Outline

Introduction

Background

Distributed DBMS Architecture
Distributed Database Design
Distributed Query Processing

O O O O o O

Distributed Transaction Management
O Concurrency Control Algorithms

Building Distributed Database Systems (RAID)
Mobile Database Systems
Privacy, Trust, and Authentication

O O O 04

Peer to Peer Systems

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 1

Useful References

0 Textbook Principles of Distributed Database
Systems,

Chapter 11.3-11.5

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 2

Concurrency Control
Algorithms

0 Pessimistic

0 Two-Phase Locking-based (2PL)

0 Centralized (primary site) 2PL
0 Primary copy 2PL
0 Distributed 2PL

0 Timestamp Ordering (TO)
o Basic TO
0 Multiversion TO
0 Conservative TO

0 Hybrid
0 Optimistic
0 Locking-based
0 Timestamp ordering-based

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez

Page 10-12. 3

Locking-Based Algorithms

0 Transactions indicate their intentions by
requesting locks from the scheduler (called lock
manager).

0 Locks are either read lock (rl) [also called shared
lock] or write lock (wl) [also called exclusive lock]

0 Read locks and write locks conflict (because Read
and Write operations are incompatible

ri. wl
rl yes no
wl no no

0 Locking works nicely to allow concurrent
processing of transactions.

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 4

Two-Phase Locking (2PL)

[0 A Transaction locks an object before using it.

[0 When an object 1s locked by another transaction,
the requesting transaction must wait.

[0 When a transaction releases a lock, 1t may not
request another lock.
Lock point

A

Obtain lock

A

£ Release lock

A

S)20] JO "ON

v

‘ Phase 1 Phase 2 l

BEGIN END

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 5

Strict 2PL

Hold locks until the end.

Obtain lock

Mo, of locks

Release lock
y

A 4

BEGIN e END
period of

data item
use

v

Transaction
duration

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 6

Testing for Serializability

Consider transactions Ty, T, ..., T}

Create a directed graph (called a conflict graph),
whose nodes are transactions. Consider a history
of transactions.

If T, unlocks an item and T, locks it afterwards,
draw an edge from T, to ’12 implying T; must
precede T, in any serlal hlstory

T,—T,

Repeat this for all unlock and lock actions for
different transactions.

If graph has a cycle, the history is not serializable.

If graph 1s a cyclic, a topological sorting will give the
serial history.

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 7

Example

N = =

(\)

DO

w

= =2 = = =3 =33

w

Distributed DBMS

Lock X
Unlock X
Lock X
Lock Y
Unlock X
Unlock Y
Lock Y
Unlock Y

T,—T,

3
© 1998 M. Tamer Ozsu & Patrick Valduriez

Page 10-12. 8

Theorem

Two phase locking is a sufficient condition to ensure
serializablility.

Proof: By contradiction.

If history is not serializable, a cycle must exist in the
conflict graph. This means the existence of a path
such as

T,-T,—T, ... T, = T,.
This implies T, unlocked before T, and after T,.

T, requested a lock again. This violates the condition
of two phase locking.

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 9

Distributed DBMS

2PL from Jeff Ullman's book

380 CONCURRENT OFERATIONS ON THE DATABASE

Fig. 11.7. Precedence graph for Fig. 11.6.

among the transactions in the cyecle. Let the are T3 |, —T% (take jp_., to be
F¢ if p = 1) be in G because of itern A. Then in R, since T;, appears before
T3y, _,, the final formula for A applies a function f associated with some LOCK
A—UNLOCK A pair in T}, before applying some function g associated with a
LOCK A—UNLOCK A pair in T3, _,. In 5, however, T | precedes T} , since
there is an are T; _ —T; . Therefore, in S, g is applied before f. Thus the final
value of A differs in R and S, in the sense that the two formulas are not the
same, and we conclude that R and & are not equivalent. Thus & is eguavalent

to no serial schedule. [J

A Protocol that Guarantees Serializability

We shall give a simple protocol with the property that any collection of transac-
tions obeying the protocol cannot have a legal, nonserializable schedule. More-
over, this protocol is, in a sense to be dizeussed subsequently, the best that can
be formmiated. The protocol is, simply, to require_that in any transaction, all
locks precede all unlocks.t Transactions obeying this protocol are said to be
two-phase; the first phase is the locking phase and the second the unlocking
phase. For example, in Fig. 11.3, 7} and T3 are two-phase; T5 is not.
Theorem 11.2: If 8 is any schedule of two-phase transactions, then 5 is serializ-
able. '

Proof: Suppose not. Then by Theorem 11.1, the precedence graph & for S has
a eyele, Ty, —T5,—- - -—T; —T;, . Then some lock by T, follows an unlock by
T%,; some lock by T3, follows an unlock by T3, and so on. Finally, some lock
by T%, follows an unlock by T.,r?. Therefore, a lock of T:, follows an unlock of
T%,, contradicting the assumption that T}, is two-phase. []

Another way to see why two-phase transactions must be serializable is to
imagine that a two-phase transaction occurs instantaneously at the moment it
obtains the last of its locks. Then the order in which the transactions reach this
point must be a serial schedule equivalent to the given schedule. For if in the
given schedule, transaction T3 locks A before T3 does, then Ty surely obtains
the last of its locks before Th does.

We mentioned that the two-phase protocol in is a sense the best that can
be done. Precisely, what we ean show is that if T} is any transaction that is
not two phase, then there is some other transaction T3 with which T3 could be
T To avoeid deadlock, the locks eould be made according to a fixed linear order of the items.
Howewver, we do not deal with deadlock here, and some other method could also be used to
avoid deadloek.

© 1998 M. Tamer Ozsu & Patrick Valduriez

11.2 A SIMPLE TRANSACTION MODEL 381
LOCK A
TUNLOCK A
LOCEK A
LOCK B
UNLOCK A
UNLOQCK B
LOCK B
UNLOCK B
T T

Fig. 11.8. A nonserializable schedule.

run in a nonserializable schedule. Suppose T4 iz not two phase. Then there is
some step UNLOCK A of T that precedes a step LOCK B. Let Ty be:

Te: LOCK A: LOCK B; UNLOCK 4; UNLOCK B

Then the schedule of Fig. 11.8 is easily seen to be nonserializable, since the
treatment of A requires that Ty precede Ty, while the treatment of B requires
the opposite.

Note that there are particular collections of transactions, not all two-phase,
that yield only serial schedules. We shall consider an important example of
such a collection in Section 11.5. However, sinece it is normal not to know the
set of all transactions that could ever be executed eoncurrently with a given
transaction, we are usually forced to require all transactions to be two-phase.

11.3 A MODEL WITH READ- AND WRITE-LOCKS

In Section 11.2 we assumed that every time a transaction locked an item it
changed that item. In practice, many times a transaction needs only to obtain
the wvalue of the item and is guaranteed not to change that walue. If we
distinguish between a read-only access and a read-write aceess, we can develop a

Page 10-12. 10

Centralized 2PL

0 There 1s only one 2PL scheduler in the distributed system.

0 Lock requests are 1ssued to the central scheduler.

Data Processors at
participating sites Coordinating TM Central Site LM

<0ck Recluest

d
W
fon

EI?\’
d of Opers tion
W

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 11

Distributed 2PL

0 2PL schedulers are placed at each site. Each
scheduler handles lock requests for data at that site.

0 A transaction may read any of the replicated copies
of item x, by obtaining a read lock on one of the
copies of x. Writing into x requires obtaining write
locks for all copies of x.

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 12

Distributed 2PL Execution

Coordinating TM Participating LMs Participating DPs

LOC
WA
Opergy;
W‘

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 13

Timestamp Ordering

0 Transaction (7)) is assigned a globally unique timestamp ¢s(7)).

0 Transaction manager attaches the timestamp to all operations issued
by the transaction.

0 KEach data item is assigned a write timestamp (wts) and a read
timestamp (rts):
0 rts(x) = largest timestamp of any read on x
0 wts(x) = largest timestamp of any read on x

0 Conflicting operations are resolved by timestamp order.

Basic T/O:

for R.(x) for W.(x)

if ts(T)) < wts(x) if ts(T) < rts(x) and ts(T)) < wts(x)
then reject R.(x) then reject W.(x)

else accept R;(x) else accept W,(x)

rts(x) < ts(T) wts(x) < ts(T))

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 14

Conservative Timestamp
Ordering

0 Basic timestamp ordering tries to
execute an operation as soon as it
receives 1t

0 progressive
0 too many restarts since there is no delaying

0 Conservative timestamping delays each
operation until there 1s an assurance
that 1t will not be restarted

0 Assurance?

0 No other operation with a smaller
timestamp can arrive at the scheduler

0 Note that the delay may result in the
formation of deadlocks

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 15

Multiversion Timestamp Ordering

0 Do not modify the values in the database,
create new values.

0 A R(x) 1s translated into a read on one version
of x.

0 Find a version of x (say x,) such that ts(x,) is the
largest timestamp less than ts(T)).

0 A Wi(x) is translated into W,(x,,) and accepted if
the scheduler has not yet processed any Ri(x,)
such that

is(T) < ts(x,) < ts(T)

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 16

Optimistic Concurrency Control
Algorithms

Pessimistic execution

Validate Read Compute Write

Optimistic execution

Read Compute Validate Write

Distributed DBMS © 1998 M. Tamer Ozsu & Patrick Valduriez Page 10-12. 17

