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Site Failure and Recovery

Maintain consistency of replicated copies 
during site failure.

Announce failure and restart of a site.

Identify out-of-date data items.

Update stale data items.
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Main Ideas and Concepts

Read one Write all available protocol.

Fail locks and copier transactions.

Session vectors.

Control transactions.
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Measurements of Behavior of Site 
Failure/Network Partitioning

▪ How did partition occur?

▪ How many objects become out of date?

▪ How many transactions are blocked or aborted?

▪ Availability.

▪ Effects of creating more copies when failures occur.
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Replication Control enables a distributed database 
system to operate effectively despite periods of failures 
and communication breakdowns.

At Purdue University, we have developed the Mini-RAID 
system for conducting experiments in replication control.

In the following slides, an example based on the system 
is presented. The configuration for our example is:

• 3 database sites (S0, S1, S2)

• a fully replicated database of 4 objects (a, b, c, d)

Replication Control
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Dynamic Majority for Network 
Partitioning

▪ Majority of majority continues processing.

▪ Declare a tie when too few sites in majority follow 
optimistic approach and continue processing without 
commit.

▪ Full availability to read-only transactions (view 
serializability).*

▪ Arbitrary merges of partition to form majority once 
again.

* Journal of Information Science, Feb. 1988
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1.  Ta = Ra[X] Wa[Y],     Tb = Rb[Y] Wb[X]

X = {x1, x2}, Y = {y1, y2}

x1 and y1 are written by copier transactions Tc and Td

H = ra[x1] rb[y1] (site 1 crashes) wa[y2] wb[x2]

(site 1 recovers) . . . rc[x2] wc[x1] rd[y2] wd[y1]

H is serializable, but has the same effect as an incorrect history

ra[x1] rb[y1] wa[y2] wb[x2] wb[x2] wb[x1] wa[y1]

2.  Ta = Ra[X] Wa[Y],     Tb = Rb[Y] Wb[X]

X = {x1, x2}, Y = {y1, y2}

Copier transaction Tc reads x1 and writes to x2

H = (site 2 crashes) ra[x1] rb[y1] wa[x1]

(site 2 recovers) . . . rc[x1] wc[x2] wb [x1]

Missing update – x2 reflects Wa[X] but not Wb[X]

Example of Replicated Copy Control Problem
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Logical and Physical Copies of Data

X: Logical data item

xk: A copy of item X on site k

Strict read-one write all (ROWA) requires reading at

Least at one site and writing at all sites.





Read(X) =

Write(X) =

{read(xk), xk  X}

{write(xk), xk  X}
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New Protocols and Algorithm

▪ Multiple Site Failure and Recovery*

▪ Session numbers.

▪ Read one write all available (ROWAA).

▪ Fail-locks.

▪ Copier Transactions.

▪ Database available as long as a single copy is up.

▪ Operation site do little work for failed site(s).

▪ Failed site recovers on demand or automatically via 
updates on open sites.

* Journal of Management Information Systems, Vol. 4, No. 2, 1987.
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Session Numbers and Nominal Session 
Numbers

Each operational session of a site is designated with an 
integer, session number.

Failed site has session number = 0.

as[k] is actual session number of site k.

nsi[k] is nominal session number of site k at site i.

NS[k] is nominal session number of site k.

A nominal session vector consisting of nominal session numbers of all 

sites is stored at each site.

nsi is the nominal session vector at site i.
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Read one Write all Available (ROWAA)

Transaction initiated at site i, reads and writes as follows:

At site k, the nsi(k) is checked against as as[k]. If they are

not equal, the transaction is rejected.

Transaction is not sent to a failed site for whom nsi(k) = 0.





Read(X) =

Write(X) =

{read(xk), xk  X and nsi[k]  0}

{write(xk), xk  X and nsi[k]  0}
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Control Transactions for Announcing 
Recovery

Type 1: Claims that a site is nominally up.

Updates the session vector of all operational sites with 
the recovering site’s new session number.

New session number is one more than the last session 
number (like an incarnation).

Example:

as[k] = 1 initially

as[k] = 0 after site failure

as[k] = 2 after site recovers

as[k] = 0 after site failure

as[k] = 3 after site recovers second time
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Control Transactions for Announcing 
Failure

Type 2: Claims that one or more sites are down.

Claim is made when a site attempts and fails to 
access a data item on another site.

Control transaction type 2 sets a value 0 for a failed site 

in the nominal session vectors at all operational sites.

This allows operational sites to avoid sending read and 

write requests to failed sites.
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Fail Locks

A fail lock is set at an operational site on behalf of a 
failed site if a data item is updated.

Fail lock can be set per site or per data item.

Fail lock used to identify out-of-date items (or missed 
updates) when a site recovers.

All fail locks are released when all sites are up and all 
data copies are consistent.
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Copier Transaction

▪ Copier transaction reads current values (for failed 
lock items) on operational sites and writes on out of 
data items on the recover site.
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Site Recovery Procedure

1. When a site k starts, it loads its actual session 

number as[k] with 0, meaning that the site is ready to 

process control transactions but not user transactions.

2. Next, the site initiates a control transaction of type 1. 

It reads an available copy of the nominal session 

vector and refreshes its own copy. Next this control 

transaction writes a newly chosen session number into 

nsi[k] for all operational sites I including itself, but not 

as[k] as yet.
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Site Recovery Procedure

3. Using the fail locks on the operational site, the recovering 
site marks the data copies that have missed updates 
since the site failed. Note that steps 2 and 3 can be 
combined.

4. If the control transaction in step 2 commits, the site is 
nominally up. The site converts its state from recovering 
to operational by loading the new session number into 
as[k]. If step 2 fails due to a crash of another site, the 
recovering site must initiate a control transaction of type 
2 to exclude the newly crashed site, and then must try 
step 2 and 3 again. Note that the recovery procedure is 
delayed by the failure of another site, but the algorithm is 
robust as long as there is at least one operational site 
coordinating the transaction in the system.



Distributed DBMS Page 10-12. 20© 1998 M. Tamer Özsu & Patrick Valduriez

Site is down

All data items

are available

Site is up

None of the data

items are available

Site is up

(all fail locks for this site released)

Continued recovery, copies on failed

site marked and fail-locks are released

Partial recovery unmarked

data-objects are available

Control transaction 1 running

Status in site recovery and Availability of 
Data Items for Transaction Processing

window of vulnerability
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Three Alternatives after Partition

A. Allow each group of nodes to process new transactions

B. Allow at most one group to process new transactions

C. Halt all transaction processing

Alternative A

Database values will diverge database inconsistent when 
partition is eliminated

Undo some transactions

detailed log

expensive

Integrate the inconsistent values

item I has values v1, v2

new value = v1 + v2 – value of i at partition

Transaction Processing when 
Network Partitioning Occurs



Distributed DBMS Page 10-12. 22© 1998 M. Tamer Özsu & Patrick Valduriez

Alternative B

How to guarantee only one group processes transactions

assign a number of points to each node partition with 
majority of points proceeds

Both partition and node failure cases are equivalent in the 
sense in both situations we have a group of nodes which 
know that no other node outside the group may process 
transactions

What if  no group with a majority?

should we allow transactions to proceed?

commit point?

delay the commit decision?

force transaction to commit or cancel?

Network Partition Alternatives
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Begin

Partition

Plane

C

End

Partition

Partition A Partition CPartition B

Rollback

Rollback

Plane A

Plane 
B

Planes of Serializability
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Merger of Semi-Committed Transactions From Several Partitions

Combine DCG, DCG2, --- DCGN 

(DCG is Dynamic Cyclic Graph)

(minimize rollback if cycle exists)

NP-complete

(minimum feedback vertex set problem)

Consider each DCG as a single transaction

Check acyclicity of this N node graph

(too optimistic!)

Assign a weight to transactions in each partition

Consider DCG1 with maximum weight

Select transactions from other DCG’s that do not create 
cycles

Merging Semi-Committed 
Transactions
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Two Choices

Abort transactions who create cycles

Consider each transaction that creates cycle one at a 
time.

Abort transactions which optimize rollback

(complexity O(n3))

Minimization not necessarily optimal globally

Breaking Cycle by Aborting 
Transactions
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Semantics of Transaction Computation

Commutative

Give $5000 bonus to every employee

Commutativity can be predetermined or recognized  dynamically

Maintain log (REDO/UNDO) of commutative and noncommutative 
actions

Partially rollback transactions to their first noncommutative action

Commutative Actions and 
Semantics
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Compensating Transactions
Commit transactions in all partitions

Break cycle by removing semi-committed transactions

Otherwise abort transactions that are invisible to the 
environment

(no incident edges)

Pay the price of commiting such transactions and issue 
compensating transactions

Recomputing Cost
Size of readset/writeset

Computation complexity

Compensating Actions
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Simple partitioning

Only two partitions

Multiple partitioning

More than two partitions

Formal bounds:

There exists no non-blocking protocol that is resilient to a 

network partition if messages are lost when partition occurs.

There exist non-blocking protocols which are resilient to a 

single network partition if all undeliverable messages are 

returned to sender.

There exists no non-blocking protocol which is resilient to a 

multiple partition.

Network Partitioning
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Independent Recovery Protocols 
for Network Partitioning

No general solution possible 

allow one group to terminate while the other is 
blocked 

improve availability

How to determine which group to proceed?

The group with a majority 

How does a group know if it has majority?

centralized

whichever partitions contains the central site should 
terminate the transaction

voting-based (quorum)

different for replicated vs non-replicated databases 



Distributed DBMS Page 10-12. 30© 1998 M. Tamer Özsu & Patrick Valduriez

The network partitioning problem is handled by the 

commit protocol.

Every site is assigned a vote Vi.

Total number of votes in the system V

Abort quorum Va, commit quorum Vc

Va + Vc > V where 0 ≤ Va , Vc ≤ V

Before a transaction commits, it must obtain a commit quorum Vc

Before a transaction aborts, it must obtain an abort quorum Va

Quorum Protocols for 
Non-Replicated Databases
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State Transitions in 
Quorum Protocols

INITIAL

WAIT

Commit command
Prepare

Vote-commit     

Prepare-to-commit

Coordinator

Vote-abort     
Prepare-to-abort

ABORT COMMIT

PRE-

COMMIT

Ready-to-commit  

Global commit

INITIAL

READY

Prepare   
Vote-commit

Prepare-to-commit

Ready-to-commit

Prepare   
Vote-abort

Global-abort
Ack

Participants

COMMITABORT

PRE-

COMMIT

Global commit  

Ack

PRE-

ABORT

Prepared-to-abortt

Ready-to-abort

PRE-

ABORT

Ready-to-abort   
Global-abort
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Network partitioning is handled by the replica control 

protocol.

One implementation:

Assign a  vote to each copy of a replicated data item (say Vi) 

such that i Vi = V

Each operation has to obtain a read quorum (Vr) to read and a 

write quorum (Vw) to write a data item

Then the following rules have to be obeyed in determining the 

quorums:

Vr + Vw > V a data item is not read and written 

by  two transactions concurrently

Vw > V/2 two write operations from two 

transactions cannot occur 

concurrently on the same data item

Quorum Protocols for Replicated 
Databases
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Simple modification of the ROWA rule:

When the replica control protocol attempts to read or write a 

data item, it first checks if a majority of the sites are in the same 

partition as the site that the protocol is running on (by checking 

its votes). If so, execute the ROWA rule within that partition.

Assumes that failures are “clean” which means:

failures that change the network's topology are detected by all 

sites instantaneously

each site has a view of the network consisting of all the sites it 

can communicate with

Use for Network Partitioning
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Open Problems

Replication protocols

experimental validation

replication of computation and communication

Transaction models 

changing requirements

cooperative sharing vs. competitive sharing

interactive transactions

longer duration

complex operations on complex data

relaxed semantics

non-serializable correctness criteria
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Detection of mutual inconsistency in distributed systems

Distributed system with replication for 

reliability (availability) 

efficient access

Maintaining consistency of all copies

hard to do efficiently

Handling discovered inconsistencies

not always possible

semantics-dependent

Other Issues
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Tradeoffs between

degree of replication of objects access time of object

availability of object (during partition)

synchronization of updates

(overhead of consistency)

All objects should always be available.

All objects should always be consistent.

“Partitioning can destroy mutual consistency in the worst case”.

Basic Design Issue:

Single failure must not affect entire system (robust, reliable).

Replication and Consistency
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Previous work

Maintain consistency by:

Voting (majority consent)

Tokens (unique/resource)

Primary site (LOCUS)

Reliable networks (SDD-1)

Prevent inconsistency at a cost does not address 
detection or resolution issues.

Want to provide availability and correct propagation of 
updates.

Availability and Consistency
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View-serializability

Global conflict graph:

Partitions merge.

1)

2)
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Detecting Inconsistency

Network may continue to partition or partially merge for 
an unbounded time.

Semantics also different with replication:

naming, creation, deletion…

names in on partition do not relate to entities in another partition

Need globally unique system name, and user name(s).

Must be able to use in partitions.

Detecting Inconsistency
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System name consists of a

< Origin, Version > pair

Origin – globally unique creation name

Version – vector of modification history

Two types of conflicts:

Name – two files have same user-name

Version – two incompatible versions of the same file. 

Conflicting files may be identical…

Semantics of update determine action

Detection of version conflicts

Timestamp – overkill

Version vector – “necessary + sufficient”

Update log – need global synchronization

Types of Conflicting Consistency
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Version vector approach

each file has a version vector

(Si : ui) pairs

Si – Site on which the file is stored

ui – Number of updates on that site

Example: < A:4,  B:2;  C:0;  D:1 >

Compatible vectors:

one is at least as large as the other over all sites in vector

< A:1;  B:2;  C:4;  D:3 > ← < A:0;  B:2;  C:2;  D:3 >

< A:1;  B:2;  C:4;  D:3 >   < A:1;  B:2;  C:3;  D:4 >   (Not Compatible)

(< A:1;  B:2;  C:4;  D:4 >)

Version Vector



Distributed DBMS Page 10-12. 42© 1998 M. Tamer Özsu & Patrick Valduriez

Committed updates on site Si will update ui by one

Deletion/Renaming are updates

Resolution on site Si increments ui to maintain consistency later.

to Max Si

Storing a file at new site makes vector longer by one site.

Inconsistency determined as early as possible.

Only works for single file consistency, and not transactions…

Additional Comments
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A B C

A B

A B C

C

A B C

Version vector

VVi = (Si ; vi)

vi update to file f at site Si

< A:0  B:0  C:0 >

< A:0  B:0  C:0  >

< A:2  B:0  C:1 >

< A:2  B:0  C:0 >

< A:3  B:0  C:0 >
B’s version adopted

CONFLICT

3 > 2,  0 = 0,  0 < 1

A updates file twice

A updates f once

Example of Conflicting Operation 
in Different Partitions
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A B C D

A B C D

D
B CA

A B C D

B C D

+ : update

+

+ +

Example of Partition and Merge
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A B C D

A B C D

DB CA

A B C D

B C D

+

+ +

CONFLICT!

After reconcilation at site B

< A:3,  B:1,  C:1, D:0 >

< A:2,  B:0,  C:1,  D:0 >

< A:3,  B:0,  C:0,  D:0 >

< A:0,  B:0,  C:0,  D:0 >

< A:0,  B:0,  C:0,  D:0 >

< A:2,  B:0,  C:0,  D:0 >

< A:0, B:0, C:0, D:0 >

< A:2, B:0, C:1, D:0 >

Create Conflict
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General resolution rules not possible.

External (irrevocable) actions prevent reconciliation, rollback, etc.

Resolution should be inexpensive.

System must address:

detection of conflicts (when, how)

meaning of a conflict (accesses)

resolution of conflicts

automatic

user-assisted
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Effective detection procedure

providing access without mutual

exclusion (consent).

Robust during partitions (no loss).

Occasional inconsistency tolerated for the sake of 
availability.

Reconciliation semantics…

Recognize dependence upon semantics.

Conclusions


