Real-Time Lock-Based Concurrency Control in Distributed
Database Systems

6zgﬁr Ulusoy, Geneva G. Belford
Department of Computer Science
University of Illinois at Urbana—Champaign
Urbana, IL 61801

Abstract

In a real-time database system, it is difficult to meet
all timing constraints due to the consistency require-
ments of the underlying database. Real-time database
transaction scheduling requires the development of ef-
ficient concurrency control protocols that try to maxi-
mize the number of transactions satisfying their real-
time constrainis. In this paper, we describe several
distributed, lock-based, real-tzme, concurrency control
protocols and report on the relative performance of
the protocols in a nonreplicated database environment.
The protocols take the real-time requirements of the
transactions into account in ordering data accesses,
while maintaining data consistency via enforcing seri-
alizability.

Keywords: Real-time database systems, distributed
concurrency control, performance evaluation.

1 Introduction

A ‘real-time database system (RTDBS)’ is a
database system designed to provide real-time infor-
mation to data-intensive applications such as pro-
duction control and manufacturing. Each real-time
database transaction is associated with a timing con-
straint, typically in the form of a deadline. It is dif-
ficult to meet the timing constraints of all transac-
tions due to the consistency requirements of the under-
lying database. Efficient concurrency control proto-
cols are required in RTDBSs to maximize the number
of transactions satisfying their real-time constraints
while maintaining the consistency of data. Our ear-
lier study {15] investigated the performance of various
concurrency control approaches in a single-site RT-
DBS. In this paper, our work concentrates on ‘dis-
tributed’ concurrency control protocols. We describe
several distributed, lock-based, real-time, concurrency
control protocols and study the relative performance
of the protocols in a nonreplicated database environ-
ment. The protocols attempt to maximize the satisfac-
tion of real-time requirements while maintaining data
consistency via enforcing serializability. Concurrency
control protocols are different in the way data conflicts
among the transactions are resolved once they are de-
tected. The performance metric used in evaluation of
the protocols is success-ratio, which gives the fraction
of transactions that satisfy their deadlines.

The rest of the paper is organized as follows. In

0-8186-2865-0 /92 $3.00 © 1992 IEEE

136

the next section, we summarize recent work that has
addressed the scheduling problem in RTDBSs. Sec-
tion 3 describes the distributed transaction structure
and distributed execution model used in our system.
The structure and characteristics of -our distributed
database system model are presented in Section 4.
The lock-based concurrency control protocols studied
in our system are described in Section 5. Section 6
presents the performance evaluation experiments and
discusses the results obtained.

2 Related Work

The scheduling problem in RTDBSs has been ad-
dressed by a number of recent studies. The first
performance evaluation work in RTDBSs was pro-
vided by Abbott and Garcia-Molina [1], [2]. They de-
scribed a group of lock-based algorithms for scheduling
real-time transactions, and evaluated the algorithms
through simulation. Sha et al. [11], [12] presented
a concurrency control protocol, called priority ceiling,
which prevents blocking deadlocks and attempts to
minimize the blocking time of high priority transac-
tions. The performance of the protocol was examined
in [13]. In [14], Son and Chang investigated methods
to apply the priority-ceiling protocol as:a basis for real-
time locking protocol in a distributed environment.
Huang et al. [8] developed and evaluated several al-
gorithms for handling CPU scheduling, data conflict
resolution, deadlock resolution, transaction wakeup,
and transaction restart in RTDBSs. Later, their work
was extended to the optimistic concurrency control
method [9]. Haritsa et al. [6] studied the relative
performance of two well known classes: of concurrency
control algorithms (locking protocols and optimistic
techniquesg) in a RTDBS environment. They presented
and evaluated a new real-time optimistic concurrency
control protocol through simulations in [7].

3 Distributed Transaction and Execu-
tion Model

We model a distributed transaction as a master pro-
cess that executes at the originatingsite of the transac-
tion and a collection of cohorts that execute at various
sites where the required data items reside. At the ar-
rival of a transaction request at a site, the transaction
manager of that site creates a master process and co-

hort processes! after determining the sites storing the
required data items. The master process is responsible
for the coordination of cohort processes; it does not it-
self perform any database operations. The execution
model adopted in our system executes the operations
of a transaction sequentially. There can be at most
one cohort of a transaction at each site, and only one
cohort can be active at a time. After the successful
completion of each operation, the next operation in
sequence is executed by the appropriate cohort. After
the execution of the last operation, the transaction can
be committed. Atomic commitment of each transac-
tion is provided by the centralized two-phase commit
protocol [3].

Another execution model which processes the co-
horts of a transaction in parallel is discussed in Section
6.1.

4 Distributed Database System Model

This section provides the model of a distributed
RTDBS used in this paper. In the distributed system
model data is distributed over a number of data sites
connected through a communication network. There
exists exactly one copy of each data item? in the sys-
tem. Each site contains a transaction manager, a
scheduler, a resource manager, and a message server.

The transaction manager is responsible for generat-
ing transaction identifiers and assigning real-time pri-
orities to transactions. Each transaction submitted to
the system is associated with a real-time constraint in
the form of a deadline. The transaction is assigned a
globally distinct real-time priority based on its dead-
line. For each transaction, the transaction manager
creates a master process to be executed locally and
specifies the appropriate sites for the execution of the
cohort processes. If there exist any local data items
in the access list of the transaction, one of the cohorts
will be executed locally. The master process initiates
the execution of each cohort process. Remote cohorts
are initiated by sending a message to the appropriate
sites. Each cohort is executed with its transaction’s
priority.

Each cohort performs one or more database oper-
ations on specified data items. The master process
commits a transaction only if all the cohort processes
of the transaction run to completion successfully, oth-
erwise it aborts and later restarts the transaction.

Concurrent data access requests of the cohort pro-
cesses at a site are controlled by the scheduler at that
site. The scheduler orders the data accesses based
on the concurrency control protocol executed. When
a cohort completes all its accesses and processing re-
quirements, it waits for the master process to initiate
two-phase commit. Following the successful commit-
ment of the distributed transaction, the cohort writes
its updates, if any, into the local database.

Each site’s resource manager is responsible for pro-
viding IO service for reading/updating data items,

1The cohorts of a transaction will be referred to as ‘sibling
cohorts’ of each other throughout the paper.
2The basic unit of access is referred to as a data item.

137

and CPU service for processing data items, perform-
ing various concurrency control operations (e.g. con-
flict check, locking, etc.) and processing communica-
tion messages. Both CPU and IO queues are orga-
nized on the basis of the cohorts’ real-time priorities.
Preemptive-resume priority scheduling is used by the
CPUs at each site; a higher-priority process preempts
a lower-priority process, and the lower-priority process
can resume when there exists no higher-priority pro-
cess waiting for the CPU. Communication messages
are given higher priority at the CPU than other pro-
cessing requests. Besides preemption, the CPU can be
released by a cohort process as a result of lock conflict,
for 10, or communication to other data sites.

The message server at each site is responsible for
sending/receiving messages to/from other sites. It lis-
tens on a well-known port, waiting for:remote mes-
sages.

Reliability and recovery issues are not addressed in
our work. We assume a reliable system; in which no
site failures or communication network failures occur.

5 Lock-Based Concurrency Control

Each local scheduler can process lock requests with-
out requiring any information from other sites. Each
cohort process executing at a data site has to obtain
a shared lock on each data item it reads, and an ex-
clusive lock on each data item it updates. Conflicting
lock requests on the same data item are ordered based
on the real-time strategy implemented. Local serializ-
ability is provided by enforcing the rules of two-phase
locking (2PL) [5]. In order to provide global serializ-
ability, the locks held by the cohorts of a transaction
are maintained until the transaction hasbeen commit-
ted.

Deadlock is a possibility with blocking-based con-
currency control protocols. Local deadlocks can be de-
tected by maintaining a local Wait-For Graph (WFG)
at each site. WFGs contain the ‘wait:for’ relation-
ships among the transactions. Local deadlock detec-
tion is performed each time an edge is added to the
graph (i.e., when a cohort is blocked). Global dead-
lock is also a possibility in distributed systems. The
detection of a global deadlock is a distributed task,
requiring the exchange of information between local
lock managers [3], [4]. A-simple way to detect global
deadlocks is to use a global WFG. The global WFG is
constructed by unifying local WFGs. One of the sites
is employed for periodic detection/recovery of global
deadlocks. A deadlock is'recovered from by selecting
the lowest priority cohort-in the deadlock cycle as a
victim to be aborted. The master process of the vic-
tim cohort is notified to abort and later restart the
whole transaction.

5.1 Distributed Real-Time Concurrency
Control Protocols

We distinguish the locking protocols based on
whether they make use of the data access patterns
of transactions or not. The first group of protocols as-
sume that the data requirements of each transaction
are not known before the execution of the transaction,
while the second group of protocols assume that a list

lock_request_handling(D,C) {
/* Cohort C requests a lock on data item D */
if (D was locked by a cohort C’) {
C is blocked by C’;
if (priority(C) > priority(C”)) {
.C” inherits priority(C);
A priority-inheritance message issent to
the master of C’;

otherwise
Lock on D is granted to C;

Figure 1: Lock request handling in protocol PI.

of data items to be accessed is submitted by each ar-
riving transaction.

Protocols with Unknown Data Require-
ments

The first protocol is the basic version of two-phase
locking and does not involve priorities in processing
the data access requests®. Performance of basic two-
phase locking provides a basis of comparison for study-
ing the performance of the priority-based protocols.

Always Block Protocol (AB)

This protocol resolves lock conflicts by blocking a
cohort that requests a lock that is already held. The
cohort remains blocked until the conflicting lock is re-
leased. The real-time. priority of the cohorts is not
considered in processing the lock requests; lock requ-
ests are processed in FIFO order.

Priority Inheritance Protocol (PI)

An undesirable event in scheduling prioritized
transactions is the so called ‘priority inversion’ prob-
lem; i.e., blocking of a high priority transaction by
lower priority transactions. ‘Priority inheritance’ is
one method proposed to overcome the problem of un-
controlled priority inversion [11]. This method makes
sure that when a transaction blocks higher priority
transactions, it is executed at the highest priority of
the blocked transactions; in other words, it inherits
the highest priority. Due to the inherited priority, the
transaction can be executed faster resulting in reduced
blocking times for high priority transactions.

Fig.1 shows how the lock requests are handled by
the protocol in our distributed system model. When a
cohort is blocked by .a lower priority cohort, the latter
inherits the priority of the former. Whenever a cohort
of a transaction inherits a priority, the scheduler at
the cohort’s site notifies the transaction master pro-
cess by sending a priority inheritance message, which
contains the inherited priority. The master process
then propagates this message to the sites of other co-
horts belonging to the same transaction, so that the
priority of the cohorts can be adjusted. When a cohort

3However, as described earlier, the preemptive-resume strat-
egy based on real-time priorities is used in scheduling the CPU.

138

lock request_handling(D,C) {
/* Cohort C requests a lock on data item D */
if (D was locked by a cohort C) {
if (priority(C) > priority(C")) {
C’ is aborted;
An abort message is sent to the master of C”;
Lock on D is granted to C;

otherwise

C' is blocked by C’;

otherwise
Lock on D is granted to C;
}

Figure 2: Lock request handling in protocol PB.

in the blocked state inherits a priority, that priority is
also inherited by the blocking cohort (and its siblings)
if it is higher than that of the blocking cohort.

Two or more sibling cohorts may inherit different
priorities at about the same time, causing an inconsis-
tency in the inherited priority assigned to the sibling
cohorts. To prevent this inconsistency, when a co-
hort receives an inheritance message from its master
it compares its current priority with the inherited pri-
ority. If the inherited priority has a smaller value, the
message is ignored. Thus, all of the sibling: cohorts

. will eventually carry the same priority, the maximum

of all inherited priorities.

When a transaction is aborted due to a local or
global deadlock, it is restarted with its original prior-
ity.

Priority-Based Locking Protocol (PB)

This protocol prevents priority inversion by abort-
ing low priority transactions whenever necessary [1].
We have implemented a distributed version of the pro-
tocol in our model as summarized in Fig.2. In the case
of a data lock conflict, if the lock-holding cohort has
higher priority than the priority of the cohort that is
requesting the lock, the latter cohort is blocked. Oth-
erwise, the lock-holding cohort is aborted and the lock
is granted to the high priority lock-requesting cohort.
Upon the abort of a cohort, a message is sent to the
master process of the aborted cohort to restart the
whole transaction. The master process notifies the
schedulers at all relevant sites to cause the:cohorts
belonging to that transaction to abort. Then. it waits
for the abort confirmation message from each of these
sites. When all the abort confirmation messages are
received, the master can restart the transaction.

Since a high priority transaction is never blocked by
a lower priority transaction, this protocol is deadlock-
free?.

4The assumption here is that the real-time priority of a trans-
action does not change during its lifetime and that no two trans-
actions have the same priority.

lock_request_handling(D,C) {
/* Cohort C requests a lock on data item D */
if £priority(C) > MAX_PCs) {
ock on D is granted to C;
}

otherwise {
C is blocked by transaction T'Rs;
if (priority(C) > priority(T'Rs)) {
T Rs inherits priority(C);
A priority-inheritance message is sent to
the master of T'Rg;

}
}
}

Figure 3: Lock request handling in protocol PC.

Protocols with Known Data Requirements

Some real-time systems process certain kinds of
transactions that can be characterized with well de-
fined data requirements [6]. The concurrency control
protocols executed in such systems can make use of
this knowledge in data access scheduling. The follow-
ing two concurrency control protocols assume that the
data requirements of each transaction are known be-
fore the execution of the transaction. A list of data
items that are going to be read or written is submitted
to the scheduler by an arriving transaction. The pro-
tocols involve this information in scheduling the access
requests of real-time transactions.

Priority Ceiling Protocol (PC)

This protocol, proposed by Sha et al. [11] provides
an extension to the priority inheritance protocol (PI).
It eliminates transaction deadlocks and chained block-
ings from protocol PI. The ‘priority ceiling’ of a data
item is defined as the priority of the highest priority
transaction that may have a lock on that item. To ob-
tain alock on a data item, the protocol requires that a
transaction 7 must have a priority strictly higher than
the highest priority ceiling of data items locked by the
transactions other than T'. Otherwise transaction T
is blocked by the transaction which holds the lock on
the data item of the highest priority ceiling.

In our model, a transaction list is constructed for
each individual data item D in the system. The list
contains the id and priority of the transactions in the
system that include item D in their data access pat-
terns. The list is sorted based on the transaction pri-
orities; the highest priority transaction determines the
priority ceiling of D. At each data site S, a priority
ceiling manager is responsible for keeping track of the
current highest priority ceiling value of the locked data
items at site S and the id of the transaction holding
the lock on the item with the highest priority ceil-
ing. Denoting these two variables by MAX_PCs and
TR respectively, Fig.3 shows how a lock request of
a cohort process is handled by the scheduler. To de-
termine the current values of MAX _PCg and TRs,
the priority ceiling manager maintains a sorted list of

139

(priority ceiling, lock-holding transaction) pairs of all
the locked data items at that site.

Data-Priority-Based Locking Protocol (DP)

This section presents the lock-based concurrency
control protocol we introduced in [15]. Like protocol
PC, protocol DP is based on prioritizing data items;
however, in ordering the access requests of the trans-
actions on a data item D), it considers only the priority
of D without requiring a knowledge of the priorities
of all locked items.

Each data item carries a priority which is equal to
the highest priority of all transactions in the system
that include the data item in their access lists. When
a new transaction arrives at the system, the prior-
ity of each data item to be accessed is-updated. if the
item has a priority lower than that of the transaction.
When a transaction commits and leaves the system,
each data item that carries the priority of that trans-
action has its priority adjusted to that of the highest
priority active transaction that is going to access that
data item. The DP protocol assumes that there is-a
unique priority for each transaction.

The implementation details of the protocol in our
system are as follows. A transaction list is maintained
for each individual data item. The list, located on
the site of the data item, contains the-id and priority
of the transactions currently in the system that will
access (or have accessed) the item. The list is sorted
based on the transaction priorities and the highest pri-
ority transaction determines the priority of the data
item. The list is updated by the scheduler during the
initialization and the commit of relevant transactions.

Fig.4 summarizes how the lock requests are handled
by protocol DP. In order to obtain a lock on a data
item D, the priority of a cohort'C® must be equal to
the priority of D. Otherwise (if the priority of C'is less
than that of D), cohort C is blocked by the:cohort
that determines the current priority of D. Suppose
that C has the same priority as D, but D has already
been locked by a lower priority cohort C’ before C has
adjusted the priority of D. C’ is aborted at the time
C needs to lock D. When a cohort is aborted due to
data conflict, the aborted cohort’s master is notified
to restart the whole transaction. An abort is handled
by the master process in a way similar to that used in
protocol PB.

The DP protocol is-deadlock-free since a high pri-
ority transaction is never blocked by lower priority
transactions and no two transactions have the same
priority.

6 Performance Evaluation

The performance of the concurrency control pro-
tocols were evaluated by simulating them on the dis-
tributed system model described'in the previous sec-
tions. The set of parameters presented in Table 1 is
used to specify the system configuration and work-
load. nr-sites corresponds to the number of data
sites in the distributed system. The.parameter db-
size represents the number of data items stored in the

5Remember that, a cohort process carries-the priority of its
transaction. .

lock _request_handling(D,C) {
/* Cohort C requests a lock on data item D */
if (priority(C) = priority(D)) {
if (D was locked by a cohort C°) {
C’ is aborted;
An abort message is sent to the master of C’;

}
Lock on D is granted to C;
otherwise

C is blocked by the cohort that is responsible
for the current priority of D;

}

Figure 4: Lock request handling in protocol DP.

nr-sites] slack-rate

db-size 200 || mes-proc-time (msec)
mem-stze 50 || comm-delay (msec)
tat (msec) 260 || lest-update-oh (msec)
tr-type-prob 5 con f-check-oh (msec)

access-mean lock-oh (msec)

data-update-prob [.5 unlock-oh (msec)

deadl-det-oh (msec)

=] b= =]] =]] e o] e

6
cpu-time (msec) 8
2

o-time (msec) 8 |[deadl-res-oh (msec)

Table 1: System model parameter values

database of a site, and mem-size represents the num-
ber of data items that can be held in the main memory
of a site. Transaction arrivals at a data site are sim-
ulated by a transaction generator belonging to that
site. The mean interarrival time of transactions to
each of the sites is specified by the parameter iat. The
times between the arrival of transactions are exponen-
tially distributed. The transaction workload consists
of both query and update transactions. The transac-
tion generator determines the type (i.e. query or up-
date) of a transaction randomly using the parameter
tr-type-prob which specifies the update type probabil-
ity. The access pattern (i.e. the list of data items
that are going to be accessed) of each transaction is
also determined by the transaction generator. access-
mean specifies the mean number of data items to be
accessed by a transaction. Accesses are uniformly dis-
tributed among the data sites. For each data access
of an update transaction, the probability that the ac-
cessed data item will be updated is determined by the
parameter data-update-prob. For each data item ac-
cessed, I0 and CPU resources are utilized for a certain
amount of time, specified by io-time and cpu-time,
respectively. slack-rate is the parameter used in as-
signing deadlines to new transactions. The slack time
of a transaction is chosen randomly from an exponen-
tial distribution with a mean of slack-rate times the
estimated processing time of the transaction. The pa-
rameter mes-proc-time corresponds to the CPU time
required to process a communication message prior to
sending or after receiving the message. It is assumed

140

that each site has one CPU and one disk. The com-
munication delay of messages between the sites is as-
sumed to be constant and specified by the parameter
comm-delay. The parameter list-update-oh specifies
the processing cost of add and delete operations on
various kind of graphs/lists used in the model, which
include the WFGs maintained for deadlock detection,
the priority ceiling list of locked data items in protocol
PC, and the transaction lists kept for each data item
in protocols PC and DP.

The following parameters are included in our model
to take into account the overhead of various concur-
rency control operations. conf-check-oh specifies the
CPU time of conflict checking at each data access re-
quest of a transaction.. The parameter lock-oh is used
to simulate the CPU time required to request and
get a lock on a data item, while unlock-oh 1is used to
simulate the processing time to release the lock on a
data item. deadl-det-oh corresponds to the processing
time spent checking for a deadlock cycle in a wait-for
graph, and deadl-res-oh specifies the cost of clearing
the deadlock problem in the case of the detection of a
deadlock.

6.1 Simulation Results

The system parameter values for the experiments
described in the following sections are presented in
Table 1. All sites of the system are assumed identical
and operate under the same parameter values. These
values were selected to provide a transaction load and
data contention high enough to observe the differences
between the real-time performances of the protocols.
Since the concurrency control protocols are different in
handling data access conflicts among the transactions,
the best way to compare the performance characteris-
tics of the protocols can be to conduct the performance
experiments under high data conflict conditions. The
small db-size value is to create a data contention envi-
ronment which produces the desired high level of data
conflicts among the transactions. This small database
can be considered as the most frequently accessed frac-
tion of a larger database. The values of cpu-time
and ‘o-time were chosen to yield a system with al-
most identical CPU dnd IO utilizations. Neither a
CPU-bound nor an I0-bound system is intended. The
method used in calculating expected CPU and IO uti-
lizations in terms of system parameters is provided in
[16]. The performance metric used in the evaluation
of the protocols is sucécess-ratio; i.e., the fraction of
transactions that satisfy their deadlines.

The experiments employ ‘Earliest Deadline First’
as the priority assignment policy; i.e., a transaction
with earlier deadline obtains higher priority. If any
two of the transactions have the same deadline, the
one that has arrived at the system earlier is assigned
a higher priority. The transaction deadlines are ‘soft’;
i.e., each transaction is executed to completion even if
it misses its deadline.

A program to simulate our distributed system
model and concurrency control protocols was written
in CSIM [10], which is a process-oriented simulation
language based on the C programming language. For
each configuration of each experiment, the final results

1.0
0.9
0.8
0.7+
0.6 <

0.5
04

Orpm LnunEC:Qcw

T T T
180 220 260 300 340
INTERARRIVAL TIME (msec)

Figure 5: Real-time performance of the distributed
concurrency control protocols AB, PI, and PB as a
function of mean transaction interarrival time.

were evaluated as averages over 25 independent runs.
Each configuration was executed for 500 transactions
originated at each site. 90% confidence intervals were
obtained for the performance results. The width of the
confidence interval of each data point is within 4% of
the point estimate.

Varying Interarrival Time

The first experiment was conducted to examine the
performance of protocols under varying transaction
loads in the system. Mean time between successive
transaction arrivals at a site was varied from 180 to
340 mseconds in steps of 40. These values of iat corre-
spond to a CPU utilization of .96 to .51 respectively,
at each of the sites [16]. IO utilization is about the
same as CPU utilization. We are interested in the
performance of the protocols under high transaction
loads.

The first group of protocols evaluated are the ones
with unknown data requirements (AB, PI, and PB).
The results are shown in Fig.5 in terms of success-
ratio. Protocols PI and PB both provide improved
performance, compared to protocol AB, by making use
of real-time priorities in resolving data conflicts. Com-
paring the performance of these two protocols, we can
say that PB provides considerably better performance
than PI throughout the iat range. Remember that,
protocol PB resolves data conflicts by aborting low
priority transactions whenever necessary. Although
transaction aborts lead to a waste of resources in the
system, this experiment shows that aborting a low pri-
ority transaction is preferable to blocking a high pri-
ority one in distributed RTDBSs. Protocol PB also
{)rfl:rents the possibility and cost of transaction dead-
ocks.

We next evaluated the performance of the concur-
rency control protocols with known data requirements.
Each transaction is assumed to submit its data access
list as well as its deadline at the beginning of its ex-
ecution. It can be seen from Fig.6 that the deadline
satisfaction rate of the transactions for protocol PC is
quite low compared to that of protocol DP. One basic

141

1.0
S
U 094 e
C 0 8 - -~ -
E ™ e -
2 07- S TG
R 4 7 [o/ P
% 0.6 /0’

Ve

1 054 ~
0 e

04 T T T

180 220 260 300 340

INTERARRIVAL TIME (msec)

Figure 6: Real-time performance of the distributed
concurrency control protocols PC and DP as a func-
tion of mean transaction interarrival time.

assumption made by protocol PC is that when an ex-
ecuting transaction T releases the CPU for a reason
other than preemption (e.g., for IOP, other transac-
tions in the CPU queue are not allowed to get the
CPU.8 The CPU is idle until transaction T is reexe-
cuted or a transaction with higher priority arrives at
the CPU queue. CPU time is simply wasted when the
CPYU is not assigned to any of the ready transactions.
Another factor leading to the unsatisfactory perfor-
mance for protocol PC is the restrictive nature of the
priority ceiling blocking rule, in the sense that, even if
there exists no data conflict, the transactions can be
blocked to satisfy the data access constraints of the
protocol. A high conflict ratio is observed for protocol
PC due to priority ceiling conflicts (average number
of times each transaction is blocked due to the prior-
ity ceiling condition) rather than data conflicts. All
these factors result in low concurrency and resource
utilization in the system. Especially at high transac-
tion loads, many transactions miss their deadlines.

If we compare the performance results of all the
protocols from both groups, we can see that proto-
col DP shows a substantial improvement in real-time
performance over all other protocols. The difference
between the protocols’ performances increases as the
load level increases with decreasing iat value. Similar-
to PB, protocol DP does not allow the situation in
which a high priority transaction can be blocked by
a lower priority transaction. This feature makes the
protocol deadlock-free. The transaction: restart rate
is much lower than that of protocol PB since proto-
col DP restricts the possibility of transaction abort
only to the following case. Between any two conflict-
ing transactions, if the lower priority transaction ac-
cesses the data item before the higher priority trans-
action is submitted to the system (before the priority

6The implementation of protocol PC in our model followed
this assumption unlike the other protocols whose implementa-
tion included the CPU scheduling method described in Section
4.

S ?"’:,e ----- g DU -4

g 094 I

B

S 0.8

S

R 0.7

A . H iat =1

}‘ 0.6 6--0 %g% = g
=X 1at =

0] *-—o iqf —

05 T T T

75 100

NONDISTRIBUTED TRANSACTION PERCENTAGE

Figure 7: Real-time performance of protocol DP (for
different values of mean transaction interarrival timeg
as a function of the percentage of nondistribute
transactions submitted to the system.

of the data item is adjusted by the entry of the higher
priority transaction) the lower priority transaction is
aborted when and if the higher priority transaction
accesses the data item before the commitment of the
lower priority transaction. One interesting observa-
tion is that the performance of protocol PC is worse
than that of all the protocols placed in the first group.
Even protocol AB, which does not use real-time prior-
itiées in scheduling data accesses, performs better than
PC.

Other experiments were conducted to evaluate the
effect of various other system parameters on the pro-
tocols’ performance. These parameters included nr-
sites (number of data sites), mes-proc-time (commu-
nication message processing time), comm-delay (mes-
sage transfer delay), slack-rate (ratio of the slack time
of a transaction to its execution time), access-mean
(average number of data items accessed by a transac-
tion), tr-type-prob (ratio of update type transa,ctionsz,
mem-size (size of main memory at each site), and d
size (size of database at each site). The results of
each of these experiments can be found in [16]. The
comparative performance of the protocols was not sen-
sitive to varying the values of these parameters.

Sensitivity to Number of Nondistributed
Transactions

In the experiments of the preceding section, all the
transactions were distributed; i.e., data items to be ac-
cessed by each transaction were randomly distributed
among all the sites. In this experiment, some of the
transactions are nondistributed, meaning that they
only aecess local data items. A nondistributed trans-
action is executed at its site only and does not submit
any cohorts to remote sites..

To evaluate the sensitivity of the real-time perfor-
mance of the system to the number of nondistributed
transactions, we varied the fraction of nondistributed
transactions from 0.0 to 1.0 in steps of 0.25. For a
nondistributed transaction we don’t have the overhead

142

O nnEQOCWn

T
220
INTERARRIVAL TIME (msec)

T T
180 200 240

Figure 8: Real-time performance of the concurrency
control protocols under the parallel transaction exe-
cution model.

of communication messages transferred between the
master and cohort processes of a transaction. We also
don’t need a distributed commit protocol; a nondis-
tributed transaction can commit after completing its
last operation. Increasing the proportion of nondis-
tributed transactions in the system results in better
real-time performance for all concurrency control pro-
tocols. The success-ratio results are displayed for pro-
tocol DP in Fig.7, which shows the effect of increasing
the fraction of nondistributed transaction for differ-
ent values of mean interarrival time. We see that,
as the transaction load level increases with decreasing
mean interarrival times, the ratio of nondistributed
transactions becomes more important in determining
real-time performance.

Introducing Parallel Execution

In this experiment, the system model was modified
to include parallel execution. In the modified model,
the master process of a transaction spawns cohorts
all together, and the cohorts are executed in paral-
lel. The master process sends to each remote site a
message containing an (implicit) request to spawn a
cohort, and the list of all operations of the transac-
tion to be executed at that site. The assumption here
is that the operations performed by one cohort are in-
dependent of the results of the operations performed
at the other sites. The sibling cohorts do not have to
transfer information to each other. A cohort is said to
be completed at a site when it has performed all its
operations. A completed cohort informs the master
process by sending a ‘cohort complete’ message. The
master process can start the two-phase commit pro-
tocol when it has received ‘cohort complete’ messages
from all the cohorts. The lock management policy
is similar to that of the sequential execution model.
Each cohort holds its locks until the commitment of
the whole transaction.

Various experiments were performed for the paral-
lel execution model. Here we present the results of
varying interarrival time from 160 through 240 msec-
onds in steps of 20. This iat range [160,240] corre-

sponds to the I0/CPU utilization range of about [.94,
.63]. Expected resource utilization calculations in the
sequential and parallel execution models are different
because the overhead is different [16].

Fig.8 shows the performance results obtained for
each of the protocols under the parallel execution
model. The comparative performance of the proto-
cols looks similar to that for the sequential execution
case. The best performing protocol is DP while PC
performs worse than all the other protocols.

The performance of the protocols is better, in gen-
eral, than it was for the sequential execution model.
This result is due to fewer conflicts. The decrease in
the conflict rate results from shorter lifetimes of the
transactions.

7 Conclusions

In this paper, we have presented a number of lock-
based, distributed, real-time concurrency control pro-
tocols and studied their performance in a distributed
database system environment. Various experiments
were conducted to evaluate the effects of different sys-
tem parameters on the performance of the protocols.

Among the concurrency control protocols which
detect the data access requirements of transactions
dynamically, the best-performing protocol was PB,
which always prefers high priority transactions to ex-
ecute in the case of data conflicts while blocking
or aborting lower priority transactions. Introducing
a data-priority-based protocol (IDP), we have shown
that further improvement in real-time performance is
possible if the data access requirements of transactions
are known prior to their execution. Another observa-
tion obtained in the evaluations was the poor perfor-
mance exhibited by priority-ceiling protocol PC. The
priority ceiling rule that might block the lock request-
ing transactions even without an existence of data con-
flicts, is too restrictive to be implemented in RTDBSs.

The comparative performances of the protocols
were similar under two different models of transaction
execution: sequential and parallel. A system param-
eter critical to the performance of the protocols was
the fraction of transactions which submit operation
to remote sites. All the protocols performed worse as
the ratio of distributed/locally-processed transactions
increased.

References

[1) Abbott R., Garcia-Molina H. ‘Scheduling Real-
Time Transactions: A Performance Evaluation’,
14th Int. Conf. on Very Large Data Bases, 1988,
pp.1-12.

[2] Abbott R., Garcia-Molina H. ‘Scheduling Real-
Time Transactions with Disk Resident Data’,
15tk Int. Conf. on Very Large Data Bases, 1989,
pp-385-396.

[3] Bernstein P.A., Hadzilacos V., Goodman N. Con-
currency Control and Recovery in Database Sys-
tems, Addison-Wesley, 1987.

[4] Ceri S., Pelagatti G. Distributed Databases: Prin-
ciples and Systems, McGraw-Hill, 1984.

143

[5] Eswaren K.P., Gray J.N. ‘The Notion of Consis-
tency and Recovery in a Database System’, Comm.
of ACM, 19:11, 1976, pp.624-633.

[6] Haritsa J.R., Carey M.J., Livny M. ‘On Being
Optimistic About Real-Time Constraints’, ACM
SIGACT-SIGMOD-SIGART, 1990, pp.331-343.

[7] Haritsa J.R., Carey M.J., Livny M. ‘Dynamic
Real-Time Optimistic Concurrency Control’, 11th
Real-Time Systems Symposium, 1990, pp.94-103.

[8] Huang J., Stankovic J.A., Towsley D., Ramam-
ritham K. ‘Experimental Evaluation of Real-Time
Transaction Processing’, 10th Real-Time Systems
Symposium, 1989, pp.144-153.

[9] Huang J., Stankovic J.A., Towsley D., Ramam-
ritham K. ‘Experimental Evaluation of Real-Time
Optimistic Concurrency Control Schemes’, 17th
Int. Conf. on Very Large Data Bases, 1991, pp.35-
46.

[10] Schwetman H. ‘CSIM: A C-Based, Process-
Oriented Simulation Language’, Winter Simula-
tion Conference, 1986, pp.387-396.

[11] Sha L., Rajkumar R., Lehoczky J. ‘Concurrency
Control for Distributed Real-Time Databases’,
ACM SIGMOD Record, March 1988, pp.82-98.

[12] Sha L., Rajkumar R., Lehoczky J. ‘Priority In-
heritance Protocols: An Approach to Real-Time
Synchronization’, IEEE Transactions on Comput-
ers, 39:9, 1990, pp.1175-1185.

[13] Sha L., Rajkumar R., Son $.H., Chang C.H. ‘A
Real-Time Locking Protocol’, IEEE Transactions
on Computers, 40:7, 1991, pp.793-800.

[14] Son S.H., Chang C.H. ‘Performance Evaluation
of Real-Time Locking Protocols Using a Dis-
tributed Software Prototyping Environment’, f0th
Int. Conf. on Distributed Compuling Systems,
1990, pp.124-131.

[15] Ulusoy O., Belford G.G. ‘Concurrency Control in
Real-Time Database Systems’, ACM 20th Annual
Computer Science Conf., March 1992, pp.181-188.

[16] Ulusoy O. Scheduling Real- Time Database Trans-
actions, Ph.D. Thesis in preparation, Department
of Computer Science, University of Illinois at
Urbana-Champaign.

