of a leader-based BFT replication model
that has been widely studied in the literature. PBFT systems
consist of a primary node and n replicas; the basic operation
(sketch) of the algorithm is as follows:

A primary node, referred as the leader, exchanges consen-
sus messages to n replicas. The primary’s main task is to
assign monotonically increasing sequence numbers to each of
the clients’requests and start a three-phase agreement proto-
col; propose, prepare, and commit respectively. Initially, the
leader assigns a sequence number for every request (from the
clients), then multicast to the other pre-defined replicas in
the propose phase. The replicas confirm the receipt of the
request back to the leader and transition to the prepare phase.
The leader then sends the execution approval back to all the
replicas to transition to the commit phase, thus, reliably com-
pleting the request. Upon the completion, all the replicas send
the response to the client, thereby, guaranteeing task comple-
tion even in the case of a few faulty replicas.

2.2 Cloud Eco-System

The key promise of the cloud adaptation is the cost benefits
of the computing resources that can scale up/down on
demand, referred as pay-as-you-go elastic computing. Infra-
structure (IaaS), Platform (PaaS), and Software (SaaS) -as-a-
Service are the three service deployment models for cloud
environments. Each deployment model offer different pro-
tection schemes for the applications. Since our work does
not involve infrastructure-level interaction, we developed
our solutions in PaaS model.

848 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

While the on-demand elastic computing and the simpli-
fied service deployment models of the cloud is undeniably
useful, it’s increasingly challenging to guarantee provable
reliability due to the sophisticated cyber attacks in recent
years. The transient hardware and software design faults
inherent on the commercial-off-the-shelf hardware built on
such infrastructures have amplified such threats.

On the other hand, by design, such infrastructures also
provide unprecedented security capabilities enabled by
the structured underlying computing architecture and
virtualization. The two key capabilities are the isolation
and introspection, the ability to safeguard systems below
the OS that they are on. The application-level isolation
enabled by the container technologies (i.e., Docker) allows
multiple independent applications to run in isolation on a
single OS as if they are on a separate OSs. OS-level isola-
tion allows running multiple OS instances on the same
physical hardware, referred as multi-tenancy credited to
the Virtualization technologies. At the core of the Virtuali-
zation world is the Virtual Machine Monitors (VMMs),
referred to as a hypervisor.

There are two types of virtualization techniques for build-
ing cloud infrastructures: type I and type II. Type I enables
bare-metal hardware virtualization mechanism within the
hosting OS kernel, i.e., Xen and other commercial ones.
Quick Emulator (KVM/QEMU) is the second type capable
of virtualizing hardware resources. In this work, our MTD
solution is built on OpenStack [33], an open source cloud
software stack. OpenStack supports all types of hypervisors,
and is widely used in the commercial space, for example,
RackSpace [36], a commercial cloud provider that serve
manywell established businesses like Netflix.

Recent computing advances on cloud technologies ena-
bles hardware assisted security. These include; Intel’s
SGX processor which divides the CPU into many secure
enclaves/sandboxes to protect applications from each other
or even from a compromised OS. The ARM TrustZone pro-
cessor where the CPU is divided into two halves, the inse-
cure and secure worlds that communicate via a Secure
Monitor Call instruction. In this work, we are interested in
applying BFT solutions using only existing publicly available
cloud software stack and commodity architectures without
hardware customization.

3 THREAT SCOPE AND ASSUMPTIONS

We consider an adversary that gains full control/privilege
of a virtual machine undetected by the traditional defensive
mechanisms, a valid assumption in cyber space. The adver-
sary can be a user with physical access to the guest VM
node/replica (not the hypervisors), escalated privilege, or
even an escaped tenant from the neighbouring VM. The
adversaries’ advantage, in this case, is the unbounded time
to disrupt the reliability of the system. The fundamental
premise of BFA is to eliminate such advantage of time and
complicate the attackers gain/loss balance.

We assume the attacker takes a minimum time t to com-
promise a node n, and having seen or attempted to com-
promise n with a given tactic devised for a given exploit
will not reduce the time to compromise a new node n0. This
is because the new node n0 will require new tactic and new

exploit to compromise it given the fact that it starts with
new characteristics such as different OS, on different hard-
ware and hypervisor.

Furthermore, since our scheme is designed for BFT sys-
tems avoid faults, we consider the standard assumptions of
existing BFT systems and fault models [3] on both clients
and servers. Typically, these systems consist of N identical
replicated servers with Byzantine faulty model, i.e., they
demonstrate correctness or arbitrary faults that deviate
from the protocol. We assume the clients’s faulty behaviors
(i.e., replay attacks) are handled by the BFT protocol using
crypto and digital signature techniques that are computa-
tionally bound to subvert.

4 BFA SYSTEM MODEL

BFT systems are typically implemented using State Machine
Replication (SMR) model [4] and formalized with I/O
automaton [11], therefore, it’s a natural fit to model BFA as
an automaton.

Consider system B as a BFT’s finite state automata (FSA)
system model. Typically, system B consists of four-tuple
automaton, B = (sig(B), states(B), start(B), steps(B)), where sig
(B) are independent actions acts(B) which consist of in(B),
out(B), and internal(B), of input, output, and internal actions
respectively. A set of states(B) consists of a non-empty set,
and a start state start(B) � states(B) of states. A transition
relation, steps(B) � states(B) X acts(B) where the actions
acts(B) are the client request, the propose, write, and accept
consensus protocol are messages and consensus decision as
in(B), internal(B) and out(B) respectively.

Similarly, we model BFA with FSA and call it system A.
SystemAwill also have the same four-tuples, the set of states
and a transition relation, however, the difference between
the two FSA are their input, output and internal actions.
For BFT, the client requests and the responses are considered
the input and the output, and the consensus state transition
protocols propose, write, and commit are the internal actions.
We are interested one of the internal action (accept) from
system B (BFT) to send to systemA (BFA) as an input action.

4.1 BFT to BFA Transitions

In thiswork,we are considering quorum-based also known as
leader-based BFT systems. Typically, leader-based BFT proto-
cols consist of prepare/propose, write, and accept state transitions
where the leader exchangemessages ordering replicas to exe-
cute client requests. Upon the completion of each client
request, a decision is reached depending on the non-faulty
replicas participating the vote. The system transitions to an
accepting state if the number of voted replicas are within the
acceptablemajority.We refer this decision asBFTCommit.

In BFT, the state machine is initially triggered by the cli-
ent requests which is considered as input action, and the
internal actions are the consensus state transitions (propose/
prepare, write, and accept) where the accept/BFTCommit is
the last state transition action that happens upon success-
fully completing/committing a client request. We pass this
transition action to our BFA system as an input to trigger its
internal actions as illustrated in Fig. 1. However, for an I/O
automaton, the internal actions of SMR-based system are not
visible to other systems in the same environment [11].

AHMED AND BHARGAVA: FROM BYZANTINE FAULT-TOLERANCE TO FAULT-AVOIDANCE: AN ARCHITECTURAL TRANSFORMATION TO... 849

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

State transitions in BFT systems are just an abstract
notion of implementation dependent persistence work-
space, i.e., continuous memory region. In order to eliminate
state synchronization complexities, BFT systems require
logging every accepted execution for the recovering
replica/server in the event of natural crashes. We consider
every log event as the output action from system B that can
be used as an input action to our system A (BFA). We assign
this checkpoint event of the BFT system as the output action
(out(B)) and use it as an input action (in(A)) for BFA.

Formally, the BFA’s state transition steps can be defined
as steps(A)� acts(B), where out(B) is the output action
(BFTCommit) in act(B). This eliminates state transfer com-
plexities and effectively allow us to easily reason about the
preservation of the BFT’s reliability properties (safety and
liveness).

In order to perform useful computations, we consider a
transition after n accepted BFTCommits to indirectly trigger
BFA system to transition to an accepting state as depicted in
the dotted lines in Fig. 1. Thus, we consider this transition
point as the application state transfer checkpoint between
the terminating and the newly created replicas, discussed in
Section 6.2. The input enabled action of BFT’s I/O automa-
ton clearly shows that BFA is suitable for any SMR-based
deterministic system with state and some operations with-
out any modification.

4.2 (Sketch) Correctness Proof

The rationale behind modelling BFA with I/O automata was
due to the underlying SMR-based BFT system which is typi-
cally modelled with automata. Therefore, it’s natural to frame
our theoretical discussion in terms of automata composition.
The automata composition property of I/O automaton allows
an output action p of one automaton performs p, all automata
having p as input action perform p simultaneously.

Formally, we consider the composition of BFA system A
with the underlying BFT system B as parallel composition
P= BkA. For any transition < s, p, s’> of B which is an
accepting transition, there is a corresponding transition < s,
p, s’> of A. Note that we only consider the accepting state,
which we refer it BFTCommit as illustrated in Fig. 1.

Hence, for each accepting state in system B, there is a
transition state in system A as an input action which results
it to transition to an accept state, thereby, a replica node is
refreshed. Therefore, the transition path becomes the invari-
ant that must be preserved in every replica refreshes. It’s
intuitive to see if these invariants hold in one replica refresh,
then we assert that the next replica refresh round will be
identical to the previous round. Since our system A is
driven by the underlying system B, it will not be the first

one that violate the protocol. Thus, preserve the system B’s
correctness condition, safety and liveness.

In general, by ensuring n correct live replicas are in sync
(weak synchrony) given that at least one of the replicas is being
refreshed each time in a timely manner, ensures the preserva-
tion of the liveness properties. It has been noted in [16] the
impossibility of achieving safetywith synchrony, however, the
SMR-based I/O automaton model guarantees that the replica
responseswill be correct according to Linearizability [14].

5 BFA SYSTEM DESIGN

In this section we discuss the design approach and the
building blocks of the proposed BFA solution.

5.1 System Design

Our design is motivated by the modularized, pluggable and
structured cloud computing fabric, i.e., stacked hardware,
host OS, guest VM/OS’s, and reconfigurable networks
(SDN) as depicted in the logical system view in Fig. 2.

In Fig. 2, from the bottom up, at the core of each hard-
ware (Hardware1...n), there is a Host OS with Hypervisors
(i.e., KVM/QEMU or XEN) and a cloud software stack (i.e.,
OpenStack) as depicted on the bottom three layers of the
stack. There are n VMs on each Host OS that is controlled
with the nova compute. Note that the Virtual Machine Intro-
spection (VMI) is used for proactive monitoring of the VMs
at the hypervisor-level.

To illustrate, we deployed four BFT replicas (BFT-0, BFT-1,
BFT-2 and BFT-3) on the VMs. The arrows at both ends of the
BFT replica stack depicts the elastic computingmodel to dynam-
ically add/remove computing resources (VM1...VMn) below
it. These VMs are interconnected with LAN address (192.x.x.
x), referred as fix IP, and externally exposed with WAN
address (10.x.x.x.), referred as floating IP. Thismapping is con-
trolled with the neutron component, an implementation of
Software Defined Networking (SDN). The cloud software
management stack (i.e.,OpenStack) implements all these capa-
bilities through a wide range of open source projects such;
nova, neutron, horizon, glance, etc. We leveraged these capabili-
ties to not only build on-demand scalable platforms but also
for a defensive security strategy at system runtime.

We adopted a cross layer vertical design that simulta-
neously operate on two logical layers of the cloud platform
to enable the failure and attack resiliency of BFT systems; a
nova compute at the application layer (guest VM/Os) and
nova neutron at the networking layer. The nova compute allow
VM provisioning/de-provisioning and the neutron enables

Fig. 1. Illustration of Finite State Automata Composition for BFT in a, and
BFA in b. The transition of the BFT accept/commit state triggers as an
input to BFA (dotted arrow) and transitions it to an accept state for
refreshing a replica.

Fig. 2. BFT system logic view on a cloud platform.

850 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

the dynamic network reconfiguration capabilities, thereby,
used for refreshing the VMs (discussed next) by continu-
ously provisioning/de-provisioning at runtime. Thus, creat-
ing mechanically-generated diversity which is almost as
powerful a defense as typechecking [23].

5.2 Replica Refresh

For decades, refreshing techniques has been widely adopted
with a proven success in the access control domain, spe-
cially, on passwords. The refreshing scheme of these sys-
tems is typically implemented by setting a predefined
lifespan x for the password to exist/used, and enforce sys-
tem wide policy for the user to create a new password
when x expires and the system deletes it.

Along the same lines, Replica or VM Refresh is simply ter-
minating the VM instance after x amount of time or after
completing x number of transactions, then starting another
one possibly with different characteristics (i.e., on a different
hardware, hypervisor, host and guest OS) to replace it. This
VM substitution can be viewed in real-timewith the network
topology view of the horizon dashboard, a browser-based

visualization tool for managing the cloud instances as shown
in Figs. 3 and 4.

There are two different ways to refresh a BFT replica in
virtualized cloud platforms. By terminating the replica and
selecting its replacement from either:

1) creating a new VM instance on-demand, or
2) from a pre-prepared pool of standby VMs.
In this work, we give spacial emphasis on the second

replacement strategy (discussed next). We then discuss the
implementation approaches and the pros/cons of each
replacement strategy in Section 5.2.2.

5.2.1 Pre-Prepared VM Pool

One way to prepare a pool of standby VM replicas is through
the nova boot <options> command. The <options>
include; the OS type (i.e., Linux, freeBSD, windows, etc.), 32/
64 bit OS, cluster geographic location, server apps/scripts to
activate upon booting the instance, network configurations,
etc. Another way is through the horizon dashboard. We pre-
pared 4 standby replicas (0_R1, 1_R1, 2_R1, 3_R1) using the
command line as shown between the vertical bars (subnets)
and 4 BFT use case replicas (0_R0, 1_R0, 2_R0, 3_R0) on the
byzantine subnet (left vertical bar), depicted in Fig. 3.

Fig. 3. Horizon Dashboard view of the 4 BFT replicas 0_R0 ...3_R0 on
the right vertical bar (byzantine subnet) and 4 isolated standby replica
pool 0_R1 ...3_R1 between the vertical bars/subnets. A virtual router
(vmsec-proj) interconnects the two subnets with 192.x.x.x IP on the byz-
antine subnet side and 10.x.x.x on the externally visible subnet (exter-
nal). The arrows show the refresh direction where the x_R0 replicas
(circle box) will be replaced with the x_R1 (rectangle box) replicas.

Fig. 4. The result after the replicas refreshed, all x_R0 replicas are
removed from the subnet byzantine and replaced with the standby rep-
lica from the pool x_R1 (rectangle box to the oval box) while serving
clients.

AHMED AND BHARGAVA: FROM BYZANTINE FAULT-TOLERANCE TO FAULT-AVOIDANCE: AN ARCHITECTURAL TRANSFORMATION TO... 851

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

The naming convention used in our prototype x_Rx stands
for the replica ID x and the roundR it’s operating, for instance,
for the replica 0_R0 in the byzantine subnet is the replica ID 0
operating in round 0 (0_R0), and its counter part standby rep-
lica 0_R1 is for replica ID 0 in round 1, and so on. The basic
idea of our refreshing scheme is to remove a replica x operat-
ing in round 0 (x_R0) from the byzantine subnet (oval) and
replace itwith the one of the same ID x from the pool designed
to operate in the next round R1 (rectangle). Fig. 4 shows the
result after performing one round of refresh, all the replicas in
the 0th round (x_R0) are thrown off of the byzantine subnet
and one at a time replaced with those (x_R1) in the standby
pool while serving clients. The cycle continues to the next
round (x_R2) of replicas for round 2, and so on.

Note that the VMs from the standby pool (x_R1) are not
associated with any network in order to limit their exposure
prior using them as servers, thereby, not reachable in anyway.
This is similar to booting a server machine without a network
card installed. We manipulate the interfaces at runtime when
they are taking over the role of a server (x_R0) in the byzantine
subnet. Algorithm 1 illustrates the replica refresh procedure
REFRESH() and the implementation details of the transforma-
tion is discussed inAlgorithm 2 in Section 6.3.

Algorithm 1. Replica Refresh Algorithm

1: Input: replica
2: Output: newReplica " Substitute replica
3: procedure REFERESH(replica)
4: portID intrface� list < replicaID >
5: nova interface� detach < replicaID portID >
6: newReplica VMPool " standby VM
7: nova interface� attach < portID newReplica >
8: end procedure

In Algorithm 1, we first save the port ID associated to the
terminating replica (the input replica). In SDN environment,
the VM is attached to a virtual network interface that is
referred to as ports with a fix IP similar to physical network
interfaces. This interface is also associated with floating IP
for external access as noted earlier. Thus, both of the IP
addresses are part of the port even after it’s separated from
the VM, thereby, transferable to another VM. We detach the
port off of the replica in line 5, we then get a new replica VM
instance from the pool in line 6 and attach the port to it in
line 7. Note that depending on the OS image of the replica, a
VM reboot is required after the nova interface-attach

<portID newReplica>. At this point, the clients re-
connect to this replica through its floating IP (128.x.x.x) as
the old server that dropped off of the network and came
back. We show a 4 replica BFT use case scenario with this
refresh algorithm in the experiments section.

5.2.2 Pros & Cons

In general, one of the key advantage of refreshing a replica
is the mechanism to control its lifespan in order to reduce its
exposure attack window. The refresh time, the time it takes
to swap a replica, is critical to the effectiveness of the pro-
posed defensive security solution. The longer the refresh
time, the longer the replica is absent from the quorum,
thereby, violating the systems reliability properties (i.e.,

sufficient number of replica synchronized). The replace-
ment choices (i.e., prepared versus on-demand) of the rep-
lica dictates how fast a replica can be refreshed.

Creating a new VM instance on-demand takes roughly a
minute and selecting one from a prepared pool of VMs takes
less than 10 seconds. As a result, the on-demand boot replace-
ment strategy is not suitable for BFT replication model, spe-
cially, for a 4 replica with 1 faulty settings. The main reason is
that, in SMR-based BFT replication model, the absence of a
node from the quorum contributes the faulty replicas (f) to fall
below the acceptable threshold when an additional node fails
(naturally or compromised), thereby, violating the preserva-
tion of the reliability properties (safety and liveness).

For quorum-based BFT systems, the refresh transition time
should appear to all of the servers and clients as the replica
dropped off of the network and came back in order to pre-
serve the system’s reliability. To achieve this, having the repli-
cas in standby mode and dynamically manipulating the
network interfaces is the most efficient method for refreshing
a replica.

There are two different ways to prepare the standby VM
pool, the isolated/detached pool or attached pool. As the names
imply, the pool is created in isolation or detached off of the
network as our replacement strategy discussed in the previ-
ous section. The attached scheme is when the pool is prepared
on the network similar to our 4 replica use case depicted in
Fig. 4. Having the pool within the subnet tend to be a little
faster than our isolated replacement scheme if both the clients
and replicas/servers communicate with the floating IP, how-
ever, this require a different network topology (i.e., flat) that
is ineffective to dynamicallymanipulate at runtime.

The standby VM pool can be prepared on the externally
visible subnet than the internal byzantine subnet (192.x.x.x)
when using floating IP for both the clients and servers, or
perhaps, setting it in flat network topology than using SDN.
The main reason is that the servers in the byzantine subnet
have no knowledge of the floating IP, therefore, cannot
bound to a specific port with that IP. Replicas in the BFT-
SMaRT bound to a port number xyz on the fix IP where they
communicate among them, and the clients use the floating
IP that is mapped to the same port number xyz. This map-
pings are seamlessly handled by the SDN.

Overall, creating a new instance on-demand is the most
secure way that guarantees a zero exposure window as the
VM instances are freshly created each time, however, its slow
refresh time makes the least favourable scheme for BFT repli-
cationmodel. Using a prepared pool of VMs and dynamically
manipulating the network interfaces is effective in time criti-
cal replication models as it offers faster refresh time. The
attached pool scheme have some major security issues and it
requires a different network configuration to support our use
case BFT prototype. Therefore, the isolated/detached VM selec-
tion scheme offers the best of bothworlds, given that the repli-
cas are in standby mode unlike the fully exposed pool of the
attached replicas or the on-demand boot scheme which requires
upto aminute in preparation.

6 IMPLEMENTATION

We implemented our algorithms with bash shell script using
Mayflies [2] MTD framework. Mayflies is tightly integrated

852 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

into OpenStack (Kilo) [33] cloud framework, an open source
cloud management software stack widely adopted in
commercial clouds. For instance, RackSpace [36], a public
cloud platform built with OpenStack used by many well-
established businesses like Netflix. Further, OpenStack
provides a modularized components that simplify cloud
management. The core components that enables the MTD
techniques are nova, neutron and horizon.

To illustrate our proposed BFA, we used BFT-SMaRT
[32] prototype downloaded from [29], an opensource Byz-
antine Fault Tolerant system. We selected BFT-Smart due to
its modern multi-core aware architecture and modularized
Java based implementation that is widely studied in the lit-
erature in recent years. We have evaluated a number of
open source BFT prototypes and none come close to BFT-
SMaRT given the fact that BFT research has been around for
decades.

We deploy a BFT system to an OpenStack cloud platform
and continuously refresh the VMs in order to control their
existence for the hope of reducing their exposure window
of attacks and avoid faults, thus, transforming into BFA.
The fundamental question arise in such transformation
approach (from BFT system to BFA) while preserving the
systems’ reliability properties is how to deal with the
applications’ refresh points, dubbed lifespan, and its state transfer
between the terminating and the starting replica? We answer
this question with implementation details below, we then
present our transformation algorithm.

6.1 Replica State Management

The state in BFT-SMaRT system consist of two parts; first, is
the dynamic part which is created at server start up time
with information like; the replica id’s, IPs and current leader
ID, last executed client request or the committed transaction
number. This information is typically written in a file called
currentView to assist the recovering replica upon natural
crashes. The second part is the static system configuration
files (system.config and hosts) which contains the
security keys/certificates, total number of servers, the faulty
model (i.e., 1f), host IP and port, etc. These static files are
loaded only once at the server start up, however, for spacial
settings that supports servers to leave and join in order for
the system to grow or shrink, the hosts file gets updated
with the new server information at runtime.

As noted in Section 4.1, the quorum-based state machine
replication systems, the accept state transition happens upon
the replica reaching a consensus. At this point, we can refresh
the replica without violating the correctness conditions. The
idea is terminating the replica after committing the transac-
tion, given the fact that the system will progress with the
majority without the temporarily terminated replica, we then
re-initiate a new one at some point in the future transactions.
This guarantees a safe automata transitions, however, the
challenge is how to intercept this check point at runtime (discussed
next) and transfer it to the new replica?.

For transferring the system state, there are two different
logical layers of the cloud platforms that can be implemented,
either at theHypervisor layer or at the VM/ Application Protocol
layer. For the hypervisor layer approach, one can inject the state
information into the servers’memory space usingVMI. In this
process, the VM is paused in which the state information

becomes stale. Upon resuming the VM, given that other repli-
cas are continuously processing client requests as long as the
faulty-level is below the threshold, the state becomes stale,
thereby, the replica has to send requests to others for the cur-
rent state and update its state upon verifying it with more
than one replica.

For the application layer, the process is to simply stop the
replica, save its state, activate a new server and inject the
state with secure shell (ssh), then start the new replica as
the old one. Upon resuming, the state information becomes
stale, thus, acquire the state updates from others as well,
similar to the hypervisor approach. We implement our state
transfer scheme using this approach since it’s simple and
faster than the hypervisor approach.

With the three files used for the replica state manage-
ment, first, we introduce a new configuration property in
the system.config configuration file, called the system.

server.lifespan. We execute a sed command at the
server side for the configuration property substitution as
illustrated in the code snippet below. The sed command
simply looks for the first part of the string, substitutes with
the second part of the string with our desired lifespan

(new_value) to the file name provided. This eliminates one
round trip of scp to the server for injecting the entire con-
figuration file, given that we need to update a single entry.
We use the same ssh connection to first execute the sed
command to update the lifespan property and then start the
replica/server afterwards.

#/bin/bash

...

sed -i ’s/\^system.server.lifespan=[^]*/

system.server.lifespan=new_value/

config/system.config

...

Second, for the hosts file, as noted earlier, it only gets
updates in spacial dynamic case settings. For simplicity, we
illustrate the use case with only 4 BFT replica and keep the
system size fixed (i.e., not allowing other replicas to join or
leave). However, in dynamic setting like that, the same
system.config configuration file update method can also
be used to update the hosts file prior starting the newly
replaced replica.

Finally, we save the currentView file from the termi-
nating replica, and inject into the new replica using scp,
then ssh to update the configuration files and start the
server. Since replicas get the latest state information, espe-
cially, the last committed transaction from the others when
they reconnect, the state information in the currentView

file is critical for assisting the leader change protocol. We
observed that when we terminate a leader, the reconnected
replica further complicates the decision process of the new
leader selection if the currentView file is not injected. We
will discuss the improvements of this issue in Section 7.3.2.

6.2 BFT-SMaRT Replica Lifespan

As noted earlier, our key objective is to reduce the exposure
attack window of the replica by allowing replicas to run
with a pre-defined time frame, dubbed, lifespan, on a vari-
able platforms with different characteristics. As illustrated
in Fig. 5, it’s intuitive to see the replicas in the initial

AHMED AND BHARGAVA: FROM BYZANTINE FAULT-TOLERANCE TO FAULT-AVOIDANCE: AN ARCHITECTURAL TRANSFORMATION TO... 853

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

window are vulnerable to attacks if they stand still for the
entire time (static). We refresh one replica (pointing arrow
depicted as enlarged platform) for every x number of trans-
actions completed, thus, reducing the attack exposure win-
dow in the consequent windows.

The key rationale behind this approach is that if a replica
is compromised and undetected, the attacker will control
within that lifespan time frame, thereby, eliminating the
chance for the servers to collude. Most importantly, attacks
crafted for a replica in one of the windows (i.e., 0-x) will not
work against the same replicas as it changes its characteris-
tics in the upcoming window xi time frame.

The lifespan of the replica can be either a predefined fix
system time as low a minute or after completing x number
of client requests. This marks the transition from x to xi in
the time line window shown in Fig. 5 (x-axis). Precisely set-
ting the replicas’ lifespan is critical in order to guarantee safe
state transition between the two composed automata (BFT
and BFA) discussed in Section 4.1. Intercepting exactly
when the consensus is committed/accepted at runtime and
the refreshed replica continues the process guarantees a
safe transition.

To illustrate, we decided to set the lifespan of the replica
to exist after completing x number of requests (decided con-
sensus) which can be easily translated into a system time
(i.e., x number of transactions takes x amount of time). We
discuss the rationale behind our decision in the lessons
learned section (Section 7.3). We inserted our interested x
value in the static configuration file system.config as dis-
cussed in the previous section, and edited the consensus
decision method in TOMLayer.java class found in the
Total Ordering Messages (TOM) module. The java code
snippet below shows these changes.

package bftsmart.tom.core;

// TOMLayer.java

public final class TOMLayer extends Thread

implements RequestReceiver {

...

/* Called by the current consensus’s

* execution, to notify the TOM layer that

* a value was decided

* @param cons The decided consensus */

public void decided(Consensus cons) {

/*Delivers the consensus to

* the delivery thread*/

this.dt.delivery(cons);

/*Lifespan detection and self termination*/

if(this.controller.getStaticConf().

getReEntryPoint() == cons.getId()){

Logger.println(’’Reached Life Expectency’’);

try{

PrintWriter writer = new

PrintWriter(’’exitcertificate’’, ’’UTF-8’’);

writer.close();

try{

Runtime runtime = Runtime.getRuntime();

runtime.exec(new String[]{

’’/bin/bash’’, ’’-c’’,’’path/terminator.

sh’’});

} catch (Exception e) {

Logger.println(e.getMessage());}

} catch (IOException ex) {

Logger.println(ex.getMessage());}

}//end if

...

In this class, the decided(Consensus cons) method
calls the message delivery thread to deliver the consensus
cons (i.e., committed/accepted the execution of the client
response). We inserted our code after that method call as
shown below the comment /*Lifespan detection and

self termination*/. We simply check every decision
transaction number against the allowed system lifespan x
loaded from the static configuration file. Once the replica
reach its lifespan, it creates a file which we call it exit-
certificate, then self-terminates by calling a bash script
terminator.sh which kills all the java processes. This
assures that the replica existed only up to its designated life-
span, thereby, guaranteeing a smooth automata transition
between BFT to BFA, thus, preserve the safety property of
the BFT.

Clearly, as the code snippets show that our changes
have no impact on the correctness of the application proto-
col, however, one concern is for slow consuming clients
where the decided messages are kept in the delivery queue
or the batch process model where requests are delivered in
batches (bulk). This should be simply addressed by dis-
connecting the communication of the replica from the rest
of the servers first and delaying the termination call for
the terminator.sh script until the delivery queue is
cleared.

Below is the monitoring bash shell script code snippet.
The monitoring process is as follows: we ssh to the VM rep-
lica while suppressing the ssh trust warnings with the
-o options, change to the directory to where the file will
appear and keep checking every second. The loop breaks
once the file is created, server terminated and then we per-
form the refresh process implemented in Algorithm 2, dis-
cussed in the next section.

#/bin/bash

...

ssh -i $key -o UserKnownHostsFile=/dev/null

-o StrictHostKeyChecking=no

’ubuntu@’$ip ’’cd $path;

while [! -f exitcertificate];

do sleep 1; done’’

...

Fig. 5. Illustration of exposure attack window time line. The four com-
puter/platforms with IDs (0...3) represents the host OSs, and the circle
above it represent the BFT servers (guest OSs). Note each platform can
host multiple guest VM instances. The initial 4 node use case show in
the first block and refreshing a replica (pointing arrow) after a predefined
lifespan (x) shown at the (x-axis) and xi, ...xn in the consequence blocks
with enlarged platforms depicting as a stronger replica.

854 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

Note that the ssh protocol verifies the trust of the replica
for the first time another host tries to connect. In our case, it’s
always the first time whenever we refresh a replica, there-
fore, we added these options [ssh –o UserKnownHosts-

File=//dev//null -o StrictHostKeyChecking=no

...] in order to skip the confirmation message. Also, note
that the script code is broken down to fit the column.

6.3 BFT to BFA Transformation

At a high level, the process of the transformation is as follows:
we start the servers/replicaswith a predefined lifespan in their
initial static configuration file, then they create an exitcer-

tificatefile to signal themonitoring application for reaching
their lifespan and self terminate. While we continuously moni-
tor the existence of this file, we refresh the replica once the file
is detected. Algorithm 2 below illustrates the logical imple-
mentation of the proposed architectural transformation.

Algorithm 2. BFT to BFA Transformer Algorithm

1: Input: S " Set of BFT replica servers (S1...Sn)
2: Initialize x, i, exitcertificate " lifespan, next, file name.
3: while condition do
4: for replica in S do
5: repeat
6: if exitcertificate file exisits then
7: GETCURRENTVIEWFILE()
8: REFRESH(replica) " Algorithm 1 above
9: INJECTSTATE() " scp
10: STARTSERVER() " ssh
11: VMPool nova boot < opts > " refill
12: x x � i " next lifespan
13: else
14: do nothing " keep waiting
15: end if
16: until " until exit certificate issued
17: end for
18: condition = false " one round refresh only
19: end while

In Algorithm 2, given the set S of all the participating rep-
licas, we first initialize the life expectancy x, counter i and the
file name in line 2. In lines 6-14, we check if the exitcertificate
file is issued/created in line 6, we save its state file for the
new replica with GetCurrentViewFile() in line 7, apply
the refreshing process in line 8. Note that this procedure is
implemented in Algorithm 1 above.We then update the con-
figuration file of the newly refreshed replica with the desired
lifespan x and inject the currentView/state file and start the
server in line 9 and 10. We create a new VM instance x_Rn to
replace the one just used in line 11. The counter i in line 12 is
to update the lifespan of the next upcoming replica, for
instance, if the initial replica termination lifespan is 20K incre-
ments, then x=20 and i=1, thus, we terminate the first replica
after completing (20K), (40K), and so on.

The GetCurrentViewFile() in line 7, the Inject-

State() in line 9 and StartServer() in lines 10 are
implemented with secure copy scp and secure shell ssh
commands as described in Section 6.1. To illustrate the con-
cept, in our experiment, we set the condition to false in line
18 to terminate the main while loop after performing only
one refresh round to all the replicas.

7 EVALUATIONS

As depicted in the BFT system logic view diagran in Fig. 2 in
Section 4.2, each hardware/machine (HW1...HWn) lie a
Host OS with a hypervisor (HV...HVn), and guest OS’s/
servers (VM1...VMn) on top of it. For each replica refreshed,
we will start a new one with a different guest (VM) OS and
hardware platform for its place. Thus, our experiments is
targeted on evaluating the runtime execution gap while the
replicas are on a constant move across these hardware
(HW1...HWn), and at the same time processing ordered
messages.

We deploy BFT-SMaRT’s CounterServer() and Counter-
Client() demo application on OpenStack cloud platform and
report the transformation results. In this demo, the clients
send requests that has a number to all the replicas/servers,
then the servers respond the number incremented by a pre-
defined x value in ordered fashion. This demo illustrates the
SMR-based replication model that’s mathematically proven
to guarantee reliability even in the presence of some faulty
ones. We are interested in the runtime execution gap (i.e.,
missed messages) between the terminating server and the
new server in order to asses the transformation impact on
the replicas reliability properties and throughput.

7.1 Experimental Setup

Our experimental platform uses a private cloud built on
OpenStack software on a cluster of 10 machines of Dell
Z400 with Intel Xeon 3.2 GHz Quad-Core and 8 GB of mem-
ory running Fedora 23 host OSs. We used a Gigabit Ethernet
switch between the machines. We set up one of the
machines as a controller and networking (SDN) node, and 9
were used as compute nodes. The 9 compute nodes allow
us provisioning 36 virtual CPU’s (vCPU) which equals upto
18 small vm instances/servers, 2 vCPU per instance. The cli-
ent is installed in a separate node from the cluster to mimic
the realistic setting of clients.

We used Ubuntu 14.04 for the clients and the replicas/
servers in all our experiments to illustrate the concept.
However, the idea applies to any cloud images/OS’s for-
mats (COW, EC2, etc.) available in the public repositories
that OpenStack supports.

7.2 Experimental Results

We run BFT-SMaRT CounterServer() and CounterClient() for
4 servers with 1(f), where f is the number of faulty replica
the system tolerates, and a single client sending 100K
request messages. We set a 100K messages to be published
in order to cover a full round of refresh on all replicas. We
set a refresh point of 20K increments for each replica lifespan
starting at replica ID 1 on 20K, replica ID 0 at 40K, replica
ID 2 at 60K and on 80K at replica ID 3. In BFT-SMaRT, the
leader ID is typically number 0 and the candidate leader is
number 1, and (+1) for the next candidate leader and so on.
Refreshing the leader first leads to refreshing the newly
selected leader at each round. Therefore, we start with
server 1 to complete 20K, then 0 for 40K, and so on.

Table 1 show the results of the normal server restarts
using the scripts smartrun.sh and killall.sh

included in the demo. The first column show the server
ID, refreshing it to itself (i.e., server IDs 0 and 0 again) is

AHMED AND BHARGAVA: FROM BYZANTINE FAULT-TOLERANCE TO FAULT-AVOIDANCE: AN ARCHITECTURAL TRANSFORMATION TO... 855

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

shown in column 2. The third column shows the transi-
tion gap (i.e., the messages completed by the terminating
server and the start of the new server where its predeces-
sor left off) after the replica fully recovers and updates its
state. In this experiment, we simply monitor the exitcertifi-
cate file from the terminating replica, then we ssh back
and restart the server again. This is to capture the recov-
ery protocol timing in terms of transition gaps and the
overall process time.

Table 2 show the results of the demo servers while on the
move across platforms with the same settings above (i.e.,
100K client requests and 20K increments). Similar to Table 1
layout, column 1 show the original replica ID’s and the
transformed ID shown in the second column where the
server id pairs (x_R0), (x_R1) is for server id x in round R0
and then to x in round R1, and so on. The third column
show the message transitions gap between (x_R0) and
(x_R1) replica group.

Note that the transition gap of the leader replica (Server 0)
in both experiments are identical, this is due to the fact that
the leader recovery time is about 20 seconds [32] and the
elapse time between the termination of the replica and the
start of a new replica is typically less than 10 seconds as
shown in Table 3 (column 2). The transition gap starts after
the replica updates its state (installs the last execution ID) and
resumes processing client requests which is �700 messages
passed from the time it reconnects, and 0 messages for the
leader replica.

Table 3 shows Generic case were we start the servers
without stopping, Re-Start and Refresh experiments reported
in Tables 1 and 2 with the same 100K client requests.
Column 1 is the use case scenario names. Column 2 show
the average lapse time, the time it takes for the server to put
back in business when Re-Started or Refreshed. The lapse
time starts when we detect the exitcertificate file and ssh back

to restart the server or manipulate the interface to start a
new and different replica for the case of the Refresh experi-
ment. The lapse time is 0 for the Generic case since the server
is not stopped. Column 3 show the total process time of the
100K requests averaged across 5 experiments.

The total process time shows that it takes a little over
3 minutes to process a 100K client requests in the Generic
case and little over 5 minutes when refreshing a replica in
every 20K requests for the Refresh case. This illustrates that
we can refresh a replica as low as a minute while perform-
ing useful computation which is necessary when operating
in contested environments, however, in a normal situation,
the performance impact is negligible if randomly refreshing
a replica (say for every 5-6 minutes or more which is �
200K+ requests) to disrupt attacks.

Fig. 6 reflect the graphical horizon dashboard network
topology shown in Fig. 3 where our 4 BFT replicas on the
byzantine subnet (x_R0) with IP (fix and floating) addresses
and (x_R1)with blank entries. To illustrate, the white square
box shows one of each of these replicas (0_R0) and (0_R1)
where the network interface is attached to (0_R0) as the
arrow points and none to (0_R1).

Fig. 7 shows the result after the transformation algorithm
completes for one round. The white square box shows the
same two replicas R0 and R1 depicted in Fig. 6, now the net-
work interface for R0 is attached to R1 as shown the arrow
pointing R0 with no network entry as well as all the (x_R0)
group. This transformation can continue as (x_R2) for round 2
with newer VMs created/refilled instances in line 12 of the
Algorithm 2, and so on.

Each our 4 BFT use case replicas in the initial round
(x_R0) clearly reached the 20K refresh increments as we see
those in the standby (x_R1) round continued processing
from where their predecessors left off as shown in Tables 1
and 2, and the SDN results of Figs. 6 and 7. Thus, this guar-
antees the safe state transition between the replica (x_R0 and
x_R1) groups, as a result, preserved the reliability properties
of the protocol (safety and liveness). We showed the total pro-
cess time of a 100K messages from a single client, we con-
sider evaluating our algorithm with large number of clients
while the servers are geographically distributed and under
attack in our future work.

TABLE 1
Counter Demo with Normal Re-Start

Server Re-Start Transition Gap

0 0, 0 40000, 40037
1 1, 1 20000, 23650
2 2, 2 60000, 62286
3 3, 3 80000, 82105

TABLE 2
Counter Demo with BFA Transformation

Server Refresh Transition Gap

0 0_R0, 0_R1 40000, 40037
1 1_R0, 1_R1 20000, 25852
2 2_R0, 2_R1 60000, 66176
3 3_R0, 3_R1 80000, 86773

TABLE 3
Comparisons of Generic, Re-Starts and Refreshes

Use Case Avg. Lapse Time (sec) 100K Time (sec)

Generic 0 185.655
Re-Start 0.120 � 0.010 221.527
Refresh 11 � 3 322.902

Fig. 6. An output of nova list command showing the BFT and the
standby replicas with their network mappings before the transformation.
The arrow shows the (x_R0) replica groups have network interfaces and
x_R1 have none.

Fig. 7. Post BFA transformation results. The network interfaces of
(x_R0) group are seamlessly transferred to the (x_R1) group. Note
(x_R0) enteries are blank.

856 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

7.3 Lessons Learned

In this section, we will discuss the key lessons learned dur-
ing this project. These include: 1) adopting the cloud soft-
ware stack (OpenStack) nova and neutron components in a
dynamic fashion, 2) the behaviour of the BFT-SMaRT leader
change recovery protocol, 3) dealing with the replica life-
span, and 4) the limitations of our approach.

7.3.1 Synchronizing Nova and Neutron

The process of refreshing replica in a cloud platform is
greatly simplified by the combination of nova and neutron,
however, the implementation of these capabilities are asyn-
chronous by design, the functions have no return values to
determine whether the call succeeded or failed. For exam-
ple, detaching the network interface off of the replica with
the nova interface-detach <options> to free its fix
and floating IPs in order to attach it to the new VM instance
using the interface-attach <options> throws an
error ”IP is still in use”. The reason is that these nova interfa-
ces are implemented by the neutron component. In general,
all inter-component (i.e., nova, neutron, horizon, glance, cinder,
etc.) calls in OpenStack software stack is done through
RESTful messaging (i.e., AMQP).

A typical workaround is to insert sleep(x) to hold the pro-
cess for an x amount of time before proceeding to the next
call, however, this x will vary depending on the load of the
controller which is difficult to predict, thereby, increasing
the refresh time if x is large or disrupting the system (crash-
ing) if x is too small. We synchronized the nova calls by mak-
ing other nova reporting function calls (i.e., nova show

–minimal and nova interface-list) in a while loop as
illustrated in the following code snippet.

#/bin/bash

...

nova interface-detach <options>
while [1]

do

isactive=$(nova interface-list replicaID

| awk ’/\ACTIVE\y/ {print $2}’);

if [-z ’’$isactive’’]

then

break;

fi

sleep 1

done

nova interface-attach <options>
...

Basically, the loop holds the execution of the next function
call by repeatedly calling nova interface-list repli-

caID function that reports the status of the given replica ID
every second.We parse the value ACTIVE in isactive vari-
able from the result returned by the nova interface-list

command using awk, then, break once the value is null with
the -z condition. This means that the interface does not exist
and can proceed to the next function call, thus, prevent us to
blindlywait for function returns in such environment.

7.3.2 Improving BFT-SMaRT Recovery Protocol

We timed the BFT recovery protocol by restarting the same
server, and also refreshing it with a different VM as shown

in Tables 1 and 2 (column 2) in the previous section. The
recovery time is less than a second for restarting the same
server, and refreshingwith a newVMisbetween 8-11 seconds.
In both cases, we observed that occasionally the system
crashes when we restart/refresh another node given the fact
that the first restarted/refreshed node has joined back the rep-
lica group. This is due to the node trying to catch up process-
ing the missed messages (timeouts), as a result, causing the
system to fall below the faulty allowed threshold when
another node is terminated.

Similar issue also appears when terminating a replica at
the start of the experiments which was due to the replicas
proceeding to process client requests once 3/4 of the repli-
cas are connected, thus, putting the 4th replica (i.e., 4 replica
use case) in a catchup mode early in the game. We set the
replica lifespan to 20K increments to space out the termina-
tion and considering to thoroughly analyze the code and
systematically solve this issue in the future.

Another major issue of transforming BFT to BFA is the
recovery of the leader upon crash or failure. It has been
reported that the recovery time for a non-leader replica in
BFT is negligible and about 20 seconds for the leader [32].
This is due to the leader change protocol messages (regency
x, where x is the replica/server ID) exchanged in order to unan-
imously decide for a new leader when the leader fails/
crashes. Given the fact that our failure inducing (terminat-
ing/re-starting) replicas as a defensive technique (MTD)
takes only between 8-11 seconds for all the replicas as noted
earlier, we considered improving the leader recovery protocol
for BFA and the system stability in a systematic fashion than
the existing approaches described in the introduction section,
as well as eliminate threats that makes the system barely
usable [6] or even revolve aroundmalicious leaders [20].

We observed (logs/code) that the recovering/refreshed
leader complicates the leader selection process when it joins
at specific point in the process. This is due to the recon-
nected leader sending messages that show its ID (regency x)
as the known leader and others sending for unknown leader
message (regency-1) to activate the leader change protocol.
Upon activating a leader change, all the replicas exchange
other messages (STOP, STOP_DATA, SYNC, etc.) to syn-
chronize the last committed transaction (client request)
number before deciding for a new leader.

Once the last transaction is synchronized, the replicas
then exchange the next candidate leader (regency+1) selec-
tion message and agree with a majority vote. However,
with the reconnected leader message claiming as a known
leader is in the pipe, and some of the replicas verify/
accept that claim (additional messages to be exchanged),
getting a majority vote makes it difficult. In some cases,
we observed that the regency+1 increments goes beyond
the participants IDs, thus, causing a dead-lock in deciding
for a new leader.

To reduce the leaders’ recovery time and its inherent
issue in a systematic approach, we introduced a reclaim
leadership method in the protocol in which the recovering/
refreshed leader sends a new message called ignoreLeader-
Change (LC_IGNORE) as long as a new leader is not yet
decided. Once this messages is received, all the replicas sim-
ply check if the sender was actually their known leader and
the current leader has not yet been decided, then, cancel all

AHMED AND BHARGAVA: FROM BYZANTINE FAULT-TOLERANCE TO FAULT-AVOIDANCE: AN ARCHITECTURAL TRANSFORMATION TO... 857

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

the synchronization messages in the pipe. This greatly
improved the recovery process of the leader.

We are currently evaluating parallel catchup process and
considering to evaluate BFA with the improved BFT-SMaRT
and report results in the future. We consider submitting the
improved leader recovery and the catchup code to the BFT-
SMaRT authors to validate and include in their future
releases.

7.3.3 Replica Lifespan

The lifespan for the server can be either a predefined fixed
time (as low a minute) or after completing x number of cli-
ent requests. The goal is to refresh replicas without modify-
ing the BFT code. To set the lifespan using the system clock
time requires that all the VM servers system clocks to be
accurate at all times. This can be simply achieved through
the use of NTP or other methods, however, the lifespan of
the replica may never be reached if a server is compromised
and its system clock time is altered.

Setting the lifespan of the replica upon completing x num-
ber of transactions which is technically be translated to time
is secure and it does not require system clock maintenance,
however, the assumption is that the network flows are
always synchronized and the replicas process the client
requests in the order it was received and respond in that
order. This assumption does not hold in virtualized envi-
ronments, thereby, is challenging to detect the exact transac-
tion completion point.

Our first attempt to set the replica lifespan was to monitor
the log file entries as it’s written for our interested value x,
however, we discovered that there are 60� 10messages proc-
essed by the timewe extract the system state in order to termi-
nate the replica. This is possibly due to the IO disk read
requests from our monitoring script and the write requests
of the server. Therefore, we decided to insert the lifespan
value x in the configuration file system.config and slightly
edit the code to interceptwhen the value x is reached and cre-
ate a file called exitcertificate to signal that point. We monitor
the existence of that file instead of the log file entries. Upon
detecting it, the replica gets refreshed safely as described in
Section 6.2, thus, assuring the replicas to exist only with their
intended lifespan.

7.3.4 Limitations

The criticality of incorporating attack-tolerance to fault-tolerance
protocols as an integral part of distributed system’s architec-
ture and protocols was first addressed in [21] for over a
decade. To the best of our knowledge, this work is the first to
attempt an architectural-level integration of attack-tolerance
and fault-tolerance on virtualized cloud platforms. With the
advances of cloud software stack and SDN implementations
emerge, and the BFT protocols re-engineered to adopt to such
platforms, we believe MTD-based security solutions for BFT
on cloud computing is far superior than the traditional defen-
sive approaches.

One of the major improvement, for instance, in Open-
Stack-Icehouse release, is detaching an interface from the ter-
minating VM with nova interface-detach to free
the resources (i.e., IPs) in order to re-use it in nova inter-

face-attach call required a new interface to be created

first with neutron port-create because the interface
gets deleted once detached from the VM. Then, the new
interface has to be associated with the floating IP. This
resulted a slower refresh time than swapping the interface
with just the two steps (detach and attach) supported by the
current version (kilo) used in our experiments.

With this minor improvement, the VM replica refresh
time decreased from 20 seconds to between 8-11 seconds
depending on the network service workload. As a result,
narrows the time needed for the adversaries craft an effec-
tive attack when the pattern of our re-deployment time
frame is discovered. However, the current BFA solution
approach fails against attacks that take less than 8 seconds.

In this work, we focussed on the following three parts; 1)
determining and improving the MTD cost inherent on the
cloud software stack to reduce the replicas window of
attack, 2) replicas state transfers, and 3) the replica lifespan.
To fully achieve BFA on cloud computing, some of the limi-
tations need to be addressed include:

1) Balancing between the performance impact on deliv-
ery latency, replica refresh time, and the security
robustness, when the protocols’ cryptographic mes-
sage digests and certificates (i.e., X509 certs) is enabled.

2) Determining an optimal lifespan x in order to pre-
vent for an attacker causing byzantine faults during
the replicas lifespan.

3) Dealing with the application-level vulnerabilities,
and the security risks inherent on blindly selecting
VM/replica candidates and platform destinations
without informed decision (i.e., avoiding platforms/
configurations that are susceptible to attacks or have
known vulnerabilities).

8 RELATED WORK

To the best of our knowledge, BFA is the first to leverage
cloud management software stack to address BFT security
issues, therefore, we divide our related work section into
two parts; we first discuss works on BFT attack and fault
detection/prevention and system diversification (MTD)
approaches, we then consider research approaches that
leverage virtualization that are relevant to our work.

8.1 BFA Fault Detection

Supporting fault and attack tolerance in a distributed trust
by coupling the replication with threshold cryptography
was first proposed in [21]. An alternative approach that
aims to detect faults by monitoring rather than masking is
proposed in [35] where each node is equipped with a detec-
tor that monitors each other for signs of faulty behavior and
isolated if suspected. Another scheme that continuously
monitors the leaders’ behavior and changes upon suspi-
cious behavior is proposed in Aadvark [9]. Similarly, Spin-
ning [10], develops a techniques for constantly rotating the
leader after every patch of request processed and punish
the faulty ones.

The monitoring schemes of all the above systems are
within the application layer, thereby, easily defeated once
the system is compromised by only infecting even a single
replica. In addition, the other difference is that BFA elimi-
nates the maintenance cost for dealing with the fault nodes

858 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

by constantly refreshing replicas, thereby preventing future
faults in the event of a compromised undetected node in the
replicated domain.

Application level diversification or program synthesis is
first introduced in N-version programming [18]. They pro-
pose methods of developing different implementations of the
same specification by different development groups while
anticipating to produce versions without common faults. A
fault-tolerant approach of this schemewas later introduced in
[17]. However, experiments have shown that common flaws
in the independently implemented binaries do occur [19].

Furthermore, N-variant [26] introduced program synthe-
sis or program re-writing, where computationally variable
binary forms of the same program are produced to enable
diversity. A new ordered broadcast fault-tolerant service
was recently proposed [27] that accomplishes diversity in
time by switching between 2/3 consensus protocol and
Paxos, and diversity in space by running synthesized pro-
gram in two different evaluators. However, BFA enables
diversity in time and space to a wide range of existing BFT
SMR-based systems without modifying the application pro-
tocol while leveraging the underlying computing fabric.

Note that BFT-SMaRT allows a replica to dynamically
leave and join at runtime for the system to shrink or grow
through a reconfiguration protocol run as a client applica-
tion. The application notifies the joining or leaving replica
to all other replicas, thus, not suitable to use as a refreshing
scheme for MTD strategy. BFA transformation scheme
seamlessly removes the replica and adds it back without
notifying to the rest of the replicas and all is done outside
the protocol, however, it can supplement to the dynamic
BFT work on selecting replicas from the prepared VM pool
for faster leave/join process.

8.2 Virtualization Techniques

Although BFA solution is built around the cloud platform,
it’s not the only work that leverages virtualization (VM)
techniques, for example, ZZ [12], CheapBFT [13] and A2M
[24] leverage VM for BFT performance improvements, i.e.,
replica costs.

Others have used VM for security, for example, an intru-
sion tolerance BFT for web services that stops functioning
when a security violation is detected [34], and MAS [28]
that rotate web-services with versions of application imple-
mentation, webservers on different OSs and hypervisors
between on-line and off-line to deceive adversaries. A diver-
sified guest OS’s and binary randomization of single-
machine BFT is proposed in [37]. An architecture for secure
outsourcing of data and arbitrary computation between
trusted cloud that serves as a proxy between the client and
untrusted commodity clouds is proposed in [38].

These improvements have been credited to the advances
in computing, especially, virtualization on commodity
hardware and trusted subsystems, i.e., Trusted Computing,
TPM, FPGA, Gurbled Circuts, and Homomorphic Encryp-
tion. Unlike other solutions, BFA neither depends on
trusted subsystem nor globally shared space, and the sys-
tem continues to evolve and remain online.

Overall, the main difference is that BFA is not a new BFT
protocol to mitigate attacks, it’s an architectural integration
of fault-tolerant protocols and attack-tolerance. BFA enables

agility to existing rigid SMR-based well established BFT sys-
tems in a real world setting by leveraging simple but effec-
tive mechanisms enabled by the infrastructure. While all
these approaches are affective to improve replica costs and
defend against class of attacks, our work is complementary
to those that implement monitoring faulty behavior and
change/rotate leader.

9 CONCLUSION AND FUTURE WORK

We proposed a Byzantine Fault Avoidance (BFA) techni-
ques built around the cloud’s software management stack
(VM provisioning/de-provisioning, neutron, horizon, and SDN).
By synchronizing the cloud software stack in a dynamic
fashion to fully control the existence of the replicas, we
were able to control the replicas attack exposure window in
order to complicate the attackers’ system control balance.

We showed the practicality and effectiveness of our
scheme with a widely studied byzantine fault-tolerant sys-
tem (BFT-SMaRT) in the literature deployed on a private
cloud built with OpenStack and Mayflies MTD framework
techniques. BFA demonstrated that the capabilities enabled
by the underlying computing fabric are simpler and more
effective than the ones implemented at the application-level
protocol to introduce dynamicity into the system in order to
disrupt against modern sophisticated attacks.

Future works will address the following; secure diversifi-
cation using TPM, IP-Hopping, trace-based performance
analysis across multiple public cloud platforms while the
system is under attack, and practical experiments using
Micro/Andrew benchmarks. We consider integrating a Vir-
tual Machine Introspection-based system runtime integrity
violation detection scheme introduced in our previous work
[1] to address one of the limitations (3) described in Section
7.3.4. Furthermore, we will extend the VM refresh algorithm
on container technologies (i.e., docker).

ACKNOWLEDGMENTS

Authors would like to sincerely thank Jim Hanna for his
support on the experimental cloud platform. Special thanks
to Dr. Mark Linderman and Steven Farr at AFRL for their
continuous support and guidance, and the reviewers for
their constructive comments and making this paper more
readable. Note: the external IP address 10.x.x.x on figures
3,4,6, and 7 was edited for privacy.

REFERENCES

[1] N. Ahmed and B. Bhargava, “Towards targeted intrusion detec-
tion deployments in cloud computing,” Int. J. Next-Generation
Comput., vol. 6, no. 2, pp. 129–139, 2015.

[2] N. Ahmed and B. Bhargava, “Mayflies: A moving target defense
framework for distributed systems,” in Proc. ACM Workshop Mov-
ing Target Defense, 2016, pp. 59–64.

[3] L. Lamport, R. Shostaka, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Languages Syst., vol. 4, no. 3,
pp. 382–401, 1982.

[4] F. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surveys, vol. 22,
no. 4, pp. 299–319, 1990.

[5] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proc. 3rd Symp. Operating Syst. Des. Implementation, 1999, pp. 173–
186.

[6] Y. Amir, J. Coan, J. Kirsch, and J. Lane, “Byzantine replication
under attack,” in Int. Conf. Dependable Syst. Netw., Jun. 2008,
pp. 197–206.

AHMED AND BHARGAVA: FROM BYZANTINE FAULT-TOLERANCE TO FAULT-AVOIDANCE: AN ARCHITECTURAL TRANSFORMATION TO... 859

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

[7] Y. Amir, J. Yair, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack, ”Dependable and secure computing,” IEEE Trans.
Dependable Secure Comput., vol. 8, no. 4, pp. 564–577, Jul./Aug. 2011.

[8] Z. Milosevic, M. Biely, and A. Schiper, “Bounded delay in
byzantine-tolerant state machine replication,” in Proc. 32nd IEEE
Int. Symp. Reliable Distrib. Syst., 2013, pp. 61–70.

[9] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making byzantine fault tolerant systems tolerate byzantine
faults,” in Proc. 6th USENIX Symp. Netw. Syst. Des. Implementation,
2009, vol. 9, pp. 153–168.

[10] G. S. Veronese, M. Correia, A. N. Bessani, and L. Lung, “Spin
one’s wheels? byzantine fault tolerance with a spinning primary,”
in Proc. 28th IEEE Int. Symp. Reliable Distrib. Syst., 2009, pp. 135–
144.

[11] N. Lynch and M. Tuttle, “An introduction to input/output
automata,” in Publisher PN. MIT Technical Memo MIT/LCS/TM-
373, 1988. [Online]. Available: http://groups.csail.mit.edu/tds/
papers/Lynch/CWI89.pdf

[12] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet,
“ZZ and the art of practical BFT execution,” in Proc. 6th EuroSys
Conf., 2011, pp. 123–138.

[13] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Moham-
madi, andK. Stengel, “CheapBFT: Resource-efficient byzantine fault
tolerance,” in Proc. 7th ACM Eur. conference Comput. Syst., 2012,
pp. 295–30.

[14] M. Herlihy and J. M. Wing, “Linearizability: A correctness condi-
tion for concurrent objects,” ACM Trans. Program. Languages Syst.,
vol. 12, no. 3, pp. 463–492, Jul. 1990.

[15] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Trans. Softw. Eng., vol. 37, no. 3, pp. 371–386, May/Jun., 2011.

[16] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of distrib-
uted consensus with one faulty process,” J. Assoc. Comput. Machin-
ery, vol. 32, no. 2, pp. 374–382, Apr. 1985.

[17] A. Avizienis and L. Chen, “On the Implementation of N-version
programming for software fault-tolerance during program exe-
cution,” in Proc. Int. Comput. Softw. Appl. Conf., 1977, pp. 149–155.

[18] L. Chen and A. Avizienis, “N-version programming: A fault toler-
ance approach to reliability of software operation,” in Proc. 8th
Int. Symp. Fault-Tolerant Comput., 1978, pp. 3–9.

[19] J. Knight and N. Leveson, “An experimental evaluation of the
assumption of independence in multi-version programming,” in
Proc. IEEE Trans. Softw. Eng., vol. SE-12, no. 1. pp. 96–109,
Jan. 1986.

[20] R. Martins, et al., “Experiences with fault–injection in a Byzantine
fault-tolerant protocol,” in Middleware, Berlin, Germany: Springer,
2013, pp. 41–61.

[21] F. Schneider and L. Zhou, “Distributed trust: Supporting fault-
tolerance and attack-tolerance,” Cornell University, Ithaca, NY,
Rep. TR 2004–1924, Jan. 2004.

[22] T. Garfinkel and M. Rosenblum, “A virtual machine-based archi-
tecture for intrusion detection,” in Proc. Netw. Distrib. Syst. Secu-
rity Symp., 2003, pp. 191–206.

[23] F. Schneider, From Fault–Tolerance to Attack Tolerance, 2010.
[Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/
a548748.pdf

[24] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,”
ACM SIGOPS Operating Syst. Rev., vol. 41, no. 6, pp. 189–204, 2007.

[25] S. Jajodia, et al., Moving Target Defense: Creating Asymmetric Uncer-
tainty for Cyber Threats, vol. 54, Berlin, Germany: Springer, 2011.

[26] B. Cox, D. Evans, A. Fillipi, J. Rowanhill, and W. Hu, N-variant
systems: A secretless framework for security through diversity,
Fort Belvoir, VA, United States: Defense Technical Information
Center, 2006.

[27] V. Rahli, N. Schiper, R. VanRenesse,M. Bickford, andR. Constable,
“A diversified and correct-by-construction broadcast service,” in
Proc. 20th IEEE Int. Conf. Netw. Protocols, 2012, pp. 1–6.

[28] S. Jajodia, et al., Moving Target Defense: Creating Asymmetric Uncer-
tainty for Cyber Threats, vol. 54, Chapter 8, Berlin, Germany:
Springer, 2011.

[29] BFTSMaRT, 2015. [Online]. Available: https://code.google.com/
p/bft-smart/wiki/GettingStarted

[30] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4,
pp. 398–461, 2002.

[31] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and counter meas-
ures,” in Proc. Netw. Distrib. Syst. Security Symp., 2015, pp. 8–11.

[32] A. Bessani, J. Sousa, and E. Alchieri, “State machine replication for
the masses with BFT-SMaRT,” in Proc. 44th Annu. IEEE/IFIP Int.
Depend. Syst. Netw., 2014, pp. 355–362.

[33] OpenStack, 2014. [Online]. Available: OpenStack. https://www.
openstack.org/

[34] J. Lau, L. Barreto, and J. D. Fraga, “An infrastructure based in vir-
tualization for intrusion tolerant services,” in Proc. 19th IEEE Conf.
Web Serv., 2012, pp. 170–177.

[35] A. Haeberlen, P. Kouznetsov, and P. Druschel, “The case for byz-
antine fault detection,” in Proc. 2nd Workshop Hot Topics Syst.
Dependability, 2006, p. 5.

[36] RackSpace, 2014. [Online]. Available: https://www.rackSpace.
com/

[37] B. G. Chun, P. Maniatis, and S. Shenker, “Diverse replication for
single-machine byzantine fault-tolerance,” in Proc. USENIX Annu.
Tech. Conf., 2008, pp. 287–292.

[38] S. Bugiel, S. Nurnberger, A. Sadeghi, and T. Schneider, “Twin
clouds: An architecture for secure cloud computing,” in Proc.
Workshop Cryptogrsaphy Security Clouds, 2011, pp. 32–34.

Noor O. Ahmed is a Computer Scientist at
AFRL/RIS since 2003. He holds a BSc (2002)
from Utica College, MSc (2006) from Syracuse
University, and PhD (2016) from Purdue Uni-
versity, all in Computer Science. His research
interests include: Security in Cloud Computing,
QoS and Security in Service Oriented Architec-
tures, Semantic Computing, and Reliability and
Resiliency in Distributed Systems with spacial
emphasis on Moving Target Defense (MTD).
Dr. Ahmed serves as a program committee and

session chairs for IEEE and ACM conferences/workshops in these
research areas.

Bharat Bhargava is a professor of computer sci-
ence with the Purdue University. His research
work deals with the security and privacy issues in
Service Oriented Architectures and Cloud Com-
puting, and secure Internet-scale routing and
mobile networks. He is the editor-in-chief of four
journals and serves on over ten editorial boards of
international journals. He is the founder of the
IEEE Symposium on Reliable and Distributed
Systems, IEEE conference on Digital Library, and
the ACM Conference on Information and Knowl-
edgeManagement. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

860 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Purdue University. Downloaded on September 14,2023 at 18:30:02 UTC from IEEE Xplore. Restrictions apply.

http://groups.csail.mit.edu/tds/papers/Lynch/CWI89.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/CWI89.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a548748.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a548748.pdf
https://code.google.com/p/bft-smart/wiki/GettingStarted
https://code.google.com/p/bft-smart/wiki/GettingStarted
https://www.openstack.org/
https://www.openstack.org/
https://www.rackSpace.com/
https://www.rackSpace.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

