
Distributed DBMS Page 10-12. 1© 1998 M. Tamer Özsu & Patrick Valduriez

Outline

Introduction

Background

Distributed DBMS Architecture

Distributed Database Design

Distributed Query Processing

Distributed Transaction Management

Transaction Concepts and Models

Distributed Concurrency Control

Distributed Reliability

Building Distributed Database Systems (RAID)

Mobile Database Systems

Privacy, Trust, and Authentication

Peer to Peer Systems

Distributed DBMS Page 10-12. 2© 1998 M. Tamer Özsu & Patrick Valduriez

Useful References (1)

S. B. Davidson, Optimism and consistency in partitioned
distributed database systems, ACM Transactions on Database
Systems 9(3): 456-481, 1984.

S. B. Davidson, H. Garcia-Molina, and D. Skeen, Consistency in
Partitioned Networks, ACM Computer Survey, 17(3): 341-370,
1985.

B. Bhargava, Resilient Concurrency Control in Distributed
Database Systems, IEEE Trans. on Reliability, R-31(5): 437-443,
1984.

Jr. D. Parker, et al., Detection of Mutual Inconsistency in
Distributed Systems, IEEE Trans. on Software Engineering, SE-
9, 1983.

Distributed DBMS Page 10-12. 3© 1998 M. Tamer Özsu & Patrick Valduriez

Useful References (2)

Bharat Bhargava, Site Recovery in Replicated Distributed
Database Systems, Computer Science Technical Reports, report
number: 85-564

B. Bhargava, Transaction Processing and Consistency Control of
Replicated Copies during Failures in Distributed Databases,
Proceedings of Conference on Current Issues in Database
Systems, Newark, May 1986.

B. Bhargava, P.L. Ng, A dynamic majority determination
algorithm for reconfiguration of network partitions, Information
Sciences, Vol 46 No 1-2, 1988

Distributed DBMS Page 10-12. 4© 1998 M. Tamer Özsu & Patrick Valduriez

Site Failure and Recovery

Maintain consistency of replicated copies
during site failure.

Announce failure and restart of a site.

Identify out-of-date data items.

Update stale data items.

Distributed DBMS Page 10-12. 5© 1998 M. Tamer Özsu & Patrick Valduriez

Main Ideas and Concepts

Read one Write all available protocol.

Fail locks and copier transactions.

Session vectors.

Control transactions.

Distributed DBMS Page 10-12. 6© 1998 M. Tamer Özsu & Patrick Valduriez

Measurements of Behavior of Site
Failure/Network Partitioning

▪ How did partition occur?

▪ How many objects become out of date?

▪ How many transactions are blocked or aborted?

▪ Availability.

▪ Effects of creating more copies when failures occur.

Distributed DBMS Page 10-12. 7© 1998 M. Tamer Özsu & Patrick Valduriez

Replication Control enables a distributed database
system to operate effectively despite periods of failures
and communication breakdowns.

At Purdue University, we have developed the Mini-RAID
system for conducting experiments in replication control.

In the following slides, an example based on the system
is presented. The configuration for our example is:

• 3 database sites (S0, S1, S2)

• a fully replicated database of 4 objects (a, b, c, d)

Replication Control

Distributed DBMS Page 10-12. 8© 1998 M. Tamer Özsu & Patrick Valduriez

Dynamic Majority for Network
Partitioning

▪ Majority of majority continues processing.

▪ Declare a tie when too few sites in majority follow
optimistic approach and continue processing without
commit.

▪ Full availability to read-only transactions (view
serializability).*

▪ Arbitrary merges of partition to form majority once
again.

* Journal of Information Science, Feb. 1988

Distributed DBMS Page 10-12. 9© 1998 M. Tamer Özsu & Patrick Valduriez

1. Ta = Ra[X] Wa[Y], Tb = Rb[Y] Wb[X]

X = {x1, x2}, Y = {y1, y2}

x1 and y1 are written by copier transactions Tc and Td

H = ra[x1] rb[y1] (site 1 crashes) wa[y2] wb[x2]

(site 1 recovers) . . . rc[x2] wc[x1] rd[y2] wd[y1]

H is serializable, but has the same effect as an incorrect history

ra[x1] rb[y1] wa[y2] wb[x2] wb[x2] wb[x1] wa[y1]

2. Ta = Ra[X] Wa[Y], Tb = Rb[Y] Wb[X]

X = {x1, x2}, Y = {y1, y2}

Copier transaction Tc reads x1 and writes to x2

H = (site 2 crashes) ra[x1] rb[y1] wa[x1]

(site 2 recovers) . . . rc[x1] wc[x2] wb [x1]

Missing update – x2 reflects Wa[X] but not Wb[X]

Example of Replicated Copy Control Problem

Distributed DBMS Page 10-12. 10© 1998 M. Tamer Özsu & Patrick Valduriez

Logical and Physical Copies of Data

X: Logical data item

xk: A copy of item X on site k

Strict read-one write all (ROWA) requires reading at

Least at one site and writing at all sites.





Read(X) =

Write(X) =

{read(xk), xk  X}

{write(xk), xk  X}

Distributed DBMS Page 10-12. 11© 1998 M. Tamer Özsu & Patrick Valduriez

New Protocols and Algorithm

▪ Multiple Site Failure and Recovery*

▪ Session numbers.

▪ Read one write all available (ROWAA).

▪ Fail-locks.

▪ Copier Transactions.

▪ Database available as long as a single copy is up.

▪ Operation site do little work for failed site(s).

▪ Failed site recovers on demand or automatically via
updates on open sites.

* Journal of Management Information Systems, Vol. 4, No. 2, 1987.

Distributed DBMS Page 10-12. 12© 1998 M. Tamer Özsu & Patrick Valduriez

Session Numbers and Nominal Session
Numbers

Each operational session of a site is designated with an
integer, session number.

Failed site has session number = 0.

as[k] is actual session number of site k.

nsi[k] is nominal session number of site k at site i.

NS[k] is nominal session number of site k.

A nominal session vector consisting of nominal session numbers of all

sites is stored at each site.

nsi is the nominal session vector at site i.

Distributed DBMS Page 10-12. 13© 1998 M. Tamer Özsu & Patrick Valduriez

Read one Write all Available (ROWAA)

Transaction initiated at site i, reads and writes as follows:

At site k, the nsi(k) is checked against as as[k]. If they are

not equal, the transaction is rejected.

Transaction is not sent to a failed site for whom nsi(k) = 0.





Read(X) =

Write(X) =

{read(xk), xk  X and nsi[k]  0}

{write(xk), xk  X and nsi[k]  0}

Distributed DBMS Page 10-12. 14© 1998 M. Tamer Özsu & Patrick Valduriez

Control Transactions for Announcing
Recovery

Type 1: Claims that a site is nominally up.

Updates the session vector of all operational sites with
the recovering site’s new session number.

New session number is one more than the last session
number (like an incarnation).

Example:

as[k] = 1 initially

as[k] = 0 after site failure

as[k] = 2 after site recovers

as[k] = 0 after site failure

as[k] = 3 after site recovers second time

Distributed DBMS Page 10-12. 15© 1998 M. Tamer Özsu & Patrick Valduriez

Control Transactions for Announcing
Failure

Type 2: Claims that one or more sites are down.

Claim is made when a site attempts and fails to
access a data item on another site.

Control transaction type 2 sets a value 0 for a failed site

in the nominal session vectors at all operational sites.

This allows operational sites to avoid sending read and

write requests to failed sites.

Distributed DBMS Page 10-12. 16© 1998 M. Tamer Özsu & Patrick Valduriez

Fail Locks

A fail lock is set at an operational site on behalf of a
failed site if a data item is updated.

Fail lock can be set per site or per data item.

Fail lock used to identify out-of-date items (or missed
updates) when a site recovers.

All fail locks are released when all sites are up and all
data copies are consistent.

Distributed DBMS Page 10-12. 17© 1998 M. Tamer Özsu & Patrick Valduriez

Copier Transaction

▪ Copier transaction reads current values (for failed
lock items) on operational sites and writes on out of
data items on the recover site.

Distributed DBMS Page 10-12. 18© 1998 M. Tamer Özsu & Patrick Valduriez

Site Recovery Procedure

1. When a site k starts, it loads its actual session

number as[k] with 0, meaning that the site is ready to

process control transactions but not user transactions.

2. Next, the site initiates a control transaction of type 1.

It reads an available copy of the nominal session

vector and refreshes its own copy. Next this control

transaction writes a newly chosen session number into

nsi[k] for all operational sites I including itself, but not

as[k] as yet.

Distributed DBMS Page 10-12. 19© 1998 M. Tamer Özsu & Patrick Valduriez

Site Recovery Procedure

3. Using the fail locks on the operational site, the recovering
site marks the data copies that have missed updates
since the site failed. Note that steps 2 and 3 can be
combined.

4. If the control transaction in step 2 commits, the site is
nominally up. The site converts its state from recovering
to operational by loading the new session number into
as[k]. If step 2 fails due to a crash of another site, the
recovering site must initiate a control transaction of type
2 to exclude the newly crashed site, and then must try
step 2 and 3 again. Note that the recovery procedure is
delayed by the failure of another site, but the algorithm is
robust as long as there is at least one operational site
coordinating the transaction in the system.

Distributed DBMS Page 10-12. 20© 1998 M. Tamer Özsu & Patrick Valduriez

Site is down

All data items

are available

Site is up

None of the data

items are available

Site is up

(all fail locks for this site released)

Continued recovery, copies on failed

site marked and fail-locks are released

Partial recovery unmarked

data-objects are available

Control transaction 1 running

Status in site recovery and Availability of
Data Items for Transaction Processing

window of vulnerability

Distributed DBMS Page 10-12. 21© 1998 M. Tamer Özsu & Patrick Valduriez

Three Alternatives after Partition

A. Allow each group of nodes to process new transactions

B. Allow at most one group to process new transactions

C. Halt all transaction processing

Alternative A

Database values will diverge database inconsistent when
partition is eliminated

Undo some transactions

detailed log

expensive

Integrate the inconsistent values

item I has values v1, v2

new value = v1 + v2 – value of i at partition

Transaction Processing when
Network Partitioning Occurs

Distributed DBMS Page 10-12. 22© 1998 M. Tamer Özsu & Patrick Valduriez

Alternative B

How to guarantee only one group processes transactions

assign a number of points to each node partition with
majority of points proceeds

Both partition and node failure cases are equivalent in the
sense in both situations we have a group of nodes which
know that no other node outside the group may process
transactions

What if  no group with a majority?

should we allow transactions to proceed?

commit point?

delay the commit decision?

force transaction to commit or cancel?

Network Partition Alternatives

Distributed DBMS Page 10-12. 23© 1998 M. Tamer Özsu & Patrick Valduriez

Begin

Partition

Plane

C

End

Partition

Partition A Partition CPartition B

Rollback

Rollback

Plane A

Plane
B

Planes of Serializability

Distributed DBMS Page 10-12. 24© 1998 M. Tamer Özsu & Patrick Valduriez

Merger of Semi-Committed Transactions From Several Partitions

Combine DCG, DCG2, --- DCGN

(DCG is Dynamic Cyclic Graph)

(minimize rollback if cycle exists)

NP-complete

(minimum feedback vertex set problem)

Consider each DCG as a single transaction

Check acyclicity of this N node graph

(too optimistic!)

Assign a weight to transactions in each partition

Consider DCG1 with maximum weight

Select transactions from other DCG’s that do not create
cycles

Merging Semi-Committed
Transactions

Distributed DBMS Page 10-12. 25© 1998 M. Tamer Özsu & Patrick Valduriez

Two Choices

Abort transactions who create cycles

Consider each transaction that creates cycle one at a
time.

Abort transactions which optimize rollback

(complexity O(n3))

Minimization not necessarily optimal globally

Breaking Cycle by Aborting
Transactions

Distributed DBMS Page 10-12. 26© 1998 M. Tamer Özsu & Patrick Valduriez

Semantics of Transaction Computation

Commutative

Give $5000 bonus to every employee

Commutativity can be predetermined or recognized dynamically

Maintain log (REDO/UNDO) of commutative and noncommutative
actions

Partially rollback transactions to their first noncommutative action

Commutative Actions and
Semantics

Distributed DBMS Page 10-12. 27© 1998 M. Tamer Özsu & Patrick Valduriez

Compensating Transactions
Commit transactions in all partitions

Break cycle by removing semi-committed transactions

Otherwise abort transactions that are invisible to the
environment

(no incident edges)

Pay the price of commiting such transactions and issue
compensating transactions

Recomputing Cost
Size of readset/writeset

Computation complexity

Compensating Actions

Distributed DBMS Page 10-12. 28© 1998 M. Tamer Özsu & Patrick Valduriez

Simple partitioning

Only two partitions

Multiple partitioning

More than two partitions

Formal bounds:

There exists no non-blocking protocol that is resilient to a

network partition if messages are lost when partition occurs.

There exist non-blocking protocols which are resilient to a

single network partition if all undeliverable messages are

returned to sender.

There exists no non-blocking protocol which is resilient to a

multiple partition.

Network Partitioning

Distributed DBMS Page 10-12. 29© 1998 M. Tamer Özsu & Patrick Valduriez

Independent Recovery Protocols
for Network Partitioning

No general solution possible

allow one group to terminate while the other is
blocked

improve availability

How to determine which group to proceed?

The group with a majority

How does a group know if it has majority?

centralized

whichever partitions contains the central site should
terminate the transaction

voting-based (quorum)

different for replicated vs non-replicated databases

Distributed DBMS Page 10-12. 30© 1998 M. Tamer Özsu & Patrick Valduriez

The network partitioning problem is handled by the

commit protocol.

Every site is assigned a vote Vi.

Total number of votes in the system V

Abort quorum Va, commit quorum Vc

Va + Vc > V where 0 ≤ Va , Vc ≤ V

Before a transaction commits, it must obtain a commit quorum Vc

Before a transaction aborts, it must obtain an abort quorum Va

Quorum Protocols for
Non-Replicated Databases

Distributed DBMS Page 10-12. 31© 1998 M. Tamer Özsu & Patrick Valduriez

State Transitions in
Quorum Protocols

INITIAL

WAIT

Commit command
Prepare

Vote-commit

Prepare-to-commit

Coordinator

Vote-abort
Prepare-to-abort

ABORT COMMIT

PRE-

COMMIT

Ready-to-commit

Global commit

INITIAL

READY

Prepare
Vote-commit

Prepare-to-commit

Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMITABORT

PRE-

COMMIT

Global commit

Ack

PRE-

ABORT

Prepared-to-abortt

Ready-to-abort

PRE-

ABORT

Ready-to-abort
Global-abort

Distributed DBMS Page 10-12. 32© 1998 M. Tamer Özsu & Patrick Valduriez

Network partitioning is handled by the replica control

protocol.

One implementation:

Assign a vote to each copy of a replicated data item (say Vi)

such that i Vi = V

Each operation has to obtain a read quorum (Vr) to read and a

write quorum (Vw) to write a data item

Then the following rules have to be obeyed in determining the

quorums:

Vr + Vw > V a data item is not read and written

by two transactions concurrently

Vw > V/2 two write operations from two

transactions cannot occur

concurrently on the same data item

Quorum Protocols for Replicated
Databases

Distributed DBMS Page 10-12. 33© 1998 M. Tamer Özsu & Patrick Valduriez

Simple modification of the ROWA rule:

When the replica control protocol attempts to read or write a

data item, it first checks if a majority of the sites are in the same

partition as the site that the protocol is running on (by checking

its votes). If so, execute the ROWA rule within that partition.

Assumes that failures are “clean” which means:

failures that change the network's topology are detected by all

sites instantaneously

each site has a view of the network consisting of all the sites it

can communicate with

Use for Network Partitioning

Distributed DBMS Page 10-12. 34© 1998 M. Tamer Özsu & Patrick Valduriez

Open Problems

Replication protocols

experimental validation

replication of computation and communication

Transaction models

changing requirements

cooperative sharing vs. competitive sharing

interactive transactions

longer duration

complex operations on complex data

relaxed semantics

non-serializable correctness criteria

Distributed DBMS Page 10-12. 35© 1998 M. Tamer Özsu & Patrick Valduriez

Detection of mutual inconsistency in distributed systems

Distributed system with replication for

reliability (availability)

efficient access

Maintaining consistency of all copies

hard to do efficiently

Handling discovered inconsistencies

not always possible

semantics-dependent

Other Issues

Distributed DBMS Page 10-12. 36© 1998 M. Tamer Özsu & Patrick Valduriez

Tradeoffs between

degree of replication of objects access time of object

availability of object (during partition)

synchronization of updates

(overhead of consistency)

All objects should always be available.

All objects should always be consistent.

“Partitioning can destroy mutual consistency in the worst case”.

Basic Design Issue:

Single failure must not affect entire system (robust, reliable).

Replication and Consistency

Distributed DBMS Page 10-12. 37© 1998 M. Tamer Özsu & Patrick Valduriez

Previous work

Maintain consistency by:

Voting (majority consent)

Tokens (unique/resource)

Primary site (LOCUS)

Reliable networks (SDD-1)

Prevent inconsistency at a cost does not address
detection or resolution issues.

Want to provide availability and correct propagation of
updates.

Availability and Consistency

Distributed DBMS Page 10-12. 38© 1998 M. Tamer Özsu & Patrick Valduriez

View-serializability

Global conflict graph:

Partitions merge.

1)

2)

Distributed DBMS Page 10-12. 39© 1998 M. Tamer Özsu & Patrick Valduriez

Detecting Inconsistency

Network may continue to partition or partially merge for
an unbounded time.

Semantics also different with replication:

naming, creation, deletion…

names in on partition do not relate to entities in another partition

Need globally unique system name, and user name(s).

Must be able to use in partitions.

Detecting Inconsistency

Distributed DBMS Page 10-12. 40© 1998 M. Tamer Özsu & Patrick Valduriez

System name consists of a

< Origin, Version > pair

Origin – globally unique creation name

Version – vector of modification history

Two types of conflicts:

Name – two files have same user-name

Version – two incompatible versions of the same file.

Conflicting files may be identical…

Semantics of update determine action

Detection of version conflicts

Timestamp – overkill

Version vector – “necessary + sufficient”

Update log – need global synchronization

Types of Conflicting Consistency

Distributed DBMS Page 10-12. 41© 1998 M. Tamer Özsu & Patrick Valduriez

Version vector approach

each file has a version vector

(Si : ui) pairs

Si – Site on which the file is stored

ui – Number of updates on that site

Example: < A:4, B:2; C:0; D:1 >

Compatible vectors:

one is at least as large as the other over all sites in vector

< A:1; B:2; C:4; D:3 > ← < A:0; B:2; C:2; D:3 >

< A:1; B:2; C:4; D:3 >  < A:1; B:2; C:3; D:4 > (Not Compatible)

(< A:1; B:2; C:4; D:4 >)

Version Vector

Distributed DBMS Page 10-12. 42© 1998 M. Tamer Özsu & Patrick Valduriez

Committed updates on site Si will update ui by one

Deletion/Renaming are updates

Resolution on site Si increments ui to maintain consistency later.

to Max Si

Storing a file at new site makes vector longer by one site.

Inconsistency determined as early as possible.

Only works for single file consistency, and not transactions…

Additional Comments

Distributed DBMS Page 10-12. 43© 1998 M. Tamer Özsu & Patrick Valduriez

A B C

A B

A B C

C

A B C

Version vector

VVi = (Si ; vi)

vi update to file f at site Si

< A:0 B:0 C:0 >

< A:0 B:0 C:0 >

< A:2 B:0 C:1 >

< A:2 B:0 C:0 >

< A:3 B:0 C:0 >
B’s version adopted

CONFLICT

3 > 2, 0 = 0, 0 < 1

A updates file twice

A updates f once

Example of Conflicting Operation
in Different Partitions

Distributed DBMS Page 10-12. 44© 1998 M. Tamer Özsu & Patrick Valduriez

A B C D

A B C D

D
B CA

A B C D

B C D

+ : update

+

+ +

Example of Partition and Merge

Distributed DBMS Page 10-12. 45© 1998 M. Tamer Özsu & Patrick Valduriez

A B C D

A B C D

DB CA

A B C D

B C D

+

+ +

CONFLICT!

After reconcilation at site B

< A:3, B:1, C:1, D:0 >

< A:2, B:0, C:1, D:0 >

< A:3, B:0, C:0, D:0 >

< A:0, B:0, C:0, D:0 >

< A:0, B:0, C:0, D:0 >

< A:2, B:0, C:0, D:0 >

< A:0, B:0, C:0, D:0 >

< A:2, B:0, C:1, D:0 >

Create Conflict

Distributed DBMS Page 10-12. 46© 1998 M. Tamer Özsu & Patrick Valduriez

General resolution rules not possible.

External (irrevocable) actions prevent reconciliation, rollback, etc.

Resolution should be inexpensive.

System must address:

detection of conflicts (when, how)

meaning of a conflict (accesses)

resolution of conflicts

automatic

user-assisted

Distributed DBMS Page 10-12. 47© 1998 M. Tamer Özsu & Patrick Valduriez

Effective detection procedure

providing access without mutual

exclusion (consent).

Robust during partitions (no loss).

Occasional inconsistency tolerated for the sake of
availability.

Reconciliation semantics…

Recognize dependence upon semantics.

Conclusions

