Graph Algorithms (Shortest path and Matching) with MapReduce in Cloud

Ariful Azad, Department of CS, Purdue University

1. Motivation:

1.

What is cloud computing to me? : When I took the course I did not
have any concrete idea on cloud computing. As I learnt the idea it
seems more and more an economical shift rather than a new
computational paradigm from the programmer perspective. The
programming methodology in cloud is still similar to distributed /
parallel computing.

How cloud computing can contribute to my research? : My
research interest lies in application of graph algorithm in
computational biology. Security and privacy is a concern to me but is
not related to my research. I am more interested in developing
algorithms for very large-scale datasets that can run efficiently and
fast on cloud (preferably with low cost). When I search on the web
about cloud computing application a good number of the papers show
up mainly based on large-scale data analysis using some form of
Google’s MapReduce. I decided to learn it and the simplicity of the
concept attracts me. However, the technique is difficult to apply in
graph algorithms since graph partitioning is a nontrivial to parallelize.
[found couple of resources and was interested to investigate it more.
This guide me to chose this project!

2. Problem Description: MapReduce is a framework that was developed at
Google for processing large amount of data (>1TB) that are distributed
across thousand of machines.

Input Data

Output Data

Split Sort Merge
k1, vi] by k1 k1, [vl, v2,v3..]]

Properties:

1.

Mappers and Reducers run in parallel. No dependency between
difference instances of mapper (and instances of reducer as well). For
graph application this is very difficult to achieve since often there is a
dependency between different parts.

Sometimes it is impossible to implement the algorithm in a single
map-reduce stage. For example single source shortest path. In that
case we require multiple map-reduce stages.

In this project I will implement single source shortest path and a graph-matching
algorithm using MapReduce.

3. Scope of the project:

1.

Install a library that will help running MapReduce at Amazon and
possibly at Yahoo Cloud. The obvious choice is free framework
Apache’s Hadoop.

Develop the map and reduce function for identifying shortest path in a
very large graph.

Try to improve performance (challenge: Is there any other program
for large scale to compare??). Idea of the algorithm is found from a
slide in Google Code University, no paper found.

Develop the map reduce function for a matching algorithm in large
bipartite graph.

4. What I have done so far: | have read 2 papers and 3 slides on this. I have
also watched 3 lectures on MapReduce on Google Code University. Now I
have concrete idea about what to develop. I also set up a Hadoop image on
my local machine for local testing of a program. However, Hadoop is still
need to be installed in a real cloud. I ma planning to install it in Amazon EC2
and Yahoo cloud.

5. Previous works: This is a super active research area now since I found so
many recent research papers on MapReduce. However, not many works
focus on dependent data like graphs. Frankly I found 2/3 papers and 3 slides
on this. Those will be my starting point.

6. References:

1.

2.

A very practical introduction to MapReduce:
http://code.google.com/edu/parallel/mapreduce-tutorial.html
Seminal paper on MapReduce: Dean, Jeff and Ghemawat, Sanjay.
MapReduce: Simplified Data Processing on Large Clusters.
Lectures on graph algorithms using MapReduce in Google code
university: http://code.google.com/edu/submissions/mapreduce-
minilecture/listing.html

Hadoop Summit 2010 presentation by Sergei Vassilvitskii
http://www.slideshare.net/ydn/3-xxl-graphalgohadoopsummit2010

5. MapReduce using Hadoop: http://hadoop.apache.org/mapreduce/

6. H, Karloff, S. Suri, S. Vassilvitskii, “A model of Computation for
MapReduce”.

7. U Kang, C. Tsourakakis, A. Appel, C. Faloutsos,]. Leskovec “HADI: Fast
diameter estimation and mining in massive graphs with Hadoop”.
CMU Dec 08

