PURDUE

UNIVERSITY

An End-to-End Security Auditing Approach for
Service Oriented Architectures

Mehdi Azarmi, Bharat Bhargava, Norman Ahmed, Asher Sinclair,
Pelin Angin, Rohit Ranchal Mark Linderman
Computer Science Department Air Force Research Laboratory
Purdue University Rome, NY

Lotfi Ben Othmane

Eindhoven University of
Technology, Department of
Mathematics and Computer

Science

SRDS 2012

Outline

Background

Problem Statement

Proposed Solutions

Evaluation (And transition to Cloud)
Future Directions

Conclusion

PURDUE

NIVERSITY What iS SOA?

e Service Oriented Architectures (SOA) facilitate the
interoperable and seamless interactions among services. The
need to communicate with other service partners demands a
seamless integration of services across organizational
boundaries.

e Definition proposed by the Open Group, the Object Management Group
(OMG), and OASIS:

— Service-Oriented Architecture (SOA) is an architectural style in which a
system is composed from a series of loosely coupled services that
interact with each other by sending messages.

— In order to be independent from each other, each service publishes its
description, which defines its interface and expresses constraints and
policies that must be respected in order to interact with it. A service is
thus a building block for SOA applications.

W Secyrity Challenges in SOA

A new threat landscape (Large attack surface)

— Diverse security administration domains
» Security across organizational boundaries

— User/services may get compromised
Unauthorized external service invocation

— User has no control on external service invocation within an
orchestration or through a service in another service domain

Businesses place a lot of trust in their partners (trust is not
transitive!)
Data leakage

— Intermediate steps of service execution might expose messages to
hostile threats (data leakage)

Violations and malicious activities in a trusted service domain
remain undetected

Once one of the services is compromised, the whole system should
not fall apart! (APTs)

PURDUE Problem Statement

e The channels of communication between the participating
entities in a SOA application are much more vulnerable:

— Compared to operating systems or within the boundaries
of an organization’s computer network

— To alleviate the security vulnerabilities that were
introduced in the complex context of SOA applications,

numerous and often overlapping security standards by the
industry actors exist.

e How to provide End-to-End auditing in SOA?
e How to define and build trust across domains?

— The trust issue is more complex in inter-organizational
context than it is in traditional fields of computing

IS O A End to End Secu rity Architecture (@

Service Domain A
(Air Force)

/
Edge Platform C X sorvice)

Service Domain €
Ex: Amazon,

\ 4
‘T < A ~
CAc _________________ - - - =
IDM
\ 4 :
- Service Domain B
. (Ex.z: DoD, Navy)
juDDI (T nt Ana ly)
| Trust Broker \

CSOrvlco Domain D 6

PURDUE Attack Model

« Attackers may have full access to the in-transit SOAP
messages (MITM attacks)

« Attackers may gain full control of certain number of
services in a domain.

« Some domains may have inside attackers
e Trust broker (TTP) is secure.

* Cloud providers support Trusted Computing facilities
(which is realistic with vTPM)

PURDUE

UNIVERSITY

Proposed Approach

To address these challenges, we designed and
Implemented:

A comprehensive security architecture for SOA.
A novel service invocation control mechanism for SOA using
dynamic taint analysis (TA)

A trust broker (TB) system that maintains trust and classifies
services. TB is used for dynamic validation and verification of
services and keeps track of history of service invocations.

functionality for using widely adopted web service WS-*
standards (WS-Security, WS-Trust)

A prototype implementation of proposed approaches based on
open source technologies

Scenario

ustead Sery S E
Domain B
(Taint Analysis M.) 5

"’_l ste ""_ 'jﬂ"‘?—'-v
Domain A

e
o

(Taint Analysis M.) 6 .

jupDI
Global Registry

SOA End to End Architecture

System Architecture and SOA Baseline

. UDDI Registry request
. Forwarding the

service list to Trust
Broker and receive a
categorized list
Invoking a selected
service

Second invocation by
service in domain A

. Invoking a service in

public service domain
End points (Reply to
user)

Trust Broker

getTrustLevel(S1) >
creafeSession(.] N \ Identity Management System |

getSessionHistory(..) N
Session Management [

i Trust Evaluation Module

Service
Invocation

Services/
i Client Sessions

Trust Broker

1. Calculates trust for a given set of services:
* Given a set of services identified with UDDI service keys, Trust Broker
returns trust categories for all of those services as determined by the
Trust Evaluation Subsystem.

2. Manages end to end user/service-invocation session.
10

PURDUE Trust Broker

Trust Evaluation Subsystem

— Classification of services into Trust categories

« Certified (supports WS-* specifications and has Taint
Analysis Module)

 Trusted (having Trust value above threshold)
« Untrusted (having Trust value below threshold)

— Trust calculation is based on parameters such as:
« WS-* support specified in Service Level Agreement (SLA)

» Trustworthiness of services in Orchestration specified in
SLA

 History of previous service runs (Using sessions)
« Taint analysis feedback
« User experience feedback "

PURDUE Trust Broker

UNIVERSITY

Trust Evaluation Subsystem

» Calculating Trust

— Using weighted moving average model

— Recent feedbacks for a service are weighted more heavily than
feedback further in the past

— The trust value 7, for a service S, with SLA L, getting feedback F
at time tis updated using the equation:

IT(t)=px[laxT (t-1)+(-a)xF]+(1-p)xL

where a < 0.5 and [is evaluated based on the appropriate WS-* supported

12

PURDUE Trust Broker

UNIVERSITY

Session Management Subsystem
« Extending the Trust boundary

— Manages end to end service invocation session
» User creates a session with Trust Broker and selected service

* Maintaining end to end Trust sessions across
different domains
* Auditing service behavior including violation and

malicious activities

— Taint Analysis and user feedback to Trust Broker for
updating Trust

— Trust Maintenance

13

PURDUE Taint Analysis

UNIVERSITY

* What is Taint Analysis/IFC (Information Flow
Control)?

* How it fits into the proposed architecture?

— Independent of services (\We do not need to
change the services or access the source code

of services)

— Interception of Service execution (Service will
remain transparent)

14

PURDUE Taint Analysis

* Using AOP (Aspect Oriented Programming)
— Instrumenting classes based on predefined pointcuts
— Low performance overhead (ideal solution)

e How it works?

— Load-time instrumentation
— The whole Application server is under control

— Flexible granularity
» Package/Class level
* Method level
* Field level

— Instrumenting classes in action pipeline

15

Web Service

ESB Messaging

In-Memory Messaging

>

Notification of illegal
Invokation to Trust
Broker

.

-J Action N

N et g S

Action Pipeline

J Action 2

Final Results

Action 3]

){ Action 1

Action Class
(Business

Action Class
(Business

Action Class
(Business

Action Class
(Business

lllegal Call to Untrusted

PURDUE Taint Analysis

* Where to deploy this module?

— Only in Trusted Service Domains
» Detection of insider attacks
» Detection of compromised services
 Detection of outbound connections

— In Public Domain
« Enforcing service composition policies

17

Ui [nteraction of Taint Analysis and Trust
Broker X

Client
qetTrustlevel($1) N
createSession(..) 5
getSessionHistory(..) N

Service
Invocation

SessionFeedback(..)

Trusted Service
Domain A

Service
Invocation

sessionFeedback(..)

External Service
Invocation

. Identity Management System .

Session Management

Trust Evaluation Module

I' Client Sessions

Trust Broker

Public Untrusted
Service Domain
C

Trusted Service
Domain B

U Eyaluation of the Proposed Solution

UNIVERSITY

« Security Evaluation

— The implemented prototype will be evaluated in terms
of its effectiveness in mitigating various attacks
including the following attacks

— XML Rewriting Attack

 Performance Evaluation

— Response Time
— Throughput

19

Y\ Rewriting Attack

« XML rewriting attack commonly refers to the class of
attacks which involve in modifying the SOAP message.
(Replay, Redirect, Man in the middle, multiple header
etc.)

« Exploring how certain XML rewriting attacks can be
detected by the Taint Analysis component and Trust
Broker

R Web service
provider

WS Client > Attacker

I C|oud Performance Evaluation

UNIVERSITY

« Why Cloud computing?
— Service-oriented
— Utility-based
— Shared
— SLA-driven

« Service domains were placed in Amazon EC2 AMls
(Amazon Machine Instances)

 We have conducted experiments to measure the
performance impact of using cloud computing.

« We installed and configured the following components in
the Amazon Cloud (same configuration as on-site):
— Jboss ESB Server and services
— Trust Broker
— UDDI 21

LAN Setup

sTON W

Trust Broker

getEvacuationTime

sessionFeedbztk

DAYTON

\\
{
/

|

s

l_nnnul"ii"

Certified TA
evacuation timer
service

-
s
Ny
=
e
.
I~
'~

T

getWeatherReport

eather service

22

U | AN-Setting 300 Requests

response time
(ms)

200
180
160
140
120
100
80
60
40
20
0

il

number of simultaneous requests

16

M baseline

taint analysis

23

LAN-Setting 400 Requests

response time
(ms)

600

500

400

300

200

100

0

M baseline

taint analysis

I

| | | |
1 2 4 8 16

number of simultaneous requests

24

8

cetEvacuationTime

m1l.large

7.5 GB RAM

Service list

tl.micro
Ubuntu10.10

zone: east-1b

- Ubuntu10.10

oneeast<la

- ml.large
Ubuntu 10.10

' 7.5GBR
r eather

service

AM

9 8
) N
KX ?«&

\Q Re, \}eo“
Seqpe?

~~zone: east-1c

tl.micro

. Ubuntu10.10
613 MB RA

N Query
Service list

Client

Create session

getEvacuationfime

m1l.large
- Ubuntu10.10
7.5 GB RAM

|mer service

W A azon EC2- 300 Requests

9 8
2 N
KX P"&

OQCE'?S \}eo“
Sey0n

300
250

200

response time

(ms) 150

100

50

m baseline

il

number of simultaneous requests

27

9 8
) N
KX P/\éz'

\Q Re, \}eo“
Seqpe?

response time
(ms)

600

500

400

300

200

100

0

1

il

number of simultaneous requests

B baseline

taint analysis

28

Conclusion

Proposed end to end security challenges
in SOA

Proposed a flexible security architecture
for auditing SOA

Proposed new holistic monitoring system
based on IFC and taint analysis

Conducted experiments on different
settings

29

Future Directions

* |[FC Policy Enforcement

* Using TPMs along with taint analysis
framework to provide a stronger security

* Providing active defense and attack-
resiliency using cloud computing

30

Questions?

31

