
Secure Virtual Machine Execution under an Untrusted Management OS

Chunxiao Li

Department of EE
Princeton University

chunxiao@princeton.edu

Anand Raghunathan

School of ECE
Purdue University

raghunathan@purdue.edu

Niraj K. Jha

Department of EE
Princeton University
jha@princeton.edu

Abstract—Virtualization is a rapidly evolving technology that
can be used to provide a range of benefits to computing systems,
including improved resource utilization, software portability,
and reliability. For security-critical applications, it is highly
desirable to have a small trusted computing base (TCB),
since it minimizes the surface of attacks that could jeopardize
the security of the entire system. In traditional virtualization
architectures, the TCB for an application includes not only the
hardware and the virtual machine monitor (VMM), but also
the whole management operating system (OS) that contains
the device drivers and virtual machine (VM) management
functionality. For many applications, it is not acceptable to
trust this management OS, due to its large code base and
abundance of vulnerabilities.

In this paper, we address the problem of providing a secure
execution environment on a virtualized computing platform
under the assumption of an untrusted management OS. We
propose a secure virtualization architecture that provides a
secure run-time environment, network interface, and secondary
storage for a guest VM. The proposed architecture significantly
reduces the TCB of security-critical guest VMs, leading to
improved security in an untrusted management environment.
We have implemented a prototype of the proposed approach
using the Xen virtualization system, and demonstrated how it
can be used to facilitate secure remote computing services. We
evaluate the performance penalties incurred by the proposed
architecture, and demonstrate that the penalties are minimal.

Keywords-virtual machine; trusted computing base; memory
protection; cloud computing; computing as a service;

I. INTRODUCTION

Virtualization is an emerging technology that abstracts

the physical resources of a computing platform into many

separate logical resources or computing environments. Each

of the separated virtual computing environments is called

a virtual machine (VM). The virtualization environment al-

lows users to create, copy, save, read, modify, share, migrate

and roll back the execution state of VMs [1], which trims

administrative overhead and makes system administration

and management easier. However, the easier management

also gives rise to security concerns. If the management envi-

ronment is compromised, all the VMs can be easily copied

and modified. Furthermore, attacks from the management

environment (e.g., due to exploits of its vulnerabilities) can

Acknowledgment: This work was supported in part by NSF grant No.
CNS-0720110 and in part by NSF grant No. CNS-0914787.

easily bypass the security mechanisms present in guest VMs

due to the higher privilege level of the management OS.

Figure 1. Types of virtualization architectures

There are two basic types of virtualization architectures,

as shown in Fig. 1. In Type I virtualization architectures, the

virtual machine monitor (VMM) is just above the hardware

and intercepts all the communications between the VMs and

the hardware. There is a management VM on top of the

VMM, which manages other guest VMs, and is responsible

for most communications with the hardware. A popular

instance of this type of virtualization architecture is the Xen

system [2]. In Type II virtualization architectures, such as

VMware Player [3], the VMM runs as an application within

the host operating system (OS). The host OS is responsible

for providing I/O drivers and managing the guest VMs.

From a security point of view, both architectures raise the

question “How can the VM trust its execution environment,

which may be either malicious, or susceptible to vulnerabil-

ity exploits?” We elucidate this concern by describing two

concrete application scenarios where it arises.

• Computing-as-a-service and cloud computing have

gained increasing popularity in recent years. Services

like Amazon.com’s Elastic Computing Cloud (EC2)

[4] use virtualization technology to provide clients

with scalable computing capacities at low cost. An

image containing the applications, libraries, data, and

associated configuration settings is built as a VM and

executed on the service provider’s data centers. The

problem is how can they trust the VM execution

environment and be sure that the private data stored

there are safe enough.

• The ubiquitous computing community has proposed

the concept of storing the “working environment” of a

2010 IEEE 3rd International Conference on Cloud Computing

978-0-7695-4130-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CLOUD.2010.29

172

user on a portable storage device so that any computer

available to the user can be “personalized” to provide

the exact same look and feel as the user’s personal com-

puter (e.g., the SoulPad system developed at IBM [5]).

Virtualization can enable this concept by storing an OS

image together with applications and data as a VM on

a portable storage device. The user does not have to

bring a computer everywhere, instead, his VM can be

imported to the virtualization environment provided by

his collaborators or a third-party computing company.

In such a scenario, how can the user be assured of the

privacy of data in his VM if he wants to execute it on

an untrusted computer?

Generally, in order to ensure the trustworthiness of a

software system, we first determine the trusted computing

base (TCB) of that system. Then, we check the integrity of

its TCB and decide whether to trust it. In virtualization-based

architecture, while the hardware is inevitably in the TCB and

the VMM has a relatively small code base and is thus easy to

verify, a full-fledged OS – the OS in the management VM

or the host OS – cannot be trusted because (1) the sizes

of the source code base of a VMM and an OS are very

different, (2) the known and unknown vulnerabilities and

numerous potentially malicious applications running within

the management OS and the administrative interface of the

management OS are exposed more often to careless or even

malicious administrators.

In this paper, we mainly focus on Type I virtualization

architectures, and take Xen as a prototype for demonstration

– actually Amazon EC2 itself is a Xen-based infrastructure

[4]. We show how the management OS can be removed from

the TCB of the VM, thereby ensuring the data confidentiality

and integrity of a VM execution environment even under an

untrusted management OS.

II. RELATED WORK

The relationship between virtualization and security is a

paradox [6], which naturally divides the related research in

this field into two groups: virtualization for security and the

security of virtualization itself.

On the one hand, virtualization can be utilized to enhance

security. A lot of research studies [7], [8], [9], [10] utilize

virtualization to implement introspection from the secure

domain to the target domain. Terra [11] is another virtualiza-

tion architecture that allows many VMs that have different

security requirements to run independently without the threat

of interference from each other. Overshadow [12] and SP3

[13] rely on the underlying VMM (also called hypervisor)

to separate processes from untrusted guest OSs.

On the other hand, the security of virtualization itself is

a significant concern. In [1], security challenges in virtual

environments are summarized.

As indicated in [14], all the research studies that utilize

virtualization to enhance system security are based on one

assumption – that it provides stronger isolation between

guest OSs than the isolation between processes provided

by current OSs. The theoretical foundation of this belief is

that the hypervisor layer is smaller than the traditional OS,

and is thus easy to verify and has a higher potential to be

vulnerability-free. However, in a management VM, normally

the whole OS is included in the TCB of the virtualization

system, which severely undermines the foundation of smaller

VMMs and stronger isolation. Our work attempts to solve

the fundamental security challenge in virtualization posed

by the fact that the TCB of a guest VM is too large. We

propose a secure virtualization architecture that removes the

management OS from the TCB of a VM.

In the Terra [11] architecture, the property “root secure”

may incorrectly suggest that it has already achieved the goal

of excluding the management OS out of the TCB. Actually,

in this architecture, the management OS is just a simple

command interface and all the administrative work, e.g.,
to create, save, restore and shut down a VM, are actually

implemented in the VMM, which itself is trusted in Terra’s

threat model. Our proposed architecture is different from

Terra in that we exclude out of the TCB not only the ad-

ministration command interface (as Terra did) but also most

of the complex administrative functionalities themselves.

III. MOTIVATION

In this section, after a brief introduction to the Xen

architecture, we describe the potential threats to a VM in an

untrusted management environment, followed by a concrete

example of a successful attack that exploits the management

OS.

A. The Xen Architecture

The Xen hypervisor sits between the OS and the hardware.

The hypervisor, OS kernel and user applications are three

software layers in a Xen virtualization system. The mecha-

nism used for inter-VM communication is shared memory,

which can be established through either the grant table or

foreign mapping.

For each memory page that a VM wants to share with

another, a grant table entry is established. The entry includes

information on which domain the permissions of memory

access are granted to and what these permissions are. If

another domain wants to access this memory page, it makes

a hypercall and the hypervisor looks up the grant table to

make a decision regarding whether sharing is allowed.

The management OS (Dom0 in the Xen architecture)

can directly map memory pages from other domains into

its own address space, which is called foreign mapping.

This mapping can only be made by Dom0. During several

management operations, such as domain building, saving

and restoring, this mapping mechanism is used. Since Dom0

is considered to be untrusted in the proposed mechanism, we

173

need to clarify the role that Dom0 plays, as well as evaluate

the damage that can result if Dom0 is malicious.

The most important task performed by Dom0 is to handle

hardware devices. The device drivers are normally located in

Dom0. Another role played by Dom0 in the Xen architecture

is the task of VM management. However, in an untrusted

Dom0, these tasks must be supervised in order to ensure the

integrity and confidentiality of the guest VM, which is the

main objective of our research.

B. Security Threats to DomU from Untrusted Dom0

We first describe a scenario for the security threats de-

scribed in this subsection. Suppose a client is running a

guest VM on the remote virtualized computing platform

provided by a cloud computing company. The computation

in the VM is security-critical, and involves confidential

data of an enterprise and/or personal sensitive information.

The untrusted management domain, i.e., Dom0 in Xen, is

capable of undermining the confidentiality, integrity and the

availability of a DomU, as described next.

• Confidentiality: Dom0 may access any memory page of

DomU and read its contents. Also, Dom0 contains the

device drivers for I/O devices such as the network card

and hard disk, which endangers the privacy of the data

transmitted through the network and the data stored on

the hard disk.

• Integrity: For the same reason, Dom0 may access any

memory page of DomU and change its contents, as well

as modify the data transmitted through the network and

the data stored on the hard disk.

• Availability: Dom0 has the privilege to start and shut

down the other domains, and thus controls the availabil-

ity of all guest VMs and the applications that execute

within them.

C. A Concrete Attack Example

In the simplest scenario, we encrypt some plaintext in

a VM to ciphertext, and place the ciphertext on the hard

disk, so that we are not worried even if the hard disk

is lost or stolen. The keys are always located in system

memory. During normal system execution, we do not worry

much about memory safety. Under cold-boot attacks [15],

attackers, who can physically extract the memory chip from

the computer, can extract its contents. In a virtualized

computing environment, however, the memory contents are

saved to an image file by a simple “domain save” command

in Dom0. This file can be exploited to find the keys used

for data encryption without physical access to the system.

In our implementation, the user in DomU creates an

encrypted disk using the dm-crypt tools in Linux. While

DomU is executing, the administrator in Dom0 saves the

state of the VM to a memory image file. The file should

contain the keys used by the encryption algorithm used in

DomU. Although we do not know the exact location of

these keys, there are well-known techniques that can be

used to narrow down the possible locations. We used the

algorithm described in [15] to analyze a VM image file

of size 128MB and were able to successfully identify all

cryptographic keys in less than one second on a mainstream

desktop, as described in Section V. Once cryptographic keys

are leaked, all the ciphertext in the encrypted disk can be

decrypted, unknown to DomU.

The original cold-boot attack requires physical access to

the memory chip before the contents of the chip decay. These

attacks are effective, but difficult to implement because of

the physical access requirement and time restriction. How-

ever, in the virtualization scenario, it becomes so easy that

any adversary in control of Dom0 can launch a successful

attack.

Even if the administrator in Dom0 is not malicious,

some malicious software installed in Dom0, which has root

privileges, or a hacker who exploits some vulnerabilities in

the management OS, or even someone who, by chance, has

the image file of the memory contents of DomU, can easily

break into DomU and extract all the secret information from

the encrypted disk.

IV. METHODOLOGY

In this section, we analyze the security requirements,

outline the design of the proposed secure virtualization

architecture and then present the relevant details.

A. Security Requirements Analysis

In this paper, we consider the scenario of a client ex-

ecuting a security-critical VM on the remote virtualized

computing environment provided by a cloud computing

company. We assume that the small hypervisor layer is

verified and its integrity is assured using Trusted Computing

techniques [16]. However, the management VM Dom0 is

a complete OS and managed by the administrator. The

client does not trust Dom0 because of the existence of the

vulnerability window (between when a threat is identified

and when security vendors release patches), the security

holes of device drivers and careless or malicious system

administrators.

The objective of our work is to ensure the confidentiality

and integrity of a security-critical VM under an untrusted

management VM. We do not consider hardware attacks,

side-channel attacks and direct memory access (DMA) at-

tacks. Hardware and side-channel attacks require physical

access to the computers, which is quite challenging in

the cloud computing scenario. Defending against the DMA

attacks requires help from the input/output memory manage-

ment unit (IOMMU) [17], whose controlling code should

reside in the hypervisor.

To obtain a secure execution environment for a remote

computing VM under an untrusted Dom0, DomU should

have:

174

• A secure network interface between the client and
the server. The access control, input commands and

results returned all require a secure interface between

the client and the server. A technique that protects

the confidentiality and integrity of communication is

transport layer security (TLS) [18]. However, even if we

use TLS, Dom0 can still extract the TLS cryptographic

keys from the memory or virtual CPU (vCPU) registers,

which is prevented by the secure run-time environment

proposed in this paper.

• A secure run-time environment. This includes secure

vCPU state and secure memory, ensuring both confi-

dentiality and integrity. Dom0 must not be allowed to

access the sensitive information in the vCPU registers

and the memory of the security-critical VM. However,

the management of these resources by Dom0 is also

necessary. The mechanism for Dom0 to manage the
domains without knowing their contents is the focus
and main contribution of this paper.

• A secure secondary storage. Sensitive data need to be

stored in secondary storage, e.g., a hard disk, which is

provided by the remote computing platform.

Among the above three aspects, a secure run-time envi-

ronment is the most fundamental. On the one hand, there are

already solutions, as mentioned before, for secure network

interface and secure secondary storage. However, techniques

to secure the vCPU state and memory used by the guest VM

from the management VM have not been well-researched be-

fore. On the other hand, a secure run-time environment is the

basis for all the mechanisms needed to make the network and

storage secure: all the cryptographic algorithms and security

protocols actually reside in the run-time environment. The

keys used and the code executed cannot be well-protected

unless a secure run-time environment is established. The

attack described in Section III-C illustrated this clearly: even

if AES encryption is used for secure storage, the keys may be

extracted from an unprotected run-time environment. Hence,
in the rest of the paper, we will focus only on the design and
implementation of a secure run-time environment.

B. Design of a Secure Run-time Environment

In this subsection, we list a few key aspects involved

in the design of a secure run-time environment. A detailed

implementation is presented in the next section.

• Memory access from Dom0 to DomU using foreign

mapping is by default prohibited except for some

specific cases listed below. Therefore, all the shared

memory between DomU and Dom0 has to use the grant

table method, in which DomU initiates the granting and

Dom0 asks for access through hypercalls.

• During the execution of functions in which foreign

mapping has to be used, the memory page mappings are

monitored and controlled by the hypervisor layer. The

hypervisor makes sure that it monitors every memory

and vCPU access from Dom0 to DomU, and encrypts

all the memory pages and vCPU registers if they

involve any private information of DomU. Dom0 is

provided with an encrypted view of memory pages and

vCPU registers for the purpose of saving or restoring

state. Thus, the contents of these pages and registers

remain secret from Dom0.

• After the access of sensitive information in DomU

(in the encrypted view) or the execution of some

security-critical domain management tasks, the hyper-

visor checks the integrity of the run-time state of

DomU.

C. Details of the Secure Run-time Environment

In this section, we provide further details of how the

proposed secure run-time environment is implemented.

1) Domain Building and Shutdown: In the Xen archi-

tecture, domain building is managed by Dom0. We mainly

focus on the building of a paravirtualized VM, meaning that

the OS in guest VM must be modified to use hypercalls in-

stead of privileged instructions. Due to the paravirtualization,

the low-level interactions with the BIOS are not available in

the Xen environment [19].

Figure 2. New VM building process

The main steps for building a new VM in the Xen

architecture are shown in Fig. 2. Dom0 first loads the kernel

and the ramdisk (optionally) from the secondary storage,

which is the hard disk in our case. Then, the new memory

area is allocated to the new VM by Dom0. After that, using

foreign mapping, the kernel image is loaded into the new

VM memory. Next, Dom0 sets up the initial page tables for

the new VM. Finally, the new VM is launched after Dom0

releases all the foreign mappings of the new VM memory

area and sets up the vCPU registers.

In this process, if Dom0 is malicious, it may (1) launch

a denial-of-service (DoS) attack by refusing to load the

kernel, allocate the memory or start the VM, (2) maliciously

modify the kernel image of the new VM to insert rootkits

or other external code, (3) set up wrong initial page tables

175

to undermine the integrity of the new VM execution en-

vironment, (4) set up the wrong vCPU context (registers)

configuration to undermine the integrity of the new VM

execution environment, and (5) refuse to release the foreign

mappings of the new VM memory area so that it can read

that memory area later when the VM is running.

We are interested in defending against the attacks that

compromise privacy and integrity. Obviously, (2) (3) and (4)

may undermine the integrity of the VM execution environ-

ment and (5) may undermine the privacy of the environment.

Our solution is to perform the foreign mapping cleaning and

integrity check just before launching the new VM in the

hypervisor layer.

Foreign mapping cleaning is performed by the hypervisor

layer. It checks the page tables of Dom0 and makes sure

that none of the new VM memory pages are now mapped

to Dom0. It can be implemented either by going through all

the page table pages of Dom0, or more efficiently, as we

implemented, it can be realized by recording the pages that

are currently mapped by Dom0. Thus, if Dom0 refuses to

release some of the mappings, the list is not empty.

Integrity check is performed for the new VM kernel

and the vCPU context. The remote user is responsible for

providing a hash of the correct image of the VM kernel right

before the VM starts. Also, the vCPU context is checked for

integrity. Dom0 is supposed to use a hypercall for checking

the ready-to-launch VM. Upon receiving the hypercall, the

hypervisor layer performs the kernel and vCPU integrity

check.

During the domain shutdown, the hypervisor layer needs

to make sure that all the memory pages are cleared before

they are reallocated to a new domain.

2) Domain Run-time: During domain execution, the un-

trusted management domain, Dom0, uses the mechanism of

hypercalls to communicate with DomU. Given the secure

network interface and secure secondary storage discussed

earlier, we now focus on those hypercalls that are poten-

tially harmful to the confidentiality and integrity of DomU

memory content and vCPU context.

Figure 3. Intercepting the hypercalls between domains

The mechanisms that we use to secure the DomU run-

time environment, as shown in Fig. 3, are to intercept the

hypercalls made from Dom0 to DomU and (1) restrict the

use of some hypercalls, in a certain time window or in

the whole life cycle of the protected DomU, (2) provide

a different, but usable, result for some hypercalls, e.g.,
provide an encrypted view of a memory page when Dom0

uses foreign mapping hypercalls to access it, (3) check

the integrity of DomU state after some security-critical

hypercalls, and (4) design some new hypercalls for security

reasons.

We categorize the hypercalls that are used by Dom0 for

the management of DomU into three groups:

• Hypercalls that are harmful to the privacy and integrity

of DomU, but not necessary for DomU management.

Some hypercalls that can access the memory of DomU

are related to the functions of IOMMU and debugging.

These functions are not necessary in our scenario of a

remote computing environment with untrusted manage-

ment domain. These hypercalls should be prohibited.

• Hypercalls that are not harmful to the privacy and

integrity of DomU. Some hypercalls are just for man-

agement use and are not related to read or write to

the memory area or vCPU registers of DomU. These

hypercalls can be left unmodified.

• Hypercalls that are harmful to the privacy and integrity

of DomU, but necessary for its management. Some

hypercalls, such as those for foreign mapping and

getting or setting vCPU context, can harm DomU.

However, we cannot simply restrict the use of these

hypercalls because they are also necessary for the

normal management of DomU, e.g., to save or restore

the state of DomU.

For the third group, we discuss in detail the hypercalls

related to the memory and vCPU. Dom0 mainly uses these

hypercalls during the domain save or restore operations,

which are illustrated in Figs. 4 and 5, respectively.

First, we define the machine address and physical address.

Machine address is the real host memory address, which can

be understood by the physical processor. Physical address is

for each VM. The guest VM runs in an illusory contiguous

physical address space, which is most likely not contiguous

in the machine address space. There is a physical-to-machine

(p2m) mapping table stored in each VM, and a machine-to-

physical (m2p) mapping table stored in the hypervisor layer.

Another mechanism the Xen architecture uses for the

separation of VMs is the management of page tables. All the

page tables are managed by the hypervisor layer instead of

the VM itself (including Dom0). In order to map or unmap

a page (either a domestic mapping from its own domain

or a foreign mapping from DomU to Dom0), a hypercall

“page-table update” has to be made. The hypervisor layer is

responsible for the security check of whether this update is

legal. For example, a foreign mapping initiated from DomU

is not allowed.

176

Figure 4. Domain save process in the original and proposed virtualization
architecture

In the domain save process, Dom0 suspends the VM, and

maps the p2m table into its own memory space. An image

file to store the memory and vCPU state of DomU is then

created. After saving (writing) the p2m table in this image

file, Dom0 repeatedly maps and saves each of the memory

pages of the VM. Dom0 unmaps every memory page after

saving its contents in the image file, then makes a hypercall

to get the vCPU context and saves it in the same image file.

Finally, the original VM resumes execution.

In the domain restore process, Dom0 is responsible for

loading the image file and allocating the new memory area

(through the use of memory allocation hypercalls). Then,

Dom0 maps each page of the newly allocated memory, reads

the contents of the image file, and writes every page back to

memory. After loading and setting the vCPU context, Dom0

is now ready to launch the new VM.

In the proposed process of domain save and restore, we

insert some new functions into the original process for the

protection of (1) vCPU context privacy and integrity, (2) VM

memory privacy, (3) VM memory integrity, and (4) vCPU

and memory freshness.

• vCPU context privacy and integrity. We add the en-

cryption/decryption of vCPU context and a hash check.

During domain save, once Dom0 makes the hypercall to

get the vCPU context, the hypercall is intercepted. The

contents of the vCPU registers are first encrypted and

Figure 5. Domain restore process in the original and proposed virtualiza-
tion architecture

a keyed-hash is calculated, both of which are included

in the result of the hypercall. Hence, Dom0 can only

see the encrypted view of the vCPU registers and any

malicious modification of the context can be detected.

In the same way, the vCPU context is decrypted and

an integrity check scheduled during domain restore.

• VM memory privacy. Under an untrusted Dom0 sce-

nario, we cannot let the private information in VM

memory leak into Dom0. However, in some important

domain management operations, such as domain save

and restore, foreign mapping is necessary for acquiring

and restoring the VM state. We solve this problem by

intercepting the “page-table update” hypercall. For a

mapping hypercall, which maps a foreign VM page,

this page is encrypted first so that Dom0 only sees the

encrypted view of that page. Dom0 can then save this

encrypted view to the file image, without knowing the

actual contents. All the memory mappings/unmappings

are managed by the hypervisor instead of Dom0, so that

Dom0 cannot cheat by using aliasing or indirections.

• VM memory integrity. Integrity protection of the VM

memory is based on the simple fact that the memory

view of a VM should be unchanged from the time

just before domain save to the time just after domain

restore. We use the hypervisor layer to calculate a

hash of all memory pages just before domain save and

177

perform integrity check just after domain restore.

There are some further issues involving hash calcula-

tion and checking that deserve attention. The memory

views in save and restore are not exactly identical –

they are simply “functionally the same”: Dom0 may

allocate different regions of memory to the newly

restored DomU. Hence, in the new domain, the machine

addresses in all the page-table pages are changed to

new ones. And a simple hash calculation and check

mechanism does not work. The solution is the use of
the physical address instead of the machine address
during hashing. We translate the machine address to

physical address for every “page-table page.” After

the translation, the integrity check mechanism works

correctly.

• vCPU and memory freshness. To ensure the freshness

of the vCPU context and memory content and prevent

a replay attack, version information can be added to

the hash. To avoid a mix-and-match attack, which uses

memory pages from an old snapshot and vCPU registers

from another, the version information of both need to

be the same.

V. EXPERIMENTAL RESULTS

We implemented the proposed secure virtualization ar-

chitecture in the Xen virtualization system and evaluated

its performance penalties through execution-specific domain

operations as well as several benchmarks.

We used a PC equipped with a 2.53GHZ dual-core Intel

CPU and 2GB RAM, and employed Ubuntu Linux 8.04

and Xen 3.2.2 for the virtualization system. We varied the

memory size of DomU from 32MB to 256MB.

There are two parts to the performance measurement

experiments. The first part measures the execution time

of domain build, domain save and domain restore in both

the original Xen system and the modified system with the

proposed memory and vCPU protection. We measured the

time required for building, saving and restoring a DomU

with 64MB, 128MB and 256MB memory sizes.

Table I shows that the domain build time has an overhead

of 1.7× to 2.3×, the domain save time an overhead of 1.3×
to 1.5×, and the domain restore time an overhead of 1.7×
to 1.9×. The overhead may seem significant, however, note

that domain build only occurs once in the whole life cycle

of DomU and domain save/restore occur only when Dom0

needs to back up the state of DomU. These events may have

a frequency of once an hour or several hours, even once a

day. Hence, we believe that the overall overhead for the

proposed protection mechanism is quite acceptable.

The second part measures the performance of benchmarks

run in DomU of both the original and modified systems. We

ran several benchmarks in both the original Xen system and

the proposed secure virtualization system to quantify these

overheads. All the measurements were taken for a DomU

with 256MB memory.

The benchmarks used are as follows. Nbench is a port

of the BYTEmark benchmark to Linux/Unix platforms, and

is CPU-intensive. Using the PostgreSQL database, we next

exercised the open-source database benchmark (OSDB).

Two results are presented for multi-user information retrieval

(IR) and on-line transaction processing (OLTP) workloads,

both in tuples per second. Dbench is a file system benchmark

derived from NetBench. We used Dbench to measure the

throughput experienced by a single client.

From Table II, we can see that the overhead incurred by

the proposed enhancements to the Xen system is very small.

VI. CONCLUSION

In this paper, we proposed a virtualization architec-

ture to ensure a secure VM execution environment under

an untrusted management OS. The mechanism includes

a secure network interface, secure secondary storage and

most importantly, a secure run-time execution environment.

We implemented the secure run-time environment in the

Xen virtualization system. Using the proposed mechanism,

DomU is protected from the untrusted management domain

Dom0, while Dom0 can still carry out the normal domain

administrative tasks, such as domain build, domain save

and domain restore. Performance evaluation shows that the

overhead is mainly due to domain build, save and restore

operations, which occur only once or at a very low frequency

during the whole life cycle of DomU. The execution of

DomU remains almost the same in terms of performance,

with a slowdown of at most 1.06%.

We believe that using the proposed secure virtualization

architecture, even under an untrusted management OS, a

trusted computing environment can be created for a VM

which needs a high security level, with very small perfor-

mance penalties.

REFERENCES

[1] T. Garfinkel and M. Rosenblum, “When virtual is harder than
real: Security challenges in virtual machine based computing
environments,” in Proc. Conf. Hot Topics in Operating Sys-
tems, June 2005, pp. 20–25.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art
of virtualization,” in Proc. ACM Symp. Operating Systems
Principles, no. 5, Oct. 2003, pp. 164–177.

[3] “VMware Player,http://www.vmware.com/products/player.”

[4] “EC2, http://www.redhat.com/f/pdf/rhel/EC2 Ref Arch V1.pdf.”

[5] R. Caceres, C. Carter, C. Narayanaswami, and M. T. Raghu-
nath, “Reincarnating PCs with portable SoulPads,” in Proc.
ACM/USENIX MobiSys, 2005, pp. 65–78.

[6] M. Price and A. Partners, “The paradox of security in virtual
environments,” Computer, vol. 41, no. 11, pp. 22–28, 2008.

178

Table I
PERFORMANCE MEASUREMENT FOR DOMAIN BUILD, SAVE AND RESTORE

Time (s) 64M-ori 64M-mod 128M-ori 128M-mod 256M-ori 256M-mod
Domain build time (s) 0.210 0.347 0.220 0.402 0.225 0.527
Domain save time (s) 1.976 2.612 3.743 5.182 7.353 10.774
Domain restore time (s) 1.580 2.742 2.929 5.282 5.680 10.537

Table II
PERFORMANCE MEASUREMENT FOR OTHER BENCHMARKS

Benchmark Nbench Nbench Nbench OSDB-IR OSDB-OLTP Dbench
(memory index) (integer index) (floating point index) (tup/s) (tup/s) (MB/s)

Original 19.115 18.330 33.466 297.75 324.45 299.53
Modified 19.064 18.301 33.410 297.53 321.02 296.38
Overhead 0.27% 0.16% 0.17% 0.07% 1.06% 1.05%

[7] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
through VMM-based “out-of-the-box” semantic view recon-
struction,” in Proc. ACM Conf. Computer and Communica-
tions Security, Oct. 2007, pp. 128–138.

[8] B. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An
architecture for secure active monitoring using virtualization.”
in Proc. IEEE Symp. Security and Privacy, May 2008, pp.
233–247.

[9] N. L. Petroni, Jr. and M. Hicks, “Automated detection of
persistent kernel control-flow attacks,” in Proc. ACM Conf.
Computer and Communications Security, Oct. 2007, pp. 109–
115.

[10] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention
of kernel rootkits with VMM-based memory shadowing,” in
Proc. Int. Symp. Recent Advances in Intrusion Detection, Sep.
2008, pp. 1–20.

[11] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,
“Terra: A virtual machine-based platform for trusted comput-
ing,” in Proc. ACM Symp. Operating Systems Principles, Oct.
2003, pp. 193–206.

[12] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports,
“Overshadow: A virtualization-based approach to retrofitting
protection in commodity operating systems,” in Proc. Int.
Conf. Architectural Support for Programming Languages and
Operating Systems, Mar. 2008, pp. 2–13.

[13] J. Yang and K. G. Shin, “Using hypervisor to provide data
secrecy for user applications on a per-page basis,” in Proc.
ACM Int. Conf. Virtual Execution Environments, Mar. 2008,
pp. 71–80.

[14] P. Karger and D. Safford, “I/O for virtual machine monitors:
Security and performance issues,” IEEE Security & Privacy,
vol. 6, no. 5, pp. 16–23, Sept.-Oct. 2008.

[15] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. Calandrino, A. Feldman, J. Appelbaum, E. Felten, and
E. Foundation, “Lest we remember: Cold boot attacks on
encryption keys,” in Proc. Usenix Security Symp., July 2008,
pp. 45–60.

[16] “Trusted Platform Module (TPM) specifications,
https://www.trustedcomputinggroup.org/specs/TPM/.”

[17] M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis, L. van
Doorn, A. Mallick, J. Nakajima, and E. Wahlig, “Utilizing
IOMMUs for virtualization in Linux and Xen,” in Proc.
Ottawa Linux Symp., 2006.

[18] “The Transport Layer Security (TLS) Protocol Version 1.2,
http://tools.ietf.org/html/rfc5246.”

[19] D. Chisnall, The Definitive Guide to the Xen Hypervisor.
Prentice Hall, 2008.

179

