Outline

Introduction

Background
Distributed DBMS Architecture

Distributed Database Design
Distributed Query Processing

O O O O O O

Distributed Transaction Management
0 Transaction Concepts and Models
0 Distributed Concurrency Control
O Distributed Reliability

Building Distributed Database Systems (RAID)
Mobile Database Systems
Privacy, Trust, and Authentication

O O O 0O

Peer to Peer Systems

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 1

Useful References

0 Textbook Principles of Distributed Database
Systems,

Chapter 12.3

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 2

Types of Failures

0 Transaction failures
0 Transaction aborts (unilaterally or due to deadlock)
0 Avg. 3% of transactions abort abnormally

0 System (site) failures
0 Failure of processor, main memory, power supply, ...

0 Main memory contents are lost, but secondary storage
contents are safe

0 Partial vs. total failure

0 Media failures

0 Failure of secondary storage devices such that the
stored data 1s lost

0 Head crash/controller failure (?)
0 Communication failures

0 Lost/undeliverable messages

0 Network partitioning

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 3

Local Recovery Management —
Architecture

0 Volatile storage
0 Consists of the main memory of the computer system
(RAM).
0 Stable storage

0 Resilient to failures and loses its contents only in the
presence of media failures (e.g., head crashes on disks).

0 Implemented via a combination of hardware (non-volatile
storage) and software (stable-write, stable-read, clean-up)

components.
Main memory
Secondary Locl\a}ll Recovery
storage anager

Database

Fetch,
Flush

Read Write Bl
database n ¢ Database Buffer PRMSsN /| atj|e
Write Manager Read PFGEIELERS)

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 4

Update Strategies

0 In-place update

0 Each update causes a change 1n one or more data
values on pages in the database buffers

0 Out-of-place update

[0 Each update causes the new value(s) of data item(s)
to be stored separate from the old value(s)

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 5

In-Place Update Recovery
Information

Database Log

Every action of a transaction must not only perform
the action, but must also write a log record to an
append-only file.

Oold Update New

stable database
state

stable database

Operation
state P

Database
Log

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 6

Logging

The log contains information used by the
recovery process to restore the consistency of a
system. This information may include

0 transaction identifier
[0 type of operation (action)

0 items accessed by the transaction to perform the
action

0 old value (state) of item (before image)

0 new value (state) of item (after image)

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 7

Why Logging?

Upon recovery:

0 all of 7T''s effects should be reflected in the database
(REDO 1if necessary due to a failure)

0 none of T,'s effects should be reflected in the
database (UNDO if necessary)

system
crash
Begin LBt End
Begin T,
[]
0 t time

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 8

REDO Protocol

@]fs New
stable database g stable database
state state

Database
Welo

0 REDO'Ing an action means performing it again.

0 The REDO operation uses the log information
and performs the action that might have been
done before, or not done due to failures.

0 The REDO operation generates the new image.

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12.9

UNDO Protocol

Old
stable database =4 stable database
state

Database

Log

0 UNDO'ing an action means to restore the
object to its before 1image.

0 The UNDO operation uses the log information
and restores the old value of the object.

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 10

When to Write Log Records
Into Stable Store

Assume a transaction 7T updates a page P

0 Fortunate case
0 System writes P in stable database
0 System updates stable log for this update

0 SYSTEM FAILURE OCCURS!... (before T commits)
We can recover (undo) by restoring P to its old state
by using the log
0 Unfortunate case

0 System writes P in stable database

0 SYSTEM FAILURE OCCURS!... (before stable log is
updated)

We cannot recover from this failure because there 1s
no log record to restore the old value.

0 Solution: Write-Ahead Log (WAL) protocol

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 11

Write-Ahead Log Protocol

0 Notice:

0 If a system crashes before a transaction is committed,
then all the operations must be undone. Only need the
before images (undo portion of the log).

0 Once a transaction 1s committed, some of 1ts actions
might have to be redone. Need the after images (redo
portion of the log).

0 WAL protocol :

0 Before a stable database 1s updated, the undo portion of
the log should be written to the stable log

[0 When a transaction commits, the redo portion of the log
must be written to stable log prior to the updating of
the stable database.

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 12

Logging Interface (see
book)

Secondary
storage

Main memory
Local Recovery
Manager S
0
Fetch, <& <@
O
+ Flush Q

_ Read ‘f Database Buffer) Read
Write \ Manager Write

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 13

AUV UL A 1AL LU U Upuabc
Recovery Information (see
book)

0 Shadowing

0 When an update occurs, don't change the old page, but
create a shadow page with the new values and write it
into the stable database.

[0 Update the access paths so that subsequent accesses
are to the new shadow page.

0 The old page retained for recovery.

0 Differential files

0 For each file F maintain
0 a read only part FR

0 a differential file consisting of insertions part DF+ and
deletions part DF-

0 Thus, F = (FR U DF+) — DF-

0 Updates treated as delete old value, insert new value

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 14

Execution of Commands (see
book)

Commands to consider:

begin_transaction _
M Independent of execution

read strategy for LRM

write
commit
abort
recover

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 15

Execution Strategies (see
book)

0 Dependent upon

0 Can the buffer manager decide to write some of
the buffer pages being accessed by a transaction
into stable storage or does it wait for LRM to
instruct 1t?

0 fix/no-fix decision

0 Does the LRM force the buffer manager to write
certain buffer pages into stable database at the
end of a transaction's execution?

0 flush/no-flush decision
0 Possible execution strategies:
0 no-fix/mo-flush
0 mno-fix/flush
0 fix/no-flush
0 fix/flush

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 16

No-Fix/No-Flush (see book)

0 Abort

0 Buffer manager may have written some of the updated
pages into stable database

0 LRM performs transaction undo (or partial undo)

0 Commit

0 LRM writes an “end_of_transaction” record into the log.

0 Recover

[0 For those transactions that have both a
“begin_transaction” and an “end_of transaction” record
in the log, a partial redo is initiated by LRM

0 For those transactions that only have a

“begin_transaction” in the log, a global undo 1s executed
by LRM

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 17

No-Fix/Flush (see book)

0 Abort

0 Buffer manager may have written some of the
updated pages into stable database

0 LRM performs transaction undo (or partial undo)

0 Commit

0 LRM issues a f1ush command to the buffer
manager for all updated pages

0 LRM writes an “end_of transaction” record into the
log.
0 Recover
0 No need to perform redo

0 Perform global undo

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 18

Fix/No-Flush (see book)

0 Abort

0 None of the updated pages have been written
into stable database

[0 Release the fixed pages

0 Commit

0 LRM writes an “end_of transaction” record into
the log.

0 LRM sends an unfix command to the buffer

manager for all pages that were previously
fixed

0 Recover
0 Perform partial redo

0 No need to perform global undo

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 19

Fix/Flush (see book)

0 Abort

[0 None of the updated pages have been written into stable
database

[0 Release the fixed pages

0 Commait (the following have to be done atomically)

0 LRM issues a f1ush command to the buffer manager for
all updated pages

0 LRM sends an unfix command to the buffer manager
for all pages that were previously fixed

0 LRM writes an “end_of_transaction” record into the log.

0 Recover
0 No need to do anything

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 20

Checkpoints

0 Simplifies the task of determining actions of
transactions that need to be undone or
redone when a failure occurs.

0 A checkpoint record contains a list of active
transactions.

0 Steps:
0 Write a begin_checkpoint record into the log
0 Collect the checkpoint dat into the stable storage
0 Write an end_checkpoint record into the log

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 21

Media Failures —Full Architecture (see
book)

Secondary
storage

Main memory

Local Recovery
Manager S

6@

Fetch, T/ @

g\

| Flush N\

Read [Database Buffer) Read

Write Manager Write
Write Write
Archive Archive
database log

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 22

