
Distributed DBMS Page 10-12. 1© 1998 M. Tamer Özsu & Patrick Valduriez

Outline

Introduction

Background

Distributed DBMS Architecture

Distributed Database Design

Distributed Query Processing

Distributed Transaction Management

Transaction Concepts and Models

Distributed Concurrency Control

Distributed Reliability

Building Distributed Database Systems (RAID)

Mobile Database Systems

Privacy, Trust, and Authentication

Peer to Peer Systems

Distributed DBMS Page 10-12. 2© 1998 M. Tamer Özsu & Patrick Valduriez

Useful References

Textbook Principles of Distributed Database
Systems,

Chapter 12.3

Distributed DBMS Page 10-12. 3© 1998 M. Tamer Özsu & Patrick Valduriez

Types of Failures
Transaction failures

Transaction aborts (unilaterally or due to deadlock)

Avg. 3% of transactions abort abnormally

System (site) failures
Failure of processor, main memory, power supply, …

Main memory contents are lost, but secondary storage
contents are safe

Partial vs. total failure

Media failures
Failure of secondary storage devices such that the
stored data is lost

Head crash/controller failure (?)

Communication failures
Lost/undeliverable messages

Network partitioning

Distributed DBMS Page 10-12. 4© 1998 M. Tamer Özsu & Patrick Valduriez

Local Recovery Management –
Architecture

Volatile storage
Consists of the main memory of the computer system
(RAM).

Stable storage
Resilient to failures and loses its contents only in the
presence of media failures (e.g., head crashes on disks).

Implemented via a combination of hardware (non-volatile
storage) and software (stable-write, stable-read, clean-up)
components.

Secondary

storage

Stable

database

Read Write

Write Read

Main memory
Local Recovery

Manager

Database Buffer

Manager

Fetch,

Flush Database

buffers

(Volatile

database)

Distributed DBMS Page 10-12. 5© 1998 M. Tamer Özsu & Patrick Valduriez

Update Strategies

In-place update

Each update causes a change in one or more data

values on pages in the database buffers

Out-of-place update

Each update causes the new value(s) of data item(s)

to be stored separate from the old value(s)

Distributed DBMS Page 10-12. 6© 1998 M. Tamer Özsu & Patrick Valduriez

Database Log

Every action of a transaction must not only perform
the action, but must also write a log record to an
append-only file.

In-Place Update Recovery
Information

New

stable database

state

Database

Log

Update

Operation

Old

stable database

state

Distributed DBMS Page 10-12. 7© 1998 M. Tamer Özsu & Patrick Valduriez

Logging

The log contains information used by the

recovery process to restore the consistency of a

system. This information may include

transaction identifier

type of operation (action)

items accessed by the transaction to perform the

action

old value (state) of item (before image)

new value (state) of item (after image)

…

Distributed DBMS Page 10-12. 8© 1998 M. Tamer Özsu & Patrick Valduriez

Why Logging?

Upon recovery:

all of T1's effects should be reflected in the database

(REDO if necessary due to a failure)

none of T2's effects should be reflected in the

database (UNDO if necessary)

0 t time

system

crash
T1Begin End

Begin T2

Distributed DBMS Page 10-12. 9© 1998 M. Tamer Özsu & Patrick Valduriez

REDO'ing an action means performing it again.

The REDO operation uses the log information
and performs the action that might have been
done before, or not done due to failures.

The REDO operation generates the new image.

REDO Protocol

Database

Log

REDO
Old

stable database

state

New

stable database

state

Distributed DBMS Page 10-12. 10© 1998 M. Tamer Özsu & Patrick Valduriez

UNDO'ing an action means to restore the
object to its before image.

The UNDO operation uses the log information
and restores the old value of the object.

UNDO Protocol

New

stable database

state

Database

Log

UNDO

Old

stable database

state

Distributed DBMS Page 10-12. 11© 1998 M. Tamer Özsu & Patrick Valduriez

When to Write Log Records
Into Stable Store

Assume a transaction T updates a page P

Fortunate case
System writes P in stable database

System updates stable log for this update

SYSTEM FAILURE OCCURS!... (before T commits)

We can recover (undo) by restoring P to its old state
by using the log

Unfortunate case
System writes P in stable database

SYSTEM FAILURE OCCURS!... (before stable log is
updated)

We cannot recover from this failure because there is
no log record to restore the old value.

Solution: Write-Ahead Log (WAL) protocol

Distributed DBMS Page 10-12. 12© 1998 M. Tamer Özsu & Patrick Valduriez

Write–Ahead Log Protocol

Notice:

If a system crashes before a transaction is committed,

then all the operations must be undone. Only need the

before images (undo portion of the log).

Once a transaction is committed, some of its actions

might have to be redone. Need the after images (redo

portion of the log).

WAL protocol :

Before a stable database is updated, the undo portion of

the log should be written to the stable log

When a transaction commits, the redo portion of the log

must be written to stable log prior to the updating of

the stable database.

Distributed DBMS Page 10-12. 13© 1998 M. Tamer Özsu & Patrick Valduriez

Logging Interface (see
book)

Read

WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,

Flush

Secondary

storage

Stable

log

Stable

database

Database

buffers

(Volatile

database)

Log

buffers

Distributed DBMS Page 10-12. 14© 1998 M. Tamer Özsu & Patrick Valduriez

Shadowing

When an update occurs, don't change the old page, but

create a shadow page with the new values and write it

into the stable database.

Update the access paths so that subsequent accesses

are to the new shadow page.

The old page retained for recovery.

Differential files

For each file F maintain

a read only part FR

a differential file consisting of insertions part DF+ and

deletions part DF-

Thus, F = (FR  DF+) – DF-

Updates treated as delete old value, insert new value

Out-of-Place Update
Recovery Information (see
book)

Distributed DBMS Page 10-12. 15© 1998 M. Tamer Özsu & Patrick Valduriez

Commands to consider:

begin_transaction

read

write

commit

abort

recover

Independent of execution

strategy for LRM

Execution of Commands (see
book)

Distributed DBMS Page 10-12. 16© 1998 M. Tamer Özsu & Patrick Valduriez

Dependent upon

Can the buffer manager decide to write some of
the buffer pages being accessed by a transaction
into stable storage or does it wait for LRM to
instruct it?

fix/no-fix decision

Does the LRM force the buffer manager to write
certain buffer pages into stable database at the
end of a transaction's execution?

flush/no-flush decision

Possible execution strategies:

no-fix/no-flush

no-fix/flush

fix/no-flush

fix/flush

Execution Strategies (see
book)

Distributed DBMS Page 10-12. 17© 1998 M. Tamer Özsu & Patrick Valduriez

Abort

Buffer manager may have written some of the updated

pages into stable database

LRM performs transaction undo (or partial undo)

Commit

LRM writes an “end_of_transaction” record into the log.

Recover

For those transactions that have both a

“begin_transaction” and an “end_of_transaction” record

in the log, a partial redo is initiated by LRM

For those transactions that only have a

“begin_transaction” in the log, a global undo is executed

by LRM

No-Fix/No-Flush (see book)

Distributed DBMS Page 10-12. 18© 1998 M. Tamer Özsu & Patrick Valduriez

Abort

Buffer manager may have written some of the

updated pages into stable database

LRM performs transaction undo (or partial undo)

Commit

LRM issues a flush command to the buffer

manager for all updated pages

LRM writes an “end_of_transaction” record into the

log.

Recover

No need to perform redo

Perform global undo

No-Fix/Flush (see book)

Distributed DBMS Page 10-12. 19© 1998 M. Tamer Özsu & Patrick Valduriez

Abort

None of the updated pages have been written

into stable database

Release the fixed pages

Commit

LRM writes an “end_of_transaction” record into

the log.

LRM sends an unfix command to the buffer

manager for all pages that were previously
fixed

Recover

Perform partial redo

No need to perform global undo

Fix/No-Flush (see book)

Distributed DBMS Page 10-12. 20© 1998 M. Tamer Özsu & Patrick Valduriez

Abort

None of the updated pages have been written into stable

database

Release the fixed pages

Commit (the following have to be done atomically)

LRM issues a flush command to the buffer manager for

all updated pages

LRM sends an unfix command to the buffer manager

for all pages that were previously fixed

LRM writes an “end_of_transaction” record into the log.

Recover

No need to do anything

Fix/Flush (see book)

Distributed DBMS Page 10-12. 21© 1998 M. Tamer Özsu & Patrick Valduriez

Simplifies the task of determining actions of

transactions that need to be undone or

redone when a failure occurs.

A checkpoint record contains a list of active

transactions.

Steps:

Write a begin_checkpoint record into the log

Collect the checkpoint dat into the stable storage

Write an end_checkpoint record into the log

Checkpoints

Distributed DBMS Page 10-12. 22© 1998 M. Tamer Özsu & Patrick Valduriez

Media Failures –Full Architecture (see
book)

Read

WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,

Flush

Archive

log

Archive

database

Secondary

storage

Stable

log

Stable

database

Database

buffers

(Volatile

database)

Log

buffers

Write Write

