General Comments

* Information needed by Concurrency Controllers
— Locks on database objects (System-R, Ingres, Rosenkrantz...)

— Time stamps on database objects (Thomsa, Reed)

— Time stamps on transactions (Kung, SDD-1, Schlageter,
Bhargava...)

 (Observations

— Time stamps mechanisms more fundamental than locking
— Time stamps carry more information
— Checking locks costs less than checking time stamps

Formal-Concurrency-
Control



General Comments (cont.)

* When to synchronize
— First access to an object (Locking, pessimistic validation)

— At each access (question of granularity)

— After all accesses and before commitment (optimistic validation)

* Fundamental notions
— Rollback
— ldentification of useless transactions
— Delaying commit point

— Semantics of transactions

Formal-Concurrency-
Control



Definition:

A dynamic conflict graph (DCG) for a history H=<D, T, 2, [I>is a
diagraph <V,E> where V is the set of vertices representing T, the set
of transactions; E is the set of edges where <l,J> is an edge if and
only if there exist conflicting atomic operations o;, 5; for which n(rq)<

(o).
Lemma: The DCG of a serial history is acyclic.
Theorem: A history is in DCP if and only if the DCG of H is acyclic.

Theorem: In a two-step transaction model (all reads for a transaction
precede all writes) whenever there is a transaction rollback in the
optimistic approach due to failure in validation. There will be a

deadlock in the locking approach and will cause a transaction
rollback.

Formal-Concurrency-
Control



Basic Terms

Database

Database entity
Distributed database
Program

Transaction, read set,
write set

Actions
atomic

Concurrent processing
Conflict

Consistency

Mutual consistency
History

Serializability

Serial history

Formal-Concurrency-
Control



Serializable history
Concurrency control
Centralized control
Distributed control
Scheduler

Locking

Read lock, write lock

Two phase locking,
lock point

Live lock

Dead lock
Conflict graph
Timestamp
Version number
Rollback
Validation
commit

Formal-Concurrency-
Control



* Optimistic approach
* Majority voting
* Transaction class

Crash

Node failure
Network partition
_0Q

Redo log

Undo log
Recovery

abort

Formal-Concurrency-
Control



Concurrency Control

Interleaved execution of a set of transactions that satisfies
given consistency constraints.

Concurrency Control Mechanisms:
Locking (two-phase locking)
Conflict graphs (SDD-1)
Knowledge about incoming transactions or transaction typing
Optimistic
Requires validation (backout and starvation)
Some Examples:
Centralized locking
Distributed locking
Majority voting
Local and centralized validation

Formal-Concurrency-
Control



» Locking « Centralized Locking

Problem Problem

Maintenance Crash of central

Deadlock Node |

s CongestionlLess parallelism
Pessimistic
Necessary in worst case Advantage
Simple and requires low

Advantage overhead

Do not have to worry L _
about type of consistency Distributed Locking

constraint Problem

Lock management (not
possible in some cases)

Advantage

More concurrency

Formal-Concurrency-
Control



S A

Locking Protocols

Maintenance

Deadlock and livelock

Congested (often accessed) node
Crashes and release of locks
Pessimistic

Necessary in the worst case

Formal-Concurrency-
Control



Conflict-Graph Analysis

Needs knowledge about incoming transactions
(access patterns) not possible in many cases.

Optimistic
« Back out

* Validation
 Track hole lists

Formal-Concurrency-
Control



Conflict

Two atomic opns o; and o; conflict if:
1. They belong to different transactions.
2. Both access the same entity.
3. At least one of them is a WRITE OPN.

R-W conflict
W-R conflict
W-W conflict
Conflict preserving exchange in a history
0, o, 0, 0,
=0, o4 04 0, (if 04, 0, do not conflict)

Formal-Concurrency-
Control



Definition: A Dynamic Conflict Graph (DCG) for a history

H = <D, T,X,IT> is a diagraph <V,E> where V is the set of vertices
representing T, the set of transactions; E is the set of edges where
<l|,J> is an edge if and only if there exist conflicting atomic operations

O, Oy for which H(G|) < H(GJ).
Lemma: The DCG of a serial history is acyclic.

Theorem: A history is in DCP if an only if the DCG of H is acyclic.

C

Formal-Concurrency-
Control



Restriction on the Read-Write sets
S(W,) c S(R;) fori=1....

= SR =DSR
SSR=0
Multi-step transactions
Interpreted transactions
Distributed databases

Formal-Concurrency-
Control



Read, lgfrﬂrrg}l/ Semi-Commi
Compute, 8 Success s On
And Initiating
Write Local Local Site
Validation
Fail !
Integrity
Commit, Success Control
Global Write |« & <
Finish Global
Validation
Fail
A\ 4

Figure: States of a Transaction

Formal-Concurrency-
Control



B  Validating
Transactions

Semi-Committed Transactions

A
>

Transactions Still Reading/Computing

Figure: Transaction Types on a Site

Formal-Concurrency-
Control



S(R) S(Ry)
S(W)
S(Wy)
S(R) nS(W,)=@ AND Locking
R Ry;W, W,
I(R)) < TI(W,)
Optimistic
= =T, R R, W, W,
RiRy Wy W,

Formal-Concurrency-
Control



380 CONCURRENT OPERATIONS ON THE DATABASE

Fig. 11.7. Precedence graph for Fig. 11.6.

among the transactions in the cycle. Let the arc T3, _, —T}, (take jp—.; to be
Ji if p = 1) be in G because of item A. Then in R, since T}, appears before
T5,_,, the final formula for A applies a function f associated with some LOCK
A—UNLOCK A pair in T}, before applying some function g associated with a
LOCK A—UNLOCK A pair in 73, _,. In S, however, T}, _, precedes T, since
there is an arc T _, —Tj . Therefore, in S, g is applied before f. Thus the final
value of A differs in R and S, in the sense that the two formulas are not the
same, and we conclude that R and S are not equivalent. Thus S is equavalent

to no serial schedule. [J

A Protocol that Guarantees Serializability

We shall give a simple protocol with the property that any collection of transac-
tions obeying the protocol cannot have a legal, nonserializable schedule. More-
over, this protocol is, in a sense to be discussed subsequently, the best that can
be formulated. The protocol is, simply, to require that in any transaction, all
locks precede all unlocks.t Transactions obeying this protocol are said to be
two-phase; the first phase is the locking phase and the second the unlocking
phase. For example, in Fig. 11.3, 77 and 73 are two-phase; 7% is not.
Theorem 11.2: If S is any schedule of two-phase transactions, then S is serializ-
able. :

Proof: Suppose not. Then by Theorem 11.1, the precedence graph G for S has
a cycle, Ty, —T;,—- - -—T; —T;, . Then some lock by T}, follows an unlock by
‘T;,; some lock by T;, follows an unlock by T},, and so on. Finally, some lock
by T;, follows an unlock by T;, . Therefore, a lock of T}, follows an unlock of
T;,, contradicting the assumption that 7}, is two-phase. []

Another way to see why two-phase transactions must be serializable is to
imagine that a two-phase transaction occurs instantaneously at the moment it
obtains the last of its locks. Then the order in which the transactions reach this
point must be a serial schedule equivalent to the given schedule. For if in the
given schedule, transaction 7 locks A before T does, then T3 surely obtains
the last of its locks before T% does.

We mentioned that the two-phase protocol in is a sense the best that can
be done. Precisely, what we can show is that if 7} is any transaction that is
not. two phase, then there is some other transaction 7> with which 73 could be
t To avoid deadlock, the locks could be made according to 2 fixed linear order of the items.
However, we do not deal with deadlock here, and some other method could 2lso be used to
avoid deadlock.

11.2 A SIMPLE TRANSACTION MODEL 381

LOCK A

UNLOCK A
LOCK A
LOCK B
UNLOCK A4
UNLOCK B

LOCK B

UNLOCK B

Ty T

Fig. 11.8. A nonserializable schedule.

run in a nonserializable schedule. Suppose T; is not two phase. Then there is
some step UNLOCK A of T} that precedes a step LOCK B. Let T, be:

Tp: LOCK A: LOCK B; UNLOCK A; UNLOCK B

Then the schedule of Fig. 11.8 is easily seen to be nonserializable, since the
treatment of A requires that Ty precede T3, while the treatment of B requires
the opposite.

Note that there are particular collections of transactions, not all two-phase,
that yield only serial schedules. We shall consider an important example of
such a collection in Section 11.5. However, since it is normal not to know the
set of all transactions that. could ever be executed concurrently with a given
transaction, we are usually forced to require all transactions to be two-phase.

11.3 A MODEL WITH READ- AND WRITE-LOCKS

In Section 11.2 we assumed that every time a transaction locked an item it
changed that item. In practice, many times a transaction needs only to obtain
the value of the item and is guaranteed not to change that value. If we
distinguish between a read-only access and a read-write access, we can develop a

Formal-Concurrency-
Control



SR

DSR

SSR

2PL

Degree of concurrency provided by different classes of histories

Formal-Concurrency-
Control



Distributed Database Systems

« Computer network (communication system)
« Database systems
» Users (programs, transactions)

Examples: Issues:
Distributed INGRES Correct processing (serializability)
SDD-1 Consistency of databases (integrity,
commitment)
System R* Resiliency to failures
SIRIUS — DELTA Performance (response time, throughput)
RAID Communication delay

Formal-Concurrency-
Control



Computer Networks:

Ethernet
ATM

FDDI
ARPANET
BITNET
NSF NET

Database Systems:
INGRES
DB2
RAID

Communications:
UDP/IP
TCP/IP
1ISO

User Interaction:
SOL
Transaction

Formal-Concurrency-
Control



Definition 1:

Definition 2:

Definition 3:

A history is a quadruple h = (n, I1, M, S) where
n is a positive integer,

IT is a permutation of the set

Zn = {Ry, Wy, Ry, Wy, .. ,R,, Wi}

equivalently a one-to-one function

that I(R;) < IT (W,) fori =1,2,--n,
M is a finite set of variables representing physical data items,
S is a function mapping Z,, to 2V

Set of all histories is denoted by M.

A transaction Ti is a pair (Ri, Wi). A transaction is a single
execution of a program. This program may be a simple query
statement expressed in a query language.

Read set of Ti is denoted by S (Ri) and Write set of Ti is
denoted by S(Wi).

Formal-Concurrency-
Control



Definition 4: A history h = (n, I1, M, S) is serial if IT(Wi) = IT(Ri) + 1 for all
| =1,2,---n. In other words, a history is serial if Ri immediately
precedes Wi in it for | = 1,2---n.

Definition 5: A history is serializable if there is some serial history hs such
that the effect of the execution of h is equivalent to hs. Note
serializability requires only that there exists some serial order
equivalent to the actual interleaved execution history. There
may in fact be several such equivalent serial orderings.

Definition 6: A history h is strongly serializable if in hs the following
conditions hold true:
« (Wi) =TI(Ri) + 1
* (Ri+1)=TI(Wi) + 1
If ti + 1 is the next transaction that arrived and obtained the next
time-stamp after Ti. In strongly serializable history, the following
constraint must hold “If a transaction Ti is issued before a

transaction Tj, then the total effect on the database should be
equivalent to the effect that Ti was executed before Tj.

Note if Ti and Tj are independent, e.g., {S(Ri) u S(Wi)} n {S(Rj) U S(Wj)} = @
then the effect of execution TiTj or TjTi will be the same.

Formal-Concurrency-Control



history h=(n,m, V.S ).
h=(n+2,7VS)
h=T_-h-T

n+l n+2
Live transaction (set can be found in O(n - |V]).
Two histories are equivalent (=) if they have the same set of live
transactions.
Equivalence can be determined O(n - |V| ).

Theorem: Testing whether a history h is serializable is NP-complete
even if h has no dead transactions.

- Polygraph: Pair of arcs between nodes
- Satisfiability: Problem of Boolean formulas in conjuctive normal forms
with two-/three literals
(SAT)

(Non-circular)
Formal-Concurrency-Control



Concentration of histories:

h=(n,n,V,S, )
h,=(n,,n,.,V,,>S,)
h,oh, =(n +n,,t,V,,P)
(w, )=n,(w,) i<n
(w, )=n,(w_ )+2n for i>n
same true for Ri
h =RW,
h,=RW,
hoh, = RWRW,

Formal-Concurrency-Control



Two-phase locking:

h=(n,mV,5S) is 2PL
If d distinct non-integer real numbers
l1,...,1,, such that

(a) m(R;) < l; <w(W;) fori=1, ..., n

(b) If S(R;) N S(W;) #0, i # j, and 7(R;) < m(Wj), then l; < [;
(C) It S(Wz) M S(W]) 7'5 () and W(Wz) < W(Wj), then W(Wz) < lj

Formal-Concurrency-Control



Definition G2PL

A history h is in the global two-phase locking (G2PL) class
iff there exists a set of global lock points {L;|¢ € T'} such that

for transactions i and j:

i) (o) < L; < m(w;) VieT.

ii) If 0; and o; conflict, and 7(0;) < m(o;) then
a) L; < L;, and
b) wia;) =< L

Formal-Concurrency-Control



Definition L2PL

A history is in the local two-phase locking (L2PL) class ift
there exists a set of local lock points {Lf ieT,j € N}

such that for transactions i and ]

i) Vi e T LF < n*(0;) if m(w;) < 7(0;), and
m*(a;) < LF if a; is on node k.
ii) If 0; and o conflict on node k, and 7%(0;) < 7*(o;) then
a) L L;‘-‘, and
b) n*(o;) < L%,

i) LY < LY & L < LT Vk,m € N.
Formal-Concurrency-Control



———————————————————————————————

—— ——— —————————————— ——

DSS

— —— —— — ——— ——— —— —

.10

All the classes G2PL, L2PL, DCP, DSTO, and DSS are serializable and
form a hierarchy based on the degree of concurrency.

SR is the set of all serializable histories.

Formal-Concurrency-Control



