General Comments

• Information needed by Concurrency Controllers
 – Locks on database objects (System-R, Ingres, Rosenkrantz…)
 – Time stamps on database objects (Thomsa, Reed)
 – Time stamps on transactions (Kung, SDD-1, Schlageter, Bhargava…)

• Observations
 – Time stamps mechanisms more fundamental than locking
 – Time stamps carry more information
 – Checking locks costs less than checking time stamps
General Comments (cont.)

• When to synchronize
 – First access to an object (Locking, pessimistic validation)
 – At each access (question of granularity)
 – After all accesses and before commitment (optimistic validation)

• Fundamental notions
 – Rollback
 – Identification of useless transactions
 – Delaying commit point
 – Semantics of transactions
Definition:

A dynamic conflict graph (DCG) for a history $H = <D, T, \Sigma, \Pi>$ is a diagraph $<V, E>$ where V is the set of vertices representing T, the set of transactions; E is the set of edges where $<I, J>$ is an edge if and only if there exist conflicting atomic operations σ_j, σ_j for which $\pi(\pi_1) < \pi(\sigma_j)$.

Lemma: The DCG of a serial history is acyclic.

Theorem: A history is in DCP if and only if the DCG of H is acyclic.

Theorem: In a two-step transaction model (all reads for a transaction precede all writes) whenever there is a transaction rollback in the optimistic approach due to failure in validation. There will be a deadlock in the locking approach and will cause a transaction rollback.
Basic Terms

• Database
• Database entity
• Distributed database
• Program
• Transaction, read set, write set
• Actions
• atomic

• Concurrent processing
• Conflict
• Consistency
• Mutual consistency
• History
• Serializability
• Serial history
• Serializable history
• Concurrency control
• Centralized control
• Distributed control
• Scheduler
• Locking
• Read lock, write lock
• Two phase locking, lock point

• Live lock
• Dead lock
• Conflict graph
• Timestamp
• Version number
• Rollback
• Validation
• commit
- Optimistic approach
- Majority voting
- Transaction class

Crash
Node failure
Network partition
Log
Redo log
Undo log
Recovery
abort
Concurrency Control

Interleaved execution of a set of transactions that satisfies given consistency constraints.

Concurrency Control Mechanisms:
- Locking (two-phase locking)
- Conflict graphs (SDD-1)
- Knowledge about incoming transactions or transaction typing
- Optimistic
 Requires validation (backout and starvation)

Some Examples:
- Centralized locking
- Distributed locking
- Majority voting
- Local and centralized validation
• Locking Problem
 Maintenance
 Deadlock
 Pessimistic
 Necessary in worst case

Advantage
 Do not have to worry about type of consistency constraint

• Centralized Locking Problem
 Crash of central Node
 CongestionLess parallelism

Advantage
 Simple and requires low overhead

• Distributed Locking Problem
 Lock management (not possible in some cases)

Advantage
 More concurrency
Locking Protocols

1. Maintenance
2. Deadlock and livelock
3. Congested (often accessed) node
4. Crashes and release of locks
5. Pessimistic
6. Necessary in the worst case
Conflict-Graph Analysis

Needs knowledge about incoming transactions (access patterns) not possible in many cases.

Optimistic

- Back out
- Validation
- Track hole lists
Conflict

Two atomic opns σ_i and σ_j conflict if:
1. They belong to different transactions.
2. Both access the same entity.
3. At least one of them is a WRITE OPN.

R-W conflict
W-R conflict
W-W conflict
Conflict preserving exchange in a history

$$\theta_1 \sigma_1 \sigma_2 \theta_2$$

$$\equiv \theta_1 \sigma_1 \sigma_1 \theta_2 \quad \text{(if } \sigma_1, \sigma_2 \text{ do not conflict)}$$
Definition: A Dynamic Conflict Graph (DCG) for a history \(H = <D,T,Σ,Π> \) is a diagraph \(<V,E>\) where \(V \) is the set of vertices representing \(T \), the set of transactions; \(E \) is the set of edges where \(<I,J>\) is an edge if and only if there exist conflicting atomic operations \(σ_I, σ_J \) for which \(Π(σ_I) < Π(σ_J) \).

Lemma: The DCG of a serial history is acyclic.

Theorem: A history is in DCP if an only if the DCG of \(H \) is acyclic.
• Restriction on the Read-Write sets

\[S(W_i) \subseteq S(R_i) \text{ for } i = 1, \ldots \]

\[\Rightarrow \quad SR \equiv DSR \]

\[SSR \equiv O \]

• Multi-step transactions
• Interpreted transactions
• Distributed databases
Figure: States of a Transaction
Committed Transactions

Semi-Committed Transactions

Transactions Still Reading/Computing

Validating Transactions

Figure: Transaction Types on a Site
$S(R_i) \cap S(W_j) \neq \emptyset$ AND $\prod(R_i) < \prod(W_j)$

$\Rightarrow T_i \rightarrow T_j$

Locking
$R_i \; R_j \; W_i \; W_j$

Optimistic
$R_i \; R_j \; W_i \; W_j$

$R_i \; R_j \; W_j \; W_i$

Formal-Concurrency-Control
Formal-Concurrency-Control

A Protocol that Guarantees Serializability

We shall give a simple protocol with the property that any collection of transactions obeying the protocol cannot have a legal, nonserializable schedule. Moreover, this protocol is, in a sense to be discussed subsequently, the best that can be formulated. The protocol is, simply, to require that in any transaction, all locks precede all unlocks.† Transactions obeying this protocol are said to be two-phase; the first phase is the locking phase and the second the unlocking phase. For example, in Fig. 11.3, \(T_1 \) and \(T_3 \) are two-phase; \(T_2 \) is not.

Theorem 11.2: If \(S \) is any schedule of two-phase transactions, then \(S \) is serializable.

Proof: Suppose not. Then by Theorem 11.1, the precedence graph \(G \) for \(S \) has a cycle, \(T_i \rightarrow T_{i+1} \rightarrow \cdots \rightarrow T_p \rightarrow T_i \). Then some lock by \(T_i \) follows an unlock by \(T_{i+1} \); some lock by \(T_{i+1} \) follows an unlock by \(T_{i+2} \), and so on. Finally, some lock by \(T_p \) follows an unlock by \(T_i \). Therefore, a lock of \(T_i \) follows an unlock of \(T_{i+1} \), contradicting the assumption that \(T_i \) is two-phase.

Another way to see why two-phase transactions must be serializable is to imagine that a two-phase transaction occurs instantaneously at the moment it obtains the last of its locks. Then the order in which the transactions reach this point must be a serial schedule equivalent to the given schedule. For if in the given schedule, transaction \(T_1 \) locks \(A \) before \(T_2 \) does, then \(T_1 \) surely obtains the last of its locks before \(T_2 \) does.

We mentioned that the two-phase protocol is in a sense the best that can be done. Precisely, what we can show is that if \(T_1 \) is any transaction that is not two-phase, then there is some other transaction \(T_2 \) with which \(T_1 \) could be

† To avoid deadlock, the locks could be made according to a fixed linear order of the items. However, we do not deal with deadlock here, and some other method could also be used to avoid deadlock.

\[T_1 \rightarrow T_2 \rightarrow T_3 \]

Fig. 11.7. Precedence graph for Fig. 11.6.

among the transactions in the cycle. Let the arc \(T_{p-1} \rightarrow T_p \) (take \(j_p-1 \) to be \(j_p \) if \(p = 1 \)) be in \(G \) because of item \(A \). Then in \(R \), since \(T_{p} \) appears before \(T_{p-1} \), the final formula for \(A \) applies a function \(f \) associated with some \(\text{LOCK} A \rightarrow \text{UNLOCK} A \) in \(T_{p} \), before applying some function \(g \) associated with a \(\text{LOCK} A \rightarrow \text{UNLOCK} A \) in \(T_{p-1} \). Then, \(T_{p-1} \) does not precede \(T_p \), since there is an arc \(T_{p-1} \rightarrow T_p \). Therefore, in \(S \), \(g \) is applied before \(f \). Thus the final value of \(A \) differs in \(R \) and \(S \), in the sense that the two formulas are not the same, and we conclude that \(R \) and \(S \) are not equivalent. Thus \(S \) is equivalent to no serial schedule.

\[\text{LOCK } A \]

\[\text{UNLOCK } A \]

Fig. 11.8. A nonserializable schedule.

run in a nonserializable schedule. Suppose \(T_1 \) is not two phase. Then there is some step \(\text{UNLOCK} A \) of \(T_1 \) that precedes a step \(\text{LOCK} B \). Let \(T_2 \) be:

\[T_2: \text{LOCK } A; \text{LOCK } B; \text{UNLOCK } A; \text{UNLOCK } B \]

Then the schedule of Fig. 11.8 is easily seen to be nonserializable, since the treatment of \(A \) requires that \(T_1 \) precede \(T_2 \), while the treatment of \(B \) requires the opposite.

Note that there are particular collections of transactions, not all two-phase, that yield only serial schedules. We shall consider an important example of such a collection in Section 11.5. However, since it is normal not to know the set of all transactions that could ever be executed concurrently with a given transaction, we are usually forced to require all transactions to be two-phase.

11.3 A MODEL WITH READ- AND WRITE-LOCKS

In Section 11.2 we assumed that every time a transaction locked an item it changed that item. In practice, many times a transaction needs only to obtain the value of the item and is guaranteed not to change that value. If we distinguish between a read-only access and a read-write access, we can develop a
Degree of concurrency provided by different classes of histories
Distributed Database Systems

- Computer network (communication system)
- Database systems
- Users (programs, transactions)

Examples:
- Distributed INGRES
- SDD-1
- System R*
- SIRIUS – DELTA
- RAID

Issues:
- Correct processing (serializability)
- Consistency of databases (integrity, commitment)
- Resiliency to failures
- Performance (response time, throughput)
- Communication delay
Computer Networks:
- Ethernet
- ATM
- FDDI
- ARPANET
- BITNET
- NSF NET
- ...

Database Systems:
- INGRES
- DB2
- RAID

Communications:
- UDP/IP
- TCP/IP
- ISO

User Interaction:
- SOL
- Transaction

Formal-Concurrency-Control
Definition 1: A history is a quadruple $h = (n, \Pi, M, S)$ where

- n is a positive integer,
- Π is a permutation of the set
- $\Sigma_n = \{R_1, W_1, R_2, W_2, \ldots, R_n, W_n\}$
- equivalently a one-to-one function
 $\Pi: \Sigma_n \rightarrow \{1, 2, \ldots, 2n\}$
- that $\Pi(R_i) < \Pi(W_i)$ for $i = 1, 2, \ldots, n$,

- M is a finite set of variables representing physical data items,
- S is a function mapping Σ_n to 2^M.

Set of all histories is denoted by M.

Definition 2: A transaction T_i is a pair (R_i, W_i). A transaction is a single execution of a program. This program may be a simple query statement expressed in a query language.

Definition 3: Read set of T_i is denoted by $S(R_i)$ and Write set of T_i is denoted by $S(W_i)$.
Definition 4: A history $h = (n, \Pi, M, S)$ is serial if $\Pi(W_i) = \Pi(R_i) + 1$ for all $i = 1, 2, \ldots, n$. In other words, a history is serial if R_i immediately precedes W_i in it for $i = 1, 2, \ldots, n$.

Definition 5: A history is serializable if there is some serial history h_s such that the effect of the execution of h is equivalent to h_s. Note serializability requires only that there exists some serial order equivalent to the actual interleaved execution history. There may in fact be several such equivalent serial orderings.

Definition 6: A history h is strongly serializable if in h_s the following conditions hold true:

- $(W_i) = \Pi(R_i) + 1$
- $(R_i + 1) = \Pi(W_i) + 1$

If $t_i + 1$ is the next transaction that arrived and obtained the next time-stamp after T_i. In strongly serializable history, the following constraint must hold “If a transaction T_i is issued before a transaction T_j, then the total effect on the database should be equivalent to the effect that T_i was executed before T_j.

Note if T_i and T_j are independent, e.g., $\{S(R_i) \cup S(W_i)\} \cap \{S(R_j) \cup S(W_j)\} = \emptyset$ then the effect of execution T_iT_j or T_jT_i will be the same.
history \(h = (n, \pi, V_1 S) \).

\[h = T_{n+1} \cdot h \cdot T_{n+2} \]

Live transaction (set can be found in \(O(n \cdot |V|) \)).
Two histories are equivalent (\(\equiv \)) if they have the same set of live transactions.
Equivalence can be determined \(O(n \cdot |V|) \).

Theorem: Testing whether a history \(h \) is serializable is NP-complete even if \(h \) has no dead transactions.

- Polygraph: Pair of arcs between nodes
- Satisfiability: Problem of Boolean formulas in conjunctive normal forms with two-/three literals
 (SAT)
 (Non-circular)
Concentration of histories:

\[h_1 = (n_1, \pi_1, V_1, S_1) \]
\[h_2 = (n_2, \pi_2, V_2, S_2) \]
\[h \circ h_2 = (n_1 + n_2, \tau, V_1, P) \]
\[\tau(w_i) = \pi_1(w_i) \quad i \leq n \]
\[\tau(w_i) = \pi_2(w_{i-n}) + 2n \quad \text{for} \quad i > n \]

same true for Ri

\[h_1 = R_1W_1 \]
\[h_2 = R_1W_1 \]
\[h_1 \circ h_2 = R_1W_1R_2W_2 \]
Two-phase locking:

\[h = (n, \pi, V, S) \text{ is } 2\text{PL} \]

If \(\exists \) distinct non-integer real numbers \(l_1, ..., l_n \) such that

(a) \(\pi(R_i) < l_i < \pi(W_i) \) for \(i = 1, ..., n \)
(b) If \(S(R_i) \cap S(W_j) \neq \emptyset, i \neq j, \) and \(\pi(R_i) < \pi(W_j) \), then \(l_i < l_j \)
(c) If \(S(W_i) \cap S(W_j) \neq \emptyset \) and \(\pi(W_i) < \pi(W_j) \), then \(\pi(W_i) < l_j \)
Definition G2PL

A history h is in the global two-phase locking (G2PL) class iff there exists a set of global lock points $\{L_i | i \in T\}$ such that for transactions i and j:

i) $\pi(\alpha_i) \leq L_i \leq \pi(\omega_i)$ $\forall i \in T$.

ii) If σ_i and σ_j conflict, and $\pi(\sigma_i) < \pi(\sigma_j)$ then
 a) $L_i < L_j$, and
 b) $\pi(\sigma_i) < L_j$.
Definition L2PL

A history is in the local two-phase locking (L2PL) class iff there exists a set of local lock points \(\{L^j_i | i \in T, j \in N \} \) such that for transactions i and j

\(i \) \(\forall i \in T \) \(L^k_i \leq \pi^k(\sigma_i) \) if \(\pi(\omega_i) \leq \pi(\sigma_i) \), and
\(\pi^k(\alpha_i) \leq L^k_i \) if \(\alpha_i \) is on node k.

\(ii \) If \(\sigma_i \) and \(\sigma_j \) conflict on node k, and \(\pi^k(\sigma_i) < \pi^k(\sigma_j) \) then
 \(a \) \(L^k_i < L^k_j \), and
 \(b \) \(\pi^k(\sigma_i) < L^k_j \),

\(iii \) \(L^k_i < L^k_j \Leftrightarrow L^m_i < L^m_j \forall k, m \in N. \)
All the classes G2PL, L2PL, DCP, DSTO, and DSS are serializable and form a hierarchy based on the degree of concurrency. SR is the set of all serializable histories.