
Distributed DBMS Mutual Consistency. 1

Detection of mutual inconsistency in distributed
systems (Parker, Popek, et. al.)

Distributed system with replication for

• reliability (availability)

• efficient access

Maintaining consistency of all copies

• hard to do efficiently

Handling discovered inconsistencies

• not always possible

• semantics-dependent

Distributed DBMS Mutual Consistency. 2

Tradeoffs between

degree of replication of objects versus access time of
object

availability of object (during partition)

synchronization of updates

(overhead of consistency)

All objects should always be available.

All objects should always be consistent.

“Partitioning can destroy mutual consistency in the
worst case”.

Basic Design Issue:

Single failure must not affect entire system (robust,
reliable).

Distributed DBMS Mutual Consistency. 3

Previous work

• Maintain consistency by:

− Voting (majority consent)

− Tokens (unique/resource)

− Primary site (LOCUS)

− Reliable networks (SDD-1)

− Disk toking

Prevent inconsistency at a cost does not address
detection or resolution issues.

Want to provide availability and correct
propagation of updates.

Distributed DBMS Mutual Consistency. 4

Detecting Inconsistency

Network may continue to partition or partially merge
for an unbounded time.

Semantics also different with replication:

naming, creation, deletion…

names in on partition do not relate to entities in
another

Need globally unique system name, and user
name(s).

Must be able to use in partitions.

Distributed DBMS Mutual Consistency. 5

System name consists of a
• < Origin, Version > pair

• Origin – globally unique creation name

• Version – vector of modification history

Two types of conflicts:
• Name – two files have same user-name

• Version – two incompatible versions of the same file. Different
mod. Histories (not initial history)

Conflicting files may be identical…

Semantics of update determine action

Detection of version conflicts
• Timestamp – overkill

• Version vector – “necessary + sufficient”

• Update log – need global synchronization

Distributed DBMS Mutual Consistency. 6

Version vector approach

each file has a version vector

(Si : ui) pairs

Si – site file is resident upon

ui - # updates on that site

Example: < A:4, B:2; C:0; D:1 >

Compatible vectors:

one is at least as large as the other over all sites in
vector

< A:1; B:2; C:4; D:3 > ← < A:0; B:2; C:2; D:3 >

< A:1; B:2; C:4; D:3 >  < A:1; B:2; C:3; D:4 >

(< A:1; B:2; C:4; D:4 >)

Distributed DBMS Mutual Consistency. 7

Committed updates on site Si update ui by one

Deletion/Renaming are updates, leave zero-length file (?)

Remove file if all versions zero

Resolution on site Si increments ui to maintain
consistency later.

to Max Si

Storing at new site makes vector longer by one site. Still
compat.

(vectors may grow and shrink)

Inconsistency determined as early as possible.

Only works for single file consistency, not transactions…

Distributed DBMS Mutual Consistency. 8

A B C

A B

A B C

C

A B C

Version vector

VVi = (Si ; vi)

vi update to file f at site Si

< A:0 B:0 C:0 >

< A:0 B:0 C:0 >

< A:2 B:0 C:1 >

< A:2 B:0 C:0 >

< A:3 B:0 C:0 >
B’s version adopted

CONFLICT

3 > 2, 0 = 0, 0 < 1

A updates f twice

A updates f once

Distributed DBMS Mutual Consistency. 9

A B C D

A B C D

D
B CA

A B C D

B C D

+ : update

+

+ +

Distributed DBMS Mutual Consistency. 10

A B C D

A B C D

DB CA

A B C D

B C D

+

+ +

CONFLICT!

After reconcilation at site B

< A:3, B:1, C:1, D:0 >

< A:2, B:0, C:1, D:0 >

< A:3, B:0, C:0, D:0 >

< A:0, B:0, C:0, D:0 >

< A:0, B:0, C:0, D:0 >

< A:2, B:0, C:0, D:0 >

< A:0, B:0, C:0, D:0 >

< A:2, B:0, C:1, D:0 >

Distributed DBMS Mutual Consistency. 11

Resolution of Conflicts

Semantics-Dependent

Automatic resolution desirable, where possible:

Mailbox, Directory (R/W)

Only two types of object update (R/W)

Simple union/intersection works

Other Scenarios:

• Credits and Debits

x + i(x) in each partition

x +  i(x) after merge

May have to constrain i(x) to prevent overdraft

• Airline Reservations

Distributed DBMS Mutual Consistency. 12

General resolution rules not possible.

External (irrevocable) actions prevent reconciliation,
rollback, etc.

Resolution should be inexpensive.

System must address:

• detection of conflicts (when, how)

• meaning of a conflict (accesses)

• resolution of conflicts

– automatic

– user-assisted

Distributed DBMS Mutual Consistency. 13

Conclusions

Effective detection procedure

• providing access without mutual

• exclusion (consent).

Robust during partitions (no loss).

Occasional inconsistency tolerated for
the sake of availability.

Reconciliation semantics…

Recognize dependence upon semantics.

