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ABSTRACT

Cloud computing is a disruptive trend that is changing the
way we use computers. The key underlying technology in
cloud infrastructures is virtualization — so much so that
many consider virtualization to be one of the key features
rather than simply an implementation detail. Unfortunately,
the use of virtualization is the source of a significant security
concern. Because multiple virtual machines run on the same
server and since the virtualization layer plays a considerable
role in the operation of a virtual machine, a malicious party
has the opportunity to attack the virtualization layer. A
successful attack would give the malicious party control over
the all-powerful virtualization layer, potentially compromis-
ing the confidentiality and integrity of the software and data
of any virtual machine. In this paper we propose removing
the virtualization layer, while retaining the key features en-
abled by virtualization. Our NoHype architecture, named
to indicate the removal of the hypervisor, addresses each of
the key roles of the virtualization layer: arbitrating access
to CPU, memory, and I/O devices, acting as a network de-
vice (e.g., Ethernet switch), and managing the starting and
stopping of guest virtual machines. Additionally, we show
that our NoHype architecture may indeed be “no hype” since
nearly all of the needed features to realize the NoHype ar-
chitecture are currently available as hardware extensions to
processors and 1/0 devices.
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1. INTRODUCTION

There is no doubt that “cloud computing” has tremendous
promise. The end user of a service running “in the cloud”
is unaware of how the infrastructure is architected — it just
works. The provider of that service (the cloud customer in
Fig. 1(a)) is able to dynamically provision infrastructure to
meet the currene demand by leasing resources from a host-
ing company (the cloud provider). The cloud provider can
leverage economies of scale to provide dynamic, on-demand,
infrastructure at a favorable cost.

While there is debate over the exact definition, the main
idea behind cloud computing, common to all approaches,
is enabling a virtual machine to run on any server. Since
there are many customers and many servers, the manage-
ment of the infrastructure must be highly automated — a
customer can request the creation (or removal) of a virtual
machine and without human intervention a virtual machine
is started (or stopped) on one of the servers. To take ad-
vantage of the economic benefits, the cloud providers use
multi-tenancy, where virtual machines from multiple cus-
tomers share a server.

Unfortunately, this multi-tenancy is the source of a major
security concern with cloud computing as it gives malicious
parties direct access to the server where their victim may
be executing in the cloud. The malicious party can actively
attack the virtualization layer. If successful, as many vul-
nerabilities have shown to be possible [1, 2, 3, 4, 5, 6], the
attacker has an elevated level of execution capabilities on
a system running other virtual machines. The malicious
party can then inspect the memory, exposing confidential
information such as encryption keys and customer data,
or even modify the software a virtual machine is running.
Even without compromising the hypervisor, multi-tenancy
exposes side-channels that can be used to learn confiden-
tial information [7]. These security risks make companies
hesitant to use hosted virtualized infrastructures [8].

In fact, if not for this security concern, running applica-
tions in the cloud can actually be more secure than when
run in private facilities. Commonly cited are the economic
benefits that the economies of scale provide to the cloud in-
frastructure providers [9]. There is a similar principle with
regards to security that is, however, not often discussed. In
many organizations, physical security is limited to a locked
closet which stores the servers in the company’s office. Since
cloud providers are served out of large data centers, there
are surveillance cameras, extra security personnel, and by
the very nature of the environment, the access is much more
controlled. That level of physical security is cost prohibitive



for a single organization, but when spread out across many,
it almost comes for free to the customer of the cloud. Sim-
ilarly, in a private organization, network security of servers
is commonly limited to a firewall. Cloud providers can in-
stall and maintain special intrusion detection (or prevention)
systems which inspect packets for matches to known attacks
that exploit bugs in commonly used software. As with physi-
cal security, these devices may be cost prohibitive for a single
organization but can be provided by the cloud provider for
a small cost.

Rather than attempting to make the virtualization layer
more secure by reducing its size or protecting it with addi-
tional hardware [10], we instead take the position that the
virtualization layer should be removed altogether. In this
paper we propose getting rid of the virtualization layer (the
hypervisor) running beneath each guest operating system
(OS) in order to make running a virtual machine in the cloud
as secure as running it in the customer’s private facilities —
and possibly even more secure. As a side benefit, removing
the active hypervisor removes the ‘virtualization tax’ which
is incurred when needing to invoke a hypervisor for many
operations. We argue that today’s virtualization technology
is used as a convenience, but is not necessary for what cloud
providers really want to achieve. We believe that the key
capabilities are the automation, which eases management of
the cloud infrastructure by enabling the provisioning of new
virtual machines on-the-fly, and multi-tenancy, which allows
the cloud provider to gain the financial benefits of sharing a
server.

To remove the virtualization layer, we present the NoHype
architecture, which addresses, and renders unnecessary, each
of the responsibilities of today’s hypervisors®. This archi-
tecture is an entire system solution combining processor
technology, 1/O technology, and software in order to real-
ize the same capabilities enabled by today’s virtualization
in a cloud infrastructure, yet done without an active virtu-
alization layer running under a potentially malicious guest
operating system. The main components of the architecture
revolve around resource isolation. The NoHype architecture
automatically dedicates resources to each guest VM, and the
guest VM has full control of these resource throughout its
runtime on the physical machine. The important features of
our architecture are:

e One VM per Core - Each processor core is dedicated
to a single VM. This prevents interference between dif-
ferent VMs, mitigates side-channels which exist with
shared resources (e.g., L1 cache), and simplifies billing,
in terms of discrete compute units®. Yet, multi-tenancy
is still possible as there are multiple cores on a chip.

e Memory Partitioning - Hardware-enforced parti-
tioning of physical memory ensures that each VM can
only access the assigned physical memory and only in
a fair manner.

e Dedicated Virtual I/O Devices - /0 device mod-
ifications to support virtualization enables each VM

"We will use the term hypervisor to mean hypervisor, VMM
(virtual machine monitor) or other similar virtualization
technology.

2A compute unit is a definition of a unit of computational re-
sources that the customer purchases, e.g.: 1GHz CPU core,
2GB of RAM and 160GB of disk space.
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to be given direct access to a dedicated (virtual) I/O
device. The memory management facilities along with
chipset support ensure that only the authorized VM
can access the memory-mapped I/O and only at a
given rate.

Removing the active virtualization layer brings significant
security benefits. Doing so comes at the cost of not being
able to (i) sell in extremely fine grain units (e.g., selling
1/8th of a core) and (ii) highly over-subscribe a physical
server (i.e., sell more resources than are available). How-
ever, we do not see either of these as a serious limitation.
As processors have increasingly many cores on them, the
granularity of a single core will become finer with each multi-
core processor generation (e.g., a single core in a 4-core de-
vice is 25% of the system’s compute power, in a 128-core
device, it’s less than 1% of the compute power and it is
doubtful applications have such consistent load that expan-
sion and contraction of compute units at a finer granularity
than core units would even make sense). Also, attempting
to over-subscribe a server is counter to the model of what
cloud computing provides. As opposed to private infras-
tructures where the goal is to maximize utilization of the
server by using techniques that adjust the allocation of re-
sources across virtual machines based on current usage [11],
in cloud computing the customer is promised the ability to
use a certain amount of resources. The customer chooses
the amount of resources it needs to match its application. If
the customer needs some resources, it pays for them, if not,
the cloud provider can assign them to another customer —
but does not sell to another customer the resources already
promised to a customer. That said, we do not require that
the entire cloud infrastructure use the NoHype architecture
— a provider may offer a discount to customers willing to
forgo either the security benefits or the resource guarantees,
enabling the provider to over-subscribe a sub-set of servers.

The NoHype name comes from the radical idea of remov-
ing the hypervisor. It also implies that it is not hype, but
indeed implementable. In this paper, we also discuss cur-
rently available hardware and show that nearly all of what is
needed to realize the NoHype architecture is available from
computer hardware vendors. As such, we are proposing a
commercially viable solution. This does not mean that the
current architectures are ideal — we also wish to stimulate
the architecture community to think along the lines of ad-
ditional hardware features that extend the concepts behind
NoHype to increase performance and achieve an even greater
level of security.

The remainder of the paper is organized as follows. In Sec-
tion 2 we discuss the security threats that arise from the use
of virtualization and formulate our threat model. In Section
3 we discuss the role of the virtualization layer. In Section
4 we propose our NoHype architecture which removes the
virtualization layer. We then discuss the security benefits
of moving to a cloud infrastructure which uses NoHype in
Section 5. Then in Section 6 we take a look at currently
available hardware technology and assess the possibility of
realizing the NoHype architecture. Finally, we wrap up with
related work in Section 7 and conclude in Section 8.

2. SECURITY THREATS

The problem we are addressing with the NoHype archi-
tecture is that of multi-tenancy in a hosted (public) cloud



environment. Essentially, the goal is to make running a vir-
tual machine in the cloud as secure as running it in the cus-
tomer’s private facilities. In this section we briefly explain
why this is not the case with today’s virtualization-based
cloud architecture. We also detail our threat model.

2.1 Concerns with Current Virtualization

Shown in Figure 1(a) is a diagram depicting the cloud cus-
tomer’s interaction with the cloud provider to control VM
setup as well as an end user then using the service offered
by the cloud customer. The cloud customer makes a request
with a description of the VM (e.g., provides a disk image
with the desired OS) to the cloud provider’s cloud man-
ager. The cloud manager chooses a server to host the VM,
fetches the image from storage, and forwards the request to
the control software running on the server to be handled lo-
cally. Once the cloud customer’s VM is running, end users
can begin using the cloud customer’s service (end users can
be external users, as in the case of web service, or internal
customers, as in the case where the cloud is used to expand
an internal IT infrastructure). Shown in Figure 1(b) is a
generic diagram of one of the servers in today’s infrastruc-
tures — consisting of a hypervisor along with several virtual
machines. The virtual machine labeled “root context” is a
special virtual machine which contains control software that
interacts with the cloud manager and has elevated privileges
that, for example, allow it to access devices and control the
startup and shutdown of virtual machines. As such, it is
considered part of the virtualization layer (along with the
hypervisor)3. The virtual machines labeled VM1 and VM2
are the guest virtual machines running on the system and
can be unmodified as the hypervisor provides the abstrac-
tion that they are running directly on the processor — in a
hosted infrastructure, these would be the customer’s virtual
machines.

VM1 and VM2 should be completely isolated from one
another. They should not be able to (i) inspect each other’s
data or software, (ii) modify each other’s data or software,
or (iii) affect the availability of each other (either by hog-
ging resources or triggering extra work to be done by each
other). As the virtualization layer is privileged software in
charge of administering the physical system, a compromised
virtualization layer can affect the running VMs. As it man-
ages the virtual to physical mapping of memory addresses,
confidential data may be exposed or the executable or data
can be modified. As it manages the scheduling of VMs, a
virtual machine can be interrupted (switching to the hy-
pervisor’s code) — exposing the current registers to inspec-
tion and modification, and control flow modification (e.g.,
by making the virtual machine return to a different location
in the executable).

Unfortunately, securing the virtualization layer (hypervi-
sor plus root context) is getting more difficult as hypervisors
become more complex. Xen’s hypervisor is about 100k lines
of code and the dom0 kernel can be 1500k lines of code [12].
While the size of VMWare’s solution is not publicly avail-
able, it is likely to match or exceed Xen’s size. This com-
plexity makes the current virtualization solutions difficult
to verify and vulnerable to attacks — numerous vulnerabil-
ities have already been shown in [1, 2, 3, 4, 5, 6, 7]. As

3Note that the functionality of the “root context” could be
included in the hypervisor for performance benefits. That
has no impact on our argument.
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the virtualization layer is complex, having many responsi-
bilities as discussed in Section 3, we fully expect many new
vulnerabilities to emerge.

To exploit one of these vulnerabilities, an attacker needs
only to gain access to a guest OS and run software that can
attack the hypervisor or root context (via the hypervisor) —
since the guest OS interacts with both for many functions,
there is a large attack surface. Getting access to a guest
OS is simple as the malicious party can lease a VM directly
from the cloud provider. Further, if the attacker is targeting
a specific party (e.g., company A wanting to disrupt its com-
petitor, company B), it can check whether its VM is located
on the same physical server as the targeted victim’s VM
using network-based co-residence checks such as matching
small packet round-trip times (between the attacker’s VM
and the victim’s VM) and numerically close IP addresses [7].

To keep a guest VM from being able to exploit the vulnera-
bilities of the hypervisor, in the NoHype architecture we pro-
pose removing the hypervisor completely, as shown in Figure
1(c), by removing extraneous functionality not needed in the
cloud computing scenario and by transferring some function-
ality to virtualization-aware hardware and firmware. We
acknowledge that the hardware and firmware may not be
completely free of bugs, however, we feel that the extensive
testing and relatively non-malleable nature of the hardware
and firmware configurations (when compared to software)
makes it more difficult to attack. Of course, we will need to
retain system management software used to start and stop
VMs at the behest of the cloud manager. This software will
be privileged, however to attack it will require going through
the cloud manager first — guest VMs cannot directly invoke
system management software in our NoHype architecture.

2.2 Threat Model

First, we assume the cloud provider is not malicious. The
cloud provider’s business model centers around providing
the hosted infrastructure and any purposeful deviation from
the stated service agreements would effectively kill its rep-
utation and shut down its business. To that end, we as-
sume that sufficient physical security controls are employed
to prevent hardware attacks (e.g., probing on the memory
buses of physical servers) through surveillance cameras and
restricted access to the physical data center facilities.

Second, we make no assumptions about security of guest
operating systems. The cloud provider can restrict what
OS the customer can run, but even that OS can have secu-
rity holes. Therefore, we simply assume customers can run
whatever software they desire.

Third, the security and correctness of the cloud manage-
ment software is out of scope for this paper — we assume it is
secure. The cloud management software runs on dedicated
servers and is the interface that the cloud customers use to
request and relinquish resources. From this, we also assume
the system management software (system manager shown
in Figure 1(c) and core managers) running on each server
is also secure as the only communication it has is with the
cloud management software. The guest VMs are isolated
from it (no shared memory, disk or network), and do not
interact with it.

3. THE VIRTUALIZATION LAYER’S ROLE

We propose the NoHype architecture which removes the
virtualization layer in the multi-tenant server setting. To
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Figure 1: (a) High-level view of the cloud customer’s interaction with the cloud provider’s management to
start a VM and the end user’s interaction with the service offered by the cloud customer (a web service in
this case). (b) Generic virtualization of one server — arrows indicate interaction between the guest OS and
hypervisor, host OS and the hypervisor, guest OS and the host OS (via the hypervisor), and the host OS
and the I/O devices. (c) A server in the NoHype architecture after the removal of the hypervisor: the direct
interaction between VMs and management software is removed.

better understand the implications of this proposal, we need
to first understand the role the virtualization layer plays in
today’s technology. Below, we discuss the many functions
of today’s virtualization layers (as used in cloud infrastruc-
tures).

Scheduling Virtual Machines : Since in today’s typi-
cal virtualized environment, multiple virtual machines are
running on a single processor, the hypervisor needs to ar-
bitrate the access to the processor cycles. Much as an OS
controls the CPU allocation of running processes, the hy-
pervisor controls the CPU allocation of running virtual ma-
chines. Whenever a timer expires, /O is performed, or a
VM exit occurs, the hypervisor’s scheduler routine is run to
decide which VM to run next.

Memory Management : The hypervisor takes care of
managing the physical memory available on the system. Mem-
ory is a limited resource which the hypervisor needs to ar-
bitrate and share among the guest VMs. To help with the
illusion that each guest VM has its own physical memory,
the hypervisor presents each guest VM with its guest phys-
ical memory. In order to maximize utilization across all of
the VMs, the hypervisor can coax one VM to page some
memory to disk in order to be able to allocate that physical
memory to another VM [11]. The hypervisor then maps the
guest physical memory to the host physical memory which
is the actual physical memory available. Through this re-
mapping of memory, the hypervisor is able to achieve isola-
tion between the guest VMs. Each VM thinks that it has
some physical memory, the guest physical memory, and is
only able to access that memory. This prevents VMs from
accessing the memory of other VMs.

Emulating I/O Devices and Arbitrating Access to
them : Access to the physical devices is essential as the
I/0 of the system is how a program interacts with the real
world. Whether sending packets to a remote computer, or
writing to storage, programs require 1/O. As the machine
is shared, the virtualization layer must arbitrate accesses
to each device. Additionally, the virtualization layer can
present a generic view of the underlying device rather than
the actual device in order to enable a virtual machine to run
on servers with equivalent but different devices. In this sce-
nario, the root context virtual machine runs the real device
drivers and emulates the generic device the VMs access.

Network Packet Processing (switching, NAT, and
access control) : VM-to-VM communication is essential to
enable communication between the services running inside
the VMs. Since VMs can run on the same server, VM-to-
VM communication may not need to go through the cloud
provider’s network. Because of this, modern virtualization
technology typically runs a software Ethernet switch in the
root context virtual machine with similar functionality as
separate hardware switches would have [13].

Starting/Stopping/Migrating Virtual Machines: The
hypervisor emulates the underlying hardware, giving each
virtual machine the view that it is running on its own ma-
chine. Management software in the root context can inter-
act with the hypervisor to create a new virtual machine and
control the power to the virtual machine (e.g., power on or
reset). The hypervisor emulates all of the aspects of the
server, enabling the OS to run through its boot sequence.
The management software provides an interface to a central
cloud manager which controls the creation and placement
of virtual machines based on requests from customers, typ-



ically through a web interface. The management software
may also be involved in live migration — the process of mov-
ing a running VM from one physical server to another while
maintaining the appearance that the VM is continuously ac-
tive to those that are interacting with it.

4. NOHYPE ARCHITECTURE: REMOVING

THE HYPERVISOR

Our NoHype architecture removes the virtualization layer
yet retains the management capabilities needed by cloud in-
frastructures. To do this, recall the major functions of the
virtualization layer: arbitrating access to memory, CPU, and
devices, providing important network functionality, and con-
trolling the execution of virtual machines. Our architecture,
shown in Figure 2, addresses each of these issues in order to
remove the virtualization layer. Note that the cloud archi-
tecture remains unchanged, where the servers in Figure 1(a)
are now NoHype-enabled servers.

The main point is that each of the guest VMs runs directly
on the hardware without an underlying active hypervisor.
Of course we cannot remove management software com-
pletely — there is the need for a management entity that can
start and stop a virtual machine based on requests from the
cloud provider’s management software. Unlike today’s vir-
tualization architectures, in the NoHype architecture, once
a VM is started it runs uninterrupted and has direct access
to devices. The guest OS does not interact with any man-
agement software which is on the server and there are no
tasks that a virtualization layer must do while the VM is
running. In the following sub-sections we will discuss each
of the roles of a typical hypervisor, and how the NoHype
architecture removes the need for it.

4.1 CPU: One VM per core

In the NoHype architecture, each core can run only one
VM. That is, cores are not shared among different guest
VMs, which removes the need for the active VM schedul-
ing done by the hypervisor. As an added benefit, dedicat-
ing a core to a single VM eliminates the potential software
cache-based side channel which exists when sharing an L1
cache [14, 15].

Dedicating a core to each VM may not seem reasonable,
as many associate virtualization with maxing out resources
on each physical server to run as many VMs on it as possi-
ble. However, we believe that is counter to (i) the trend in
computing towards multi-core, and (ii) the cloud computing
model. The trend in processors is to increase the number of
cores on the chip with each generation (as opposed to using
clock frequency as the main source of performance improve-
ments). Already, 8-core devices are available today [16] and
there are predictions of 16-core devices becoming available in
the next few years [17]4. With each generation, the number
of VMs a server can support would grow with the number
of cores and sharing of cores to support more VMs will not
be necessary.

Furthermore, we view running extra VMs to fill in for
idle VMs (i.e., over-subscribing) to be counter to the model
of cloud computing. The cloud infrastructure is dynamic
in nature and the number of virtual machines needed by

4We're referring to server class processors. Network proces-
sors and other specialized chips have on the order of 100
cores already.
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the customer can be scaled with the demand of the applica-
tion. Therefore, idleness is handled by the customer by shut-
ting down some of its virtual machines, instead of the cloud
provider over-subscribing. While such over-subscribing can
be done at a discount for customers who do not value se-
curity, it may not be necessary for customers who demand
Secure Cloud Computing, especially with tens or hundreds
of cores in future many-core chips.

4.2 Memory: Hardware support for
partitioning and enforcing fairness

Unlike the processor, which is already moving toward di-
visible units, memory is still a unified resource. In the No-
Hype architecture, we propose using partitioning of physical
memory. Here, we capitalize on the fact that modern servers
are supporting more and more RAM — 256GB is not unheard
of [18].

The ideal way to partition memory is to give each guest
OS a view of memory where the OS has a dedicated and
guaranteed fraction of physical memory (the guest physical
memory) on the host system. Each VM can be assigned a
different amount as decided by the customer when request-
ing a new VM to be started — any ‘underutilization’ is within
each VM based on the customer requesting, and paying for,
more than was needed. Given a portion of the memory,
the OS will then be able to manage its own memory as it
does today (managing the mapping from virtual memory
locations to physical memory locations and swapping pages
to/from disk as needed). Hardware support in the proces-
sor then performs the mapping between the guest physi-
cal memory address and the host physical memory address
and restricts memory operations to the assigned range. In
Figure 2, this responsibility falls to the multi-core memory
controller (MMC) and the hardware page table mechanisms
(inside each core) which will have built-in support for per-
forming these re-mappings.

Not only must access to memory be partitioned, it must
be fair. In the context of multi-tenant servers, rather than
optimizing for memory bus utilization, the MMC must be
designed for providing fairness among each of the VMs. As
there can only be one VM assigned to a core, the MMC
can instead provide fairness among each of the cores. This
greatly simplifies the MMC as it can be designed for the
number of cores the device has, rather than the number of
VMs that may run on the system (which in traditional vir-
tualization is undetermined and variable, and can be many
more times than the number of cores). Including fairness
in the multi-core memory controller and running one VM
per core creates a system where one cloud customer’s VM is
greatly limited in how it can affect the performance of other
cloud customers’ VMs.

4.3 Devices: Per-VM virtualized devices and
rate-limited I/0

An additional aspect of the physical system that needs
to be partitioned is the access to I/O devices. In today’s
virtualization, operating systems interact with virtualized
devices in the virtualization layer. This hides the details of
the actual device and also allows the hypervisor to arbitrate
access to the real device. Therefore, when the guest oper-
ating systems tries to access a device, this causes a switch
over to the hypervisor and then to the root context VM.
In the NoHype architecture, each guest operating system is
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Figure 2: The NoHype system architecture.

assigned its own physical device and given direct access to
it.

Of course, this relies on the assumption that there are
enough devices to assign at least one per virtual machine.
We believe that the view of multiple physical devices should
be realized by the device itself supporting virtualization —
that is, the device would be a single physical device, but tell
the system that it is N separate devices. Each VM will in-
teract only with the virtual device(s) assigned to it. As seen
in Figure 2, a virtual device can have one or more queues
dedicated to it. This forms the interface that is seen by the
associated VM. The primary devices needed in a cloud com-
puting scenario are the network interface card (NIC) and
the disk. Other devices, such as graphics processing units
(GPUs) could also be virtualized, thus removing a need for
having N separate devices.

Providing this view requires some support in the MMC
and 1/O MMU?®. For writes/reads to/from the device initi-
ated by the cores, each device will be mapped to a different
range in memory (as is done today) and each would be al-
lowed to access only its memory ranges. This would enable
the guest OS to interact directly (and only) with its assigned
devices. From the device side, the I/O MMU would enforce
the DMA to/from memory, so a device assigned to one core
would only be able to access that core’s memory range. For
interrupts, since each VM will be assigned dedicated access
to a given device, the interrupts associated with that de-
vice will be assigned to the guest virtual machine such that
when an interrupt occurs, the guest OS handles it, not the
virtualization layer.

One complication introduced by enabling direct access to
devices is the bandwidth of the shared I/O bus (e.g., PCle),
is limited. When all device accesses go through the virtual-

’I/O MMU - Input/Output Memory Management Unit is
responsible for enforcing memory protection for transactions
coming from I/O devices.
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ization layer, the single piece of software can arbitrate access
and prevent any single VM from overloading the shared bus.
However, giving each VM the ability to access the devices
directly means that there is no ability for software to pre-
vent a VM from overloading the I/O bus. As such, in the
NoHype architecture rate-limited access to each I/O bus is
achieved via a flow-control mechanism where the I/O de-
vice controls the rate of transmission. Each VM’s assigned
device is configured with the rate at which the device can
be accessed by the VM. The device uses this to limit the
amount of data it sends over the peripheral bus and uses a
feedback signal to limit the amount of data sent to it by the
1/0 MMU.

4.4 Networking: Do networking in the
network, not on the server

In the NoHype architecture, we argue that the virtual-
ization layer should be removed and instead its function-
ality should be provided through modifications to system
components. For networking, this means that the Ether-
net switches in the data center network should perform the
switching and security functions, not a software switch in
the virtualization layer. This is consistent with giving VMs
direct access to the network interfaces — because they bypass
the virtualization layer, the software Ethernet switch is also
bypassed. Doing so has numerous benefits: (i) it simplifies
management as it removes an extra type of switch and layer
in the switch hierarchy, (ii) it frees up the processor on the
server as it no longer has to perform, in software, Ethernet
switching for an increasingly large number of VMs, and (iii)
it allows the use of all of the features of the Ethernet switch,
not just the ones also supported by the software switch.

Further, we argue that the software Ethernet switch is
not doing anything special. Instead, it is merely used as
an initial solution that enables using the Ethernet switches
that are currently available. These switches are not designed



for virtualized infrastructures, but instead designed for en-
terprise networks. For example, because of its history as a
shared medium, Ethernet switches drop packets that would
be forwarded out of the same port as they arrived — a situ-
ation which would occur in virtualized infrastructures when
two communicating VMs are located on the same server.
Integrating support into hardware Ethernet switches for ca-
pabilities such as allowing a packet to be forwarded out of
the same port as it was received would eliminate the need
for the software switch.

While one may argue that requiring packets to go to the
dedicated Ethernet switch has performance limitations, we
note that this is only the case for the special situation of com-
munication between two VMs located on the same server.
In the cloud environment, the customers intended use of
VMs is not known to the cloud provider. Making assump-
tions about the amount of traffic between co-resident VMs
is equivalent to attempting to over subscribe the system,
which we argue is not a good idea as the customer is pay-
ing for guaranteed resource usage. By not over subscribing,
the peripheral bus bandwidth and bandwidth from the NIC
to the top-of-rack switches must be provisioned to be able
to support the guaranteed traffic bandwidth. With the soft-
ware Ethernet switch, latency will be reduced for co-resident
VM communication. However, it incurs the extra latency of
going through an extra, lower performance (since it’s in soft-
ware), switch for all other packets. Instead, by bypassing
the software Ethernet switch we are providing better av-
erage latency. While the cloud provider could attempt to
maximize this situation by placing the VMs from a given
customer on a single server, doing so comes at the cost of
increasing the impact that a single server failure will have
on that customer.

4.5 Starting/Stopping/Migrating Virtual
Machines: Decouple VM management
from VM operation

In the NoHype architecture we removed the hypervisor,
yet we still need the ability to start and stop virtual ma-
chines on demand. To do this, we decouple the VM man-
agement from the VM operation — the management code is
active before a VM is started and after it is stopped, but dur-
ing the life of the VM, the guest OS never interacts with the
management code on the core, or on the server (i.e., with the
system manager running on a separate core). When a server
starts up, one core is randomly selected as the bootstrap pro-
cessor, as is done in today’s multi-core systems. The code
that starts executing on that core is the trusted NoHype
system manager®. The system manager initially starts up
in hyper-privileged mode to setup the server. It is then re-
sponsible for accepting commands from the cloud manager
software (via its network interface) and issuing commands
to individual cores to start/stop guest VMs via the inter-
processor interrupts (IPIs). The sending, and masking, of
IPIs is controlled through memory-mapped registers of the
core’s local APIC”. The memory management can be used
to restrict the access to these memory regions to only soft-
ware running in hyper-privileged mode, and therefore pre-

5The whole system manager does not have to be trusted,
but for clarity of presentation and space reasons we will not
explore issues of trust of the system manager here and hence
we make this simplifying statement.

"APIC is the Advanced Programmable Interrupt Controller.
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venting VMs from issuing or masking IPIs. Upon receiving
an IPI, the core will jump to a predefined location to begin
executing the core manager code to handle the VM man-
agement. Figure 3 summarizes the actual procedures for
starting and stopping VMs, with detailed description in the
following paragraphs.

Starting a VM: Before a VM is started, the system man-
ager must receive a command from the cloud manager. The
instructions to the cloud manager are issued by the cus-
tomer who specifies how many VMs and of what type he or
she wants. The cloud manger then provides both a descrip-
tion of the VM (e.g., amount of memory it is assigned) and
the location of the disk image to the system manager. Next,
the system manager maps the to-be-assigned VM’s memory
and disk into its space to allow the manager to access the
resources and initialize them. The disk image is then down-
loaded by the manager and stored on the local disk and the
memory assigned to the core allocated to this VM is zeroed
out. This brings in the guest OS image into the VM. Next,
the to-be-assigned VM’s disk and memory are un-mapped
from the system manager’s space so it no longer has access
to them. Finally a ‘start’ inter-processor interrupt (IPI) is
issued to the core where the VM is to start. Upon receiv-
ing a start IPI the core comes online and starts executing
code which is stored at a predefined location. The code that
executes is the core manager which starts running in the
hyper-privileged mode and initializes the core (sets up the
memory mapping and maps the virtual NIC and disk de-
vices). To start the guest OS, the core manager performs a
VM exit which switches the core out of the hyper-privileged
mode and starts the execution of the guest OS from the im-
age now stored locally on the disk. On bootup the guest
OS reads the correct system parameters (e.g. the amount of
memory that it has been assigned) and starts execution.

Stopping a VM: A guest OS can exit when a stop com-
mand is issued by the system manager (e.g., the system man-
ager receives a message from the cloud manager that the
customer does not need the VM anymore or the instance-
hour(s) purchased by the customer have been used up). In
this situation, the system manager sends a ‘stop’ IPI to the
core running the VM that is to be shut down. This inter-
rupt causes the core to switch to the hyper-privileged mode
and jump to a predefined code location in the core man-
ager’s code. Next, the core manager optionally zeros out
the memory space assigned to the VM, and potentially the
assigned disk space if the customer’s VM uploads its data
to some storage before termination. The core manager also
optionally saves the disk image of the VM, depending on
the Service Level Agreement (SLA) for continuing service of
this VM at a later time. Finally, the core manager puts the
core in sleep mode (to wait for the next start IPI) and the
system manager notifies the cloud manager of completion.

Aborting a VM: A guest OS can be aborted when the
guest OS performs an illegal operation (e.g., trying to ac-
cess memory not assigned to it)®. An illegal operation will
cause a trap, which in turn causes entrance into the hyper-
privileged mode and execution of code located at a prede-
fined location in the core manager. At this point, the core

8Tllegal operations also include the use of some processor
instructions, which may require the OS to be altered. For
example, we do not support nested virtualization, so any
attempts to do so by the OS would be illegal.
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Figure 3: Outline of steps used to start, stop and abort a VM.

manager sends an ‘end’ IPI to the system manager to in-
form the system manager that the VM exited abnormally.
Optionally, the core manager can zero out the memory and
the disk to prevent data leaks. The memory and I/O is
un-mapped. The core is then put into sleep mode (waiting
for a start IPI) and the system manager notifies the cloud
manager of the aborted VM’s status change.

Live Migration of a VM: A live migration operation is
initiated by the cloud manager, which instructs the system
manager on the source server to migrate a particular VM
to a given target server. In a simplistic implementation, the
system manager would send a ‘migrate’ IPI to a core on
which the VM is running. The interrupt handler located
in the core manager would stop the execution of the VM,
capture the entire state of the VM, and hash and encrypt
it. The system manager would then take the state, send it
to the target server where the system manager would send
an IPI to the core manager, which would check the hash
and decrypt the state, re-start the new VM and continue
execution.

Of course, this process can take a while and in order to
minimize downtime, optimizations using iterative approaches
have been developed [19]. In these approaches, a current
snapshot is taken, but the VM is not stopped. When the
state is done transferring, the difference from the current
snapshot and the previous snapshot is sent. The process
may be repeated until the difference is sufficiently small to
minimize actual downtime. In NoHype, we have the mem-
ory management unit track which pages have been modi-
fied. This enables the system manager to periodically send
an IPI to obtain only the differences (for the first time ac-
cessing it, the difference will be a comparison to when the
VM started, so will be an entire snapshot). With this, we do
not introduce a hypervisor which is actively involved. For
each iteration, the system manager forwards any data to the
target server — on the target server the system manager for-
wards data to the core manager, the core manager updates
the memory, disk and other state it receives. The last step
is for the core manager on the source server to send one
last set of differences, shutting down the VM on the last
‘migrate’ IPI. After all the state is replicated on the target
server, the system manager on the target sends a ‘start’ IPI
to start the VM. It should be noted that while the downtime
can be reduced from what would be seen with the simplis-
tic approach, it cannot be eliminated altogether. In Xen,
this may range from 60ms for an ideal application to 3.5s
for a non-ideal case [19]. The nature of cloud computing
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makes it such that (i) how long the downtime will actually
be for a given VM cannot be known, and (ii) the downtime
the customer is willing to tolerate is not known. As such,
an alternate approach would be to involve the customer in
the process, enabling them to gracefully ‘drain’ any ongoing
work or perform migration themselves [20].

For all four actions, during the runtime of the guest OS,
the guest OS does not invoke either the core manager or the
system manager. Even during a live migration, no action the
guest OS performs causes any management software to run
— each iteration is initiated by the system manager. Hence,
the guest OS has no opportunity to directly corrupt these
trusted software components. Interaction with the cloud
manager is from servers external to the cloud infrastructure
(i.e., the customer’s server). Securing this interaction is not
the focus of this paper.

S. SECURITY BENEFITS OF NOHYPE

Because of the numerous benefits that hosted cloud infras-
tructures provide, many organizations want to use the cloud.
However, concerns over security are holding some of them
back. The NoHype architecture targets these concerns, cre-
ating an architecture where customers are given comparable
security to running their VMs in their own virtualized in-
frastructure — and even improved security when considering
the extra physical security and protection against malware
that cloud providers can provide.

To achieve a comparable level of security, no VM should
be able to (i) affect the availability of another VM, (ii) access
the data/software of another VM (either to read or modify),
or (iii) learn confidential information through side channels.
Note that this does not mean that the cloud customer is com-
pletely protected, as vulnerabilities in the cloud customer’s
own applications and operating system could still be present
— end users can attack a vulnerable server independent of
whether it is running in the cloud or not.

Availability : Availability can be attacked in one of three
ways in current hypervisor-based virtualization architectures—
(i) altering the hypervisor’s scheduling of VMs, (ii) inter-
rupting a core running a VM, or (iii) performing extraor-
dinary amounts of memory or I/O reads/writes to gain a
disproportionate share of the bus and therefore affect the
performance of another VM. By dedicating a core to a single
VM and removing the hypervisor from making any schedul-
ing decisions, we eliminate the first attack. With hardware
masking for inter-processor and device interrupts, there is no
possible way to interrupt another VM, eliminating the sec-



ond attack. Through additions to the mutli-core memory
controller for providing fairness [21] and through the chipset
to rate-limit access to I/O, we eliminate the third attack.
As such, with the NoHype architecture, a VM has no ability
to disrupt the execution of another VM.

Confidentiality /integrity of data and software : In
order to modify or inspect another VM’s software or data,
one would need to have access to either registers or physical
memory. Since cores are not shared and since there is no
hypervisor that runs during the entire lifetime of the virtual
machine, there is no possible way to access the registers.
Memory access violations are also mitigated. Since the No-
Hype architecture enforces memory accesses in hardware,
the only way a VM could access physical memory outside
of the assigned range would be to alter the tables specify-
ing the mapping of guest physical addresses to host physical
addresses. To do so would require compromising the sys-
tem manager software and altering the code performing the
start/stop functions. This would first require compromising
the cloud manager, which we assume is trusted, as the sys-
tem manager only interacts with the cloud manager and the
core managers, and is isolated from the guest VMs.

Side-channels : Side-channels exist whenever resources are
shared among multiple pieces of software. Ignoring any side-
channels that are based on physical analysis (e.g., examin-
ing power usage), which falls outside of our threat model,
side-channels are typically based on the timing of opera-
tions (e.g., hits in caches are shorter than misses, so one can
determine if a particular cache line was accessed by tim-
ing an access to a specific memory location). While com-
pletely eliminating side-channels is a near impossible feat
for a shared infrastructure, reducing them to be of little use
is possible. In the NoHype architecture, since L1 caches are
not shared, some of the most damaging attacks to date have
been eliminated (using cache-based side-channel attacks to
infer a cryptographic key) [22]. Since NoHype provides fair
access to memory [21] and rate-limited accesses to I/0, a
bandwidth-based side channel is likely very limited in each
of those cases as well.

6. CURRENT HARDWARE SUPPORT

In Section 4, we presented our NoHype architecture. In
this section, we examine current technology and whether it
is possible to actually realize NoHype. A lot of hardware
extensions, both in the processors and in the devices, have
been introduced in recent years which aid computing in the
virtualized model. Interestingly, while these extensions are
mostly designed to address the performance overhead, we
are able to leverage these in the NoHype architecture that we
propose. We will present extensions found in Intel products
— similar solutions are available from AMD and NoHype
should be implementable on AMD platforms as well.

6.1 Isolating Each Core

As multi-tenancy requires running multiple virtual ma-
chines on the same processor, they need to share the proces-
sor resources. In order to remove the need for the hypervisor
to schedule each VM, the NoHype architecture assigns a sin-
gle VM per core. To fully isolate each VM from other VMs,
however, we need to be able to restrict a core running one
VM from sending IPIs to other cores. This can be achieved
through use of the advanced programmable interrupt con-
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Figure 4: Selected parts of a modern x86 architec-
ture which are relevant to NoHype.

troller (APIC). Modern x86 processors have an interrupt
mechanism based on the APIC. As shown in Figure 4, each
core has a local APIC and there is a single I/O APIC for
the entire system.

The APIC can be used by a core to send an interrupt to
another core. These IPIs® are generated by programming
the interrupt command register (ICR) in the core’s local
APIC. By writing to this register, a message will be sent
over the APIC bus with the destination field of the ICR in-
dicating which core should receive the interrupt. While one
VM can attempt to interrupt another VM with this mecha-
nism, each core can mask out maskable interrupts that may
be sent from other cores, to prevent them from interrupting
the core.

6.2 Memory Partitioning

A key to isolating each virtual machine is making sure
that each VM can access its own guest physical memory
and not be allowed to access memory of other VMs. In
order to remove the virtualization layer, we must have the
hardware enforce the access isolation. Here, we capitalize on
the paging protection available in modern processors, along
with advances in providing these protections to each VM.

The Extended Page Tables (EPT) mechanism supported
by VT-x technology from Intel can be used to enforce the
memory isolation. The EPT logically adds another layer
to the familiar virtual-to-physical memory translation page
tables. The OS running on a core manages the translation
from guest virtual to guest physical addresses, using the fa-
miliar mechanisms (e.g., CR3 register is used to set the page
directory location). The EPT mechanisms are then used to
translate from the guest physical to host physical address —
the set of page tables which define this mapping are initial-
ized by the core manager. Once initialized, the translation
does not have to be modified throughout the lifetime of the
OS instance running on a given core. A hardware page table
walker uses the tables to automatically perform the transla-
tion. Access to a virtual address not currently in the guest
physical memory will cause a page fault that is handled by
the guest OS — a hypervisor layer is not needed. Access
to memory outside of the guest physical address range pre-
assigned to the VM will cause a new fault which is handled
by the core manager, which causes the VM to be killed —
as any action that would exit to a virtualization layer is as-
sumed by NoHype architecture to be due to a misbehaving
guest OS.

An open issue is the memory fairness and preventing cores

9The “processor” in “inter-processor interrupt” actually
refers to a processor core.



from interfering with each other through use of the the mem-
ory subsystem. Currently, a processor core can hog the
memory bandwidth, based on current memory controllers’
scheduling algorithms which optimize overall memory per-
formance, rather than being fair to all cores. We propose us-
ing a solution similar to one presented by Mutlu, et al., [21]
whereby the memory controller is modified to help achieve
a more fair sharing of memory bandwidth.

Another open issue is the optimal support for live migra-
tion that is completely transparent to the customer (involv-
ing the customer requires no support from the system). The
simplistic stop-and-copy approach is fully supported. How-
ever, in order to use optimizations which iteratively copy
differences during execution requires tracking dirty pages.
Current processors do not support this, so software would
be needed. In this case, each time a page is accessed, an
exception would occur and be handled by the core manager
which would simply mark a bit in a table. As this inter-
action is extremely limited (no information is passed and
the required function is extremely simple), the vulnerability
that is opened is very limited (though, still not ideal).

6.3 1/0 Devices

The NoHype architecture relies on each virtual machine
having direct access to its own physical device(s). Fortu-
nately, I/O performance is an important factor in overall
system performance, and as such, technologies are available
to make this a reality.

6.3.1 Direct Access to 1/0O Devices

In the NoHype architecture the virtual machine must be
able to access its own devices without going through the
virtualization layer. This involves three aspects: (i) the VM
being able to DMA to the device, (ii) the device being able
to DMA to the VM, and (iii) the device being able to send
an interrupt to the VM.

For the VM being able to DMA to the device, the memory
partitioning discussed in Section 6.2 is the enabling technol-
ogy. Each VM is assigned a device, with each device being
assigned a memory mapped I/O range. The guest physical
to host physical memory mapping enables VMs to directly
interact with memory mapped I/O. The fact that the guest
VM can only write to particular physical memory ranges,
enforced by the hardware, means that each VM can write
only to its device.

In the reverse direction, the I/O device sending data to
the VM, requires support from the chipset which sits be-
tween the device and the system memory. Here the I/O
MMU provides protection by creating multiple DMA protec-
tion domains. These domains are the memory regions that a
given device is allowed to DMA into. This would correspond
to the assigned physical memory that the VM was given.
The chipset enforces this by using address-translation tables.
When a device attempts to write to a memory location, the
1/O0 MMU performs a lookup in its address-translation ta-
bles for access permission of that device. If the device is
attempting to write to a location outside of the permitted
range, the access is blocked.

The final aspect of interacting with devices without the
involvement of the virtualization layer is the ability for in-
terrupts from a device to be directly handled by the vir-
tual machine associated with that device. For this, the MSI
(Message Signaled Interrupts) and extension MSI-X speci-
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fication [23] serve just this purpose. With MSI-X, a device
can request an interrupt by writing to a particular mem-
ory address. The value written to that address indicates
which interrupt is to be raised. By setting up the APIC ta-
bles, a given interrupt can be directed to a specific core on
the processor (via its local APIC). The memory protection
mechanisms can be used to block devices from writing cer-
tain memory locations, consequently limiting which device
can interrupt which core.

6.3.2 I/O Device Virtualization

While it is possible to realize each VM having its own de-
vice by having multiple physical devices, as the number of
cores (and therefore the number of VMs) grows, this will
become impractical. The advantage we have here when con-
sidering the hosted cloud infrastructure setting is that there
is only a small subset of devices that are actually of interest:
the network interface card, the storage device, and a timer,
but not, for example, a monitor or keyboard. Here, we can
take advantage of a standard specified by PCI-SIG called
single root I/O virtualization (SR-IOV). SR-IOV enables a
single device to advertise that it is actually multiple devices,
each with independent configuration and memory space.

To do this, the devices present two types of interfaces:
one for configuration and the other for regular device access.
The system software can use the configuration interface to
specify how many virtual devices the physical device should
act as and the options for each virtual device. Each virtual
device is assigned a separate address range, enabling the sys-
tem manager to map a virtual device to a particular virtual
machine. The guest VM can then interact directly with the
device through the regular device interface presented by the
physical device. Only the system manager has the privileges
to use the configuration interface and the VMs can only ac-
cess the interfaces assigned to them.

Network: Intel has a network interface card that supports
SR-IOV [24]. To distinguish between each of the virtual de-
vices, the NIC has multiple queues on it. The NIC performs
classification on the packets to direct each packet to the cor-
rect queue. Then, because of the memory partitioning, only
the OS on the appropriate core can read directly from that
virtual device, or write to it..

Storage: Unfortunately, there are currently no available
storage devices which support the notion of virtual devices.
LSI, however, recently announced a demonstration of an
SR-IOV capable storage controller [25]. Additionally, more
should be coming as disk drives already have a lot of func-
tionality in the form of firmware on the drive itself — for
example, reordering requests to optimize read/write perfor-
mance. Furthermore, there are disk devices such as from
Fusion-io which have a PCle interface (and therefore can im-
plement SR-IOV) and a programmable FPGA on board (and
therefore can be upgraded). Until the LSI chip is integrated
into disk drives or firmware is modified, multiple physical
disk drives can be used. Server motherboards have already
multiple SATA (Serial Advanced Technology Attachment)
connections. When used in combination with network stor-
age, this provides an acceptable, though not ideal, solution
until SR-IOV enabled disk drives become available.

Timers: Timers are an essential part of operating systems
and many programs which perform periodic tasks (such as
scheduling processes). Each local APIC contains a 32-bit



timer that is software configurable, and therefore provides
each VM with its own timer. However, higher-precision
timers require an external chip — the HPET (High Pre-
cision Event Timer). The HPET communicates with the
1/0 APIC, which as previously mentioned can be configured
to deliver (timer) interrupts to a specific core via its local
APIC. The HPET specification allows for up to 8 blocks of
32 timers and the HPET configuration is memory mapped
— the map for each block can be aligned on a 4 kilobyte
boundary so paging mechanisms can easily be used to re-
strict which core has access to which block of timers. In this
way, the core can have full control over its timers which are
not affected by other VMs.

Both the networking and disk devices’ bandwidth usage
need to be shared among the VMs. If a VM is able to use
a disproportionately large amount of the I/O bandwidth,
other VMs may be denied service very easily. Fortunately,
the PCI Express (PCle) interconnection network uses credit-
based flow control. Each device has an input queue and
senders consume tokens when sending packets. When the
queue in the device associated with the sending core becomes
full, the sender no longer has tokens for sending data. A
device, e.g. the NIC, with virtual queues will take packets
from the queues in round-robin fashion and return tokens to
the sender. If a VM fills up its assigned queue, it will not
be able to send more packets which will allow other VMs to
regain their share of the bandwidth.

6.4 Virtualization aware Ethernet Switches

In the NoHype architecture, the networking is performed
by networking devices and not by the software running on
the server. This requires the Ethernet switches that are
connected to the servers (e.g., the top-of-rack switches) to
be virtualization aware. The switches need the abstraction
that they have a connection to each virtual interface, rather
than the single connection to the NIC shared across multiple
virtual machines. As the market for virtualized infrastruc-
tures (not just hosted cloud infrastructures) is potentially
very large, commercial Ethernet switch vendors are mov-
ing in this direction already. The Cisco Virtual Network
Link (VN-link) [26] technology is supported in Cisco Nexus
switches [13] where it is used to simplify the software switch
and offload switching functionality to a physical switch, but
this requires some changes to the Ethernet format. In con-
trast, HP has proposed Virtual Ethernet Port Aggregator
(VEPA) [27], which does not require changes to the Eth-
ernet format, but instead overcomes the limitation of not
being able to forward a packet out of the same port it was re-
ceived. Commercial availability of hardware switches which
support VEPA are forthcoming, and Linux has support for
VEPA for software based switches [28]. (not suitable for use
in the data center, but useful for experimentation).

7. RELATED WORK

Virtual machine monitors and hypervisors have been stud-
ied extensively. Some of the work relating specifically to
securing the virtualization layer in a server or “cloud” set-
ting includes work by Santos, et al., [29] and sHype [30]
from IBM. Santos, et al., presented a solution which uses
the Terra hypervisor [31]. The sHype is a secure hypervisor
architecture whose goal is to provide a secure foundation for
server platforms. Rather than attempt to secure the virtu-
alization layer, we instead removed it.
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We should note that trusting the virtualization layer usu-
ally comes with the disclaimer that the virtualization layer
must be minimal (i.e., minimizing the Trusted Computing
Base, TCB). A number of projects have worked on minimiz-
ing the TCB (for example Flicker [32]) which attests to the
importance of having the TCB as small as possible. None,
however, went so far as to completely remove the hypervisor
that actively runs under the OS, as we have.

Finally, hardware architectures have been proposed to en-
able running applications without trusting the operating
system [33, 34, 35, 36, 10]. While these could perhaps be
extended, or applied, to support running a trusted virtual
machine on an untrusted hypervisor, we instead took an
approach which proposes minimal changes to the processor
core architecture along with modifications to system periph-
erals and software.

8. CONCLUSIONS

While cloud computing has tremendous promise there are
concerns over the security of running applications in a hosted
cloud infrastructure. One significant source of the prob-
lem is the use of virtualization, where an increasingly com-
plex hypervisor is involved in many aspects of running the
guest virtual machines. Unfortunately, virtualization is also
a key technology of the cloud infrastructure enabling multi-
tenancy and the ability to use highly automated processes
to provision infrastructure. Rather than focus on making
virtualization more secure, we remove the need for an active
virtualization layer in the first place.

We presented the NoHype architecture which provides
benefits on par with those of today’s virtualization solutions
without the active virtualization layer. Instead, our archi-
tecture makes use of hardware virtualization extensions in
order to remove any need for a virtualization layer to run
during the lifetime of a virtual machine. The extensions are
used to flexibly partition resources and isolate guest VMs
from each other. Key aspects of the architecture include (i)
running one VM per core, (ii) hardware enforced memory
partitioning, and (iii) dedicated (virtual) devices that each
guest VM controls directly without intervention of a hyper-
visor. We also discussed the fact that current processor and
I/0O devices support much of the functionality required by
the NoHype architecture. While there are clearly more ar-
chitectural, implementation, software, performance and se-
curity issues to be resolved, we believe that the architecture
is not hype but is a very viable architecture that can be im-
plemented in the near future. We also hope that this paper
will stimulate further research into many-core architectural
features, at both the processor and system levels, that sup-
port using the many cores for security as in our NoHype
architecture, rather than just for performance and power
improvements.
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