
Distributed DBMS Page 10-12. 1© 1998 M. Tamer Özsu & Patrick Valduriez

Outline

Introduction

Background

Distributed DBMS Architecture

Distributed Database Design

Distributed Query Processing

Distributed Transaction Management

Concurrency Control Ideas

Building Distributed Database Systems (RAID)

Mobile Database Systems

Privacy, Trust, and Authentication

Peer to Peer Systems

Distributed DBMS Page 10-12. 2© 1998 M. Tamer Özsu & Patrick Valduriez

Useful References

J. D. Ullman, Principles of Database Systems.
Computer Science Press, Rockville, 1982

J. Gray and A. Reuter. Transaction Processing

- Concepts and Techniques. Morgan Kaufmann,

1993

B. Bhargava, Concurrency Control in Database
Systems, IEEE Trans on Knowledge and Data
Engineering,11(1), Jan.-Feb. 1999

Textbook Principles of Distributed Database
Systems,

Chapter 11.1, 11.2

Distributed DBMS Page 10-12. 3© 1998 M. Tamer Özsu & Patrick Valduriez

Concurrency Control

Interleaved execution of a set of transactions that satisfies given
consistency constraints.

Concurrency Control Mechanisms:

Locking (two-phase locking)

Conflict graphs

Knowledge about incoming transactions or transaction typing

Optimistic: requires validation (backout and starvation)

Some Examples:

Centralized locking

Distributed locking

Majority voting

Local and centralized validation

Distributed DBMS Page 10-12. 4© 1998 M. Tamer Özsu & Patrick Valduriez

Basic Terms for Concurrency Control

Database

Database entity (item, object)

Distributed database

Program

Transaction, read set, write set

Actions

Atomic

Concurrent processing

Conflict

Consistency

Mutual consistency

History

Serializability

Serial history

Distributed DBMS Page 10-12. 5© 1998 M. Tamer Özsu & Patrick Valduriez

Serializable history

Concurrency control

Centralized control

Distributed control

Scheduler

Locking

Read lock, write lock

Two phase locking, lock point

Crash

Node failure

Network partition

Log

Live lock

Dead lock

Conflict graph (Acyclic)

Timestamp

Version number

Rollback

Validation and optimistic

Commit

Redo log

Undo log

Recovery

Abort

Basic Terms for Concurrency Control

Distributed DBMS Page 10-12. 6© 1998 M. Tamer Özsu & Patrick Valduriez

Concurrency Control once
again

The problem of synchronizing concurrent

transactions such that the consistency of the

database is maintained while, at the same

time, maximum degree of concurrency is

achieved.

Anomalies:

Lost updates

The effects of some transactions are not reflected on

the database.

Inconsistent retrievals

A transaction, if it reads the same data item more than

once, should always read the same value.

Distributed DBMS Page 10-12. 7© 1998 M. Tamer Özsu & Patrick Valduriez

Execution Schedule (or History)

An order in which the operations of a set of
transactions are executed.

A schedule (history) can be defined as a partial
order over the operations of a set of transactions.

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)

Write(x) Write(y) Read(y)

Commit Read(z) Read(z)

Commit Commit

Distributed DBMS Page 10-12. 8© 1998 M. Tamer Özsu & Patrick Valduriez

Formalization of Schedule

A complete schedule SC(T) over a set of

transactions T={T1, …, Tn} is a partial order

SC(T)={T, < T} where

T = i i , for i = 1, 2, …, n

< T  i < i , for i = 1, 2, …, n

For any two conflicting operations Oij, Okl  T,

either Oij < T Okl or Okl < T Oij

Distributed DBMS Page 10-12. 9© 1998 M. Tamer Özsu & Patrick Valduriez

Given three transactions

T1: Read(x) T2: Write(x) T3: Read(x)

Write(x) Write(y) Read(y)

Commit Read(z) Read(z)

Commit Commit

A possible complete schedule is given as the DAG

Complete Schedule – Example

C 1

R3(x)R1(x) W2(x)

W1(x) W2(y) R3(y)

R3(z)R2(z)

C 2 C 3

Distributed DBMS Page 10-12. 10© 1998 M. Tamer Özsu & Patrick Valduriez

A schedule is a prefix of a complete schedule
such that only some of the operations and only
some of the ordering relationships are included.

T1: Read(x) T2: Write(x) T3: Read(x)

Write(x) Write(y) Read(y)

Commit Read(z) Read(z)

Commit Commit

Schedule Definition

R1(x)

C 1

R3(x)R1(x) R3(x)W2(x)W2(x)

W1(x) W2(y)W2(y) R3(y)R3(y)

R3(z)R3(z) R2(z)R2(z)

C 2 C 3

Distributed DBMS Page 10-12. 11© 1998 M. Tamer Özsu & Patrick Valduriez

Serial History

All the actions of a transaction occur
consecutively.

No interleaving of transaction operations.

If each transaction is consistent (obeys
integrity rules), then the database is
guaranteed to be consistent at the end of
executing a serial history.

T1: Read(x) T2: Write(x) T3: Read(x)

Write(x) Write(y) Read(y)

Commit Read(z) Read(z)

Commit Commit

Hs={W2(x),W2(y),R2(z),C2,R1(x),W1(x),C1,R3(x),R3(y),R3(z),C3}

Distributed DBMS Page 10-12. 12© 1998 M. Tamer Özsu & Patrick Valduriez

Serializable History

Transactions execute concurrently, but the net
effect of the resulting history upon the database
is equivalent to some serial history.

Equivalent with respect to what?

Conflict equivalence: the relative order of
execution of the conflicting operations belonging to
unaborted transactions in two histories are the
same.

Conflicting operations: two incompatible
operations (e.g., Read and Write) conflict if they both
access the same data item.

Incompatible operations of each transaction is assumed
to conflict; do not change their execution orders.

If two operations from two different transactions
conflict, the corresponding transactions are also said to
conflict.

Distributed DBMS Page 10-12. 13© 1998 M. Tamer Özsu & Patrick Valduriez

Serializable History

The following are not conflict equivalent

Hs={W2(x),W2(y),R2(z),C2,R1(x),W1(x),C1,R3(x),R3(y),R3(z),C3}

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

The following are conflict equivalent; therefore

H2 is serializable.

Hs={W2(x),W2(y),R2(z),C2,R1(x),W1(x),C1,R3(x),R3(y),R3(z),C3}

H2={W2(x),R1(x),W1(x),C1,R3(x),W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)

Write(x) Write(y) Read(y)

Commit Read(z) Read(z)

Commit Commit

Distributed DBMS Page 10-12. 14© 1998 M. Tamer Özsu & Patrick Valduriez

Serializability in Distributed DBMS

Somewhat more involved. Two histories have to be

considered:

local histories

global history

For global transactions (i.e., global history) to be

serializable, two conditions are necessary:

Each local history should be serializable.

Two conflicting operations should be in the same relative

order in all of the local histories where they appear together.

Distributed DBMS Page 10-12. 15© 1998 M. Tamer Özsu & Patrick Valduriez

Global Non-serializability

The following two local histories are individually

serializable (in fact serial), but the two transactions

are not globally serializable.

T1: Read(x) T2: Read(x)

x x+5 x x15

Write(x) Write(x)

Commit Commit

LH1={R1(x),W1(x),C1,R2(x),W2(x),C2}

LH2={R2(x),W2(x),C2,R1(x),W1(x),C1}

Distributed DBMS Page 10-12. 16© 1998 M. Tamer Özsu & Patrick Valduriez

Evaluation Criterion for Concurrency
Control

1. Degree of Concurrency

Less reshuffle  High degree of concurrency
2. Resources used to recognize

- Lock tables

- Time stamps

- Read/write sets

- Complexity

3. Costs
- Programming ease

Scheduler

Recognizes

or

Reshuffles

history history

(requested) (executed)

Distributed DBMS Page 10-12. 17© 1998 M. Tamer Özsu & Patrick Valduriez

General Comments

Information needed by Concurrency Controllers

Locks on database objects

Time stamps on database objects

Time stamps on transactions

Observations

Time stamps mechanisms more fundamental than locking

Time stamps carry more information

Checking locks costs less than checking time stamps

Distributed DBMS Page 10-12. 18© 1998 M. Tamer Özsu & Patrick Valduriez

General Comments (cont.)

When to synchronize

First access to an object (Locking, pessimistic validation)

At each access (question of granularity)

After all accesses and before commitment (optimistic validation)

Fundamental notions

Rollback

Identification of useless transactions

Delaying commit point

Semantics of transactions

