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connecting line whose suppression induces the minimum
response time increase (solving this problem involves optimum
routing determination for messages concerned).

In part two, we assume that access delays to the channels are
exponentially distributed. This assumption is valid for an
access protocol such as ALOHA, which is, of course, badly
suited to local networks, and it would be useful to model,
in terms of access time, more appropriate protocols (carrier
sense). Service disciplines taking into account a higher priority
for acknowledgment messages should also be studied. Diffusion
approximation models may also be considered [8] as tools
for examining these problems.
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A Causal Model for Analyzing Distributed
Concurrency Control Algorithms
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Abstract—An event order based model for specifying and analyzing
concurrency control algorithms for distributed database systems has
been presented. An expanded notion of history that includes the data-
base access events as well as synchronization events is used to study the
correctness, degree of concurrency, and other aspects of the algorithms
such as deadlocks and reliability. The algorithms are mapped into
serializable classes that have been defined based on the order of syn-
chronization events such as lock points, commit point, arrival of a
transaction, etc,.

Index Terms—Causal graph, concurrency control, correctness, dead-
lock, degree of concurrency, distributed system, event order, history,
reliability, serializability, time stamp.

I. INTRODUCTION

SEVERAL algorithms for concurrency control or synchro-
nization in distributed database management systems have
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been proposed in the literature and have been surveyed in [3],
[5].  Specific proofs of correctness for individual algorithms
have appeared in [2], [18], [25]. This paper presents a gen-
eral approach for analyzing algorithms. This analysis is used
to study several desirable properties of the algorithms such as
proof of correctness, the allowable degree of concurrency,
deadlock freedom, and robustness, A simple hypothetical
concurrency control algorithm has been used to illustrate the
approach. In [12], the majority consensus approach [25] has
been analyzed as an example. In [4], examples of the analysis
of locking algorithms and other types of algorithms have been
included. The notion of serializability [19] is used to establish
the degree of concurrency and as the correctness criterion. The
deadlock freedom refers to the absence of an infinite delay of
cither the transaction or the system processing. The robust-
ness refers to the capability of an algorithm in handling certain
hardware/software failures and/or lost messages.

The basic approach used in this paper is as follows. 1) Iden-
tify all events that occur due to the processing of the transac
tions or the concurrency control algorithm. 2) Establish an
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oider (causal relationship) among all events. This gives a causal

pph. 3) Derive subgraphs representing event ordering for the

insaction and the concurrency control algorithm. The sub-

gaphs are like a template representing generic processing for

- transaction or a node. 4) Using the transaction and node

subgraphs, determine the conditions for the allowable histories

erated by the concurrency control algorithm. 5) Check if
s conditions are satisfied by a subclass of all possible
ilizable histories. The classes of the serializability for dis-
iibuted database systems have been established in [6]. If
ihe conditions are satisfied, the degree of concurrency and
Comectness are verified; otherwise the algorithm produces
nonrecognizable histories, 6) Study if there exists a sequence
of events that lets the processing of a transaction or a concur-
ency controller proceed from an initial event to the terminal
(final) event. If so deadlock freedom is guaranteed. 7) Check
if the occurrence of some event transition is based on certain
focessing on another node or certain message transmissions.
50, the algorithm is not robust with respect to the failure
of such processing or message transmission. 8) Identify events
that are necessary for the deadlock freedom and robustness
md add them to the original set of events. Establish relation-
ships among these new events and other existing algorithms.
'This gives a new causal graph. From this improved causal
graph obtain a new modified algorithm.

" The above steps are also shown in Fig. 1. In this paper, only
fhe first seven steps as discussed above have been presented.
{[‘he last step is the topic of a future report.

In Section 11, the causal model has been presented. In Sec-
{ion 11, the mechanism of the analysis of concurrency control
ggorithms with an illustrative algorithm has been presented.
The basic terminology has been presented in Appendix A. The
dlasses of serializable histories for distributed database systems
have been presented in [6] , and the semantic information used
n analyzing certain classes of algorithms has been included in
[13]. Finally,a brief comparison of the causal model to other
‘models such as Petri nets and path expressions has been
included.
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II. THE CAUSAL MODEL

In this section, a causal model for representing concurrency
control algorithms is introduced. The model is based on the
identification of events in an algorithm and the causal relation-
ship among the events [4], [16]. The purpose is to map the
specification of algorithms to the classes of serializable
histories.

The first section describes a model for concurrency control
algorithms. The model specifies the states and the events of
concurrency control algorithms. The second section explains
the causal rules which represent the causal relationship among
the events. The third section describes the causal graph and
node/transaction subgraphs to represent possible ordering of
events. A hypothetic concurrency control algorithm is used
for illustration,

A. A Model for Concurrency Control Algorithms

A distributed concurrency control algorithm ® can be
modeled as a collection of local schedulers {®,} such that &,
is the local scheduler running at node n. The local schedulers
represent the distributed components of the overall concur-
rency control algorithm.

Each local scheduler acts like a finite state machine, and has
independent state and event specifications as well as local data
structures. All local schedulers are not necessarily homoge-
neous. For example, a synchronization algorithm with central-
ized control may have one local scheduler running on a central
(controlling) node and all other local schedulers as the slave
processes. In such a case, the finite state machine for the cen-
tral scheduler is considerably more complex than others. Since
each node is assumed to have only one local scheduler, the
term “node” may also be used in the following sections to
refer to the scheduler at that node.

Each local scheduler ®,, can be characterized by a quintuple
<8, En, My, Dy, L,> where S, is a set of states, £, is a set
of events, M,, is a set of message types, D,, is a set of Tocal data
structures, and L, is a set of local operations on M, and D,,.

A state of a local scheduler represents a finite period of local
computation. Unlike the “State” of a variable, the state here
refers to a stage in the execution of the algorithm rather than
the status value of some variable. In a state,an algorithm can
perform any number of operations with one exception: send-
ing and receiving messages must be modeled as state transitions.
Examples of legal operations in a state include operations on
local data structures, message preparation, predicate evalua-
tion over local data and/or message contents, etc.

An event is an activity that causes a scheduler to change its
state. For example, as required by this model, sending and
receiving messages constitute events. An event involving no
message exchange models a transition between processing stages
of an algorithm. In this case, the event signifies the comple-
tion of the processing in the previous state and the start of the
next state.

Since each event is associated with a state transition of a
local scheduler and vice versa, the set of events for a local
scheduler can be viewed as the state transition function of the
scheduler. An event is a member of the set S, X8,. Also,
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Fig. 2. The schematic representation of states and events.

messages can be identified by remote events since the act of
sending a message must be modeled as an event.

In a schematic representation of an algorithm, events are
represented by directed edges connecting states. Message
sending will be shown as the message id embedded in the edge
representing the sending event. Message reception will be
denoted by tagging the message id or the sending event just
beside the state from which the receiving event starts. For
example, in Fig. 2, event e causes the scheduler to change from
state S1 to state S2. Message MESS is sent when event [ takes
place (from state §3 to state S4). The receiving node changes
state (event g) from state S5 to state S6 upon receiving the
message MESS. Since MESS is sent in event f, the tag beside
state S5 can also be finstead of MESS,

The message types M, specify message id’s and the message
formats.

The local data structures D,, contain all local variables acces-
sible only by @®,. The database at a node is considered as a
part of the local data structure since it is accessible only by a
local scheduler.

The local operations of &,,, L,,, are defined over M,, and D,,.
Computational details are specified in L ,,.

A concurrency control algorithm achieves synchronization
by coordinating updates on local nodes, and the process of
coordination is done through proper message exchanges among
nodes. These message exchanges are events. The database
accesses are associated with particular events in the algorithm.
Hence, an output history of an algorithm can be viewed as a
sequence of scheduler events embedded between the events
associated with access operations, The read and write opera-
tions are associated to special events of a scheduler. The
sequence of system events, thus, represents a detailed descrip-
tion of the synchronization process by a concurrency control
algorithm. This is the notion of expanded history ,i.e., history
of atomic operations plus embedded scheduler events. Each
event can be associated to a transaction and/or to a node. The
node and transaction projections of an expanded history can
be defined. This expanded notion of “history” of a system
will be used in the following discussions,

The notation e(i,j) is used to designate an event e for trans-
action 7 at node j. We would avoid the subscripts whenever
possible and represent e(7,7) by e. The subscript will be neces-
sary when the identification of the transaction and the node
for an event is important in the context of other events.

The notion of events and states is further illustrated by the
state transition diagram of a hypothetic concurrency control
algorithm in Fig. 3. The sending of a message is represented
by embedding the message id in the transition arrow; each
transition is also marked with corresponding events, ei, 0 <
i<S.

The algorithm works as follows. A local scheduler waits
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Fig. 3. The state transition diagram of a hypothetical algorithm,

for incoming transactions in the state SO (the idle state). Upon
receiving the request from a transaction (INTREQ), the local
scheduler broadcasts a message EXTREQ to every other node.
(event e0) to obtain locks. The scheduler must initialize the
counter and lock X,,. The scheduler then waits for acknowl-
edgment (ACK) from all other nodes before proceeding to
execute the transaction. This is implemented by local opers-
tions A; on the local variable 4,. Event e4 represents the
waiting loop for acknowledgments. A DONE message will be.
broadcasted to inform schedulers at other nodes that the trans.
action has completed. If a scheduler is in the idle state and.
receives an EXTREQ message, it will send back an ACK mes.
sage to acknowledge the request for locking and hold the lock §
for that transaction until a DONE message is received, "

The local variables used by the local scheduler in this hypo- ‘
thetic algorithm include a simple counter for registering the
acknowledgment messages and a lock variable for the data
item ¥ (one data item assumed). Let ®, =<S,,F,,M,,D,,
L,> be the local scheduler. Then

S, states = {50, 81,82, §3};
E,: events = {0, ¢l,e2,e3,e4,e5};
M,,: message types = {INTREQ, EXTREQ, ACK, DONE};
Dy, local data structures =
Ay,: acounter for ACK responses;
X, : a variable indicating whether the lock is held cur
rently by some transaction;
Y,: the database at node n,
: local operations =
Ay increase the counter by 1;
Xy increase X, by 1 indicating the locking;
A, initialize the counter to zero;
X, unlock by resetting X, to zero;
W/ [Y]: local accesses to ¥, by transaction i. g

The causal model requires reasonable specification of the
operational aspects of an algorithm before the analysis of the
algorithm.

B. Causal Rules

From the basic computational model, it can be observed that |
events of a concurrency control algorithm do not occur ran-
domly. There are certain relationships among them. These
relationships can be specified by causal rules.

1) Definitions of Causal Rules: A causal rule U is a quin-
tuple <u, @, v, L, P> where u,vare events, and @ is one of [
the causal relationships {—~>= 2 }.

The causal relationship — specifies the ordering of non-



_ . <u,~>v,L P> is a causal rule if there
tes x,9,2 €S, such that u=<x,y>, v=<p,z>! the

vely, event u precedes event v on node n, and ®,, exe-
event v following the occurrence of u without waiting
ssages. Between these two events, the local operation
take place. The predicate P must be defined over D,
M, (it can test the contents of previous messages). If
~0,L,P> is a causal rule for some L and P, then event u
d to precede event v (or v follows u).

other two causal relationships, = and >, describe the
g between message-related events. <u,= v,L' P> and
>.0,L",0> are causal rules iff there are states x,y ,z €S,
S,k Fn, such that u=<x,y>, v=<yp.z>, w=<ts> w
event that node & sends a message to node #, and node n
nds with event v at state y. L' is the local operation of
1 in state y, which is independent of the message sent by
emote event w. L” is the local operation of node 7 in state
t can be performed only after the message is received. P
g predicate that node n chooses to wait for messages after
vent #, and O is the condition that the message of event
pwill be recognized by node n. Schematically, nodes n and k
st have the following state transitions.

node k: t >

w
noden: x—y—z.
: u v

t denotes that node n, while waiting at state y, receives a
ge sent by event w of node &, and then executes event
n response.  Event w is said to cause event v if <w,->, v,
0> is a causal rule for some L and Q. Note that the causal
tles <u,=,v,L’ P> and <w,>,v,L",0> are related to each
fher; no causal rules <u,=,v,L' P> should exist without the
sponding <w,2>,v,L",0> causal rules.

her L or P in the above causal rules can be null. A null
signifies that no local operation is associated with the events
ed, and a null P indicates that the causal relationships
conditional, i.e., independent of local data values or

The predicate P of a causal rule <u,>,v,L P> can also be
d to specify the sites receiving the message generated in
nt 4. Hence, either message broadcasting or daisy-chain
nsmission can be described by a proper predicate P. The
fetailed semantics, such as the exact node id to which a mes-
¢ is sent, are in general not critical to the causal relation-
p>.

The following notation is used in this paper to designate a
usal rule <u,@ v, L P>:

u@uv+Lif P,

'Recall that an event is a member of S, X S,,.
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Fig. 4. Sample flow diagrams of an algorithm.

For example, the following causal rules are derived from the
hypothetic algorithm in Fig. 3. In the listing, i,m designates
transactions, and j,k designates nodes. W;.’ [¥T] represents the
database access by transaction i to item Y at node j. Let
INIT (i) be the originating node of transaction i and N be the
set of nodes.

e0(i,j) = el(i,k) + X, Vk #J;
el(i,j) > e3(i,k) + Af, k=INIT(), k#j:
e3(i,j) ~ ed(i.j)if 4; <|N|-1;

e3(i,j) > eS(i,/)+ W/[Y] + Xj if 4, = |N|-1;
e5(i,7) > e2(i,k) + WE[Y] + X7, k #j;
e0@i,j) = e3(i,j) + 47 + X ;

ed(i,j) = e3(i,/);
eli{l, i) =-e2(7);
e5(i,j) = e0(m.j),
e5(i,j) = el(m.j),
e2(i,j) = e0(m,j),
e2(i,j) = el(m.j),

m#i, -
m¥#i;
m¥+i;
mi

In the rule e0(i,j) = el(i,k), the predicate “Vk #; * indicates
the broadcasting of messages, whereas in the rule el(i,j) >
e3(i,k), k is uniquely specified. The local access to the data-
base is associated with the event e5; this is indicated by the
rule e3(i,j) > e5(i,f). The update by a remote transaction is
associated with the event e2, which is initiated by a message
from a remote e5 event. Notice that in the rule e0(i,j)=
e3(i,j), the local operations of initializing A; and X; are in-
cluded since they are independent of the response message.
The last four rules indicate that the event €0 or el after the
event e5 or e2 refers to a different transaction.

2) Inference of Causal Rules: To be an effective model for
distributed concurrency control algorithms, causal rules should
be easily derivable from common descriptions of an algorithm.
An informal description of the mapping procedure follows.

Consider the examples in Fig. 4. They are sample flow dia-
grams of an algorithm. Case (a) represents the processing of
a scheduler in state S; the scheduler activates e2 after entering
state S via event el. Case (b) represents the receipt of a mes-
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sage MESS when the scheduler is in state S, and the response is
event e5. Assume that the message MESS is associated with a
remote event e4. It follows from the definition that

Case (a):
Case (b): e3=eS5; ed>es.

el »e2;

Cases (c) and (d) represent conditional branches in the flow of
an algorithm. In case (¢), the scheduler consults the local data
values for selecting one of €2 and e3. It can be translated into
the following causal rules:

Case (¢c): el »e2if Pyy; el > e3if Pyy;

where Py, and Py; are predicates over the local data structure,
They are not necessarily mutually exclusive, and the result can
be nondeterministic execution, Case (d) stands for conditional
processing depending on the presence or absence of messages.
State § will choose €7 if a message is received, otherwise it will
continue with e5. The definition of the relationships does not
prohibit such behavior, which can be represented by

Case (d): ed =e5ifP, ed=eT, e6>e7,

where P is a predicate indicating the absence of message e6.
However, case (d) can be alternatively represented as case (d"),
where

Case (d'): ed—e'if P; ed—=e"if-P;

e =e5; e"=e7; e6> e,

The decomposition of state § of case (d) into the states S, 5,
and S"”, of case (d") may also reduce the complexity of deriving
semantic conditions for causal rules.

So far, only the procedure for identifying the type of causal
relationships between events has been discussed. To specify
the local operation and the predicate part of a causal rule, the
semantics within a state must be examined, and this step is
important because the modeling power of causal rules depends
on the semantic interpretation.

Local operations can usually be identified by collecting the
semantics of each statement or the primitive in a particular
state. Predicates are derived from the conditions on the con-
trol path through which the state activates an event. Specif-
ically, for the causal rule <u,—, v, L, P>, L is the local opera-
tion performed in the intermediate state between u and v. P
is the predicate such that the state will performlocal operations
and finally lead to the activation of v. For the causal rules
<u,=,v,L',P> and <w,> v, L",0>, L' comprises the local
operations between u and v that are independent of the mes-
sage sent by w; L” comprises the local operations after the
message is received and recognized. Predicate P denotes the
condition that after event u the state will choose a control
path that leads to waiting for messages. @ is the condition
that the state recognizes the message sent by w and activates
event v.

These semantic specifications may not be easy to derive for
certain operations and control flow. One solution is to refine
the definition of the state and identify events which are on a
lower level of abstraction. This process is similar to the process
shown for case (d) where the original state S has been refined

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 4, JULY 14

further to include extra states S" and S” in case (d'). Withi
finer level of states and events, semantic inference is eusig
The semantics of concurrency control algorithms is usually i
difficult to specify as exemplified by the above hypothefl
algorithm and as shown in [12].

The set of causal rules is not large. If the local schedulers
homogeneous, their causal rules are identical. In this case, il
only difference between the specifications of two schedulersi
in identifying the receiving node of a message for the relatio
ship . However, the semantics of selecting the receivi
node is fixed and can be represented by suitable quantifiers ‘;
the predicate. For example, broadcasting a message can :
represented by the following causal rule:

u(i,j) = v, k) Yk #j,j,kEN, |
instead of repeating the rule for different nodes (V is the set(f
nodes). Hence, only one set of relationships for the schedul
needs be specified and others can be “folded” onto the set,
For heterogeneous schedulers, the number of specificatiof
is also relatively small. For instance, only two graphs i
necessary for the centralized control algorithm, one for ,
central scheduler and the other representing all other nodes.

C. Causal Graph
A causal graph G=<V,E> for a set of causal rules of

algorithm is a labeled diagraph with vertices V={e ieven
and edges £ = { <e,f > | there exists a causal relationship
local operation L, and predicate P such that <e, @ f,L P>§
a causal rule}. The vertices and the edges are labeled wifl
their corresponding events and causal relationships. The edg
in a causal graph are referred to as — edges, = edges, or )
edges according to their labels. The paths in a causal gra
represent possible event sequences in the execution history,

The node subgraph consists of those paths containing ol
- and = edges. These paths represent the possible executiy
history of each local scheduler at one node. A path in (l
node subgraph is called a node path.

The transaction subgraph consists of those paths containi
= edges. A path in the transaction subgraph is called a trs
action path. Events on transaction paths of the transactio
subgraph are events for a single transaction. Transaction path
represent the message switching behavior of the schedulg
concerning transaction synchronization. The derivation px
cedures of these subgraphs are explained below,

For concurrency control algorithms, there is one initialg
wait state. In the wait state, say S0, a scheduler waits ford
new transaction. All the events ending at SO will have = edy
to all the events starting from SO. This implies that it is pog
ble to have many cycles formed by these = edges in the cay
graph. The events returning to state SO are not critical in
processing of the transactions. For example, new reque
from a user are processed by starting the scheduler from|
initial state SO. Thus, a scheduler returning to SO witha
completing the processing of an older transaction must be ab
to resume the processing some time later. This is often don
through local data structures such as a waiting list. As farg
the local scheduler is concerned, the current processing of |



older transaction at this node is completed. Events entering
the idle state SO represent the termination of a node’s current
processing of a transaction and are called rferminal node events.
Similarly the events starting from SO are called initial node
vents.

To find the node subgraph from a causal graph, first remove
fiom the causal graph all > edges, and then remove all = edges
from the terminal node events to the initial node events. The
rmaining = and = edges are meaningful for processing at a
ingle node. The > edges can be removed because they relate
eents at different nodes. The = edges from terminal node
tents to initial node events can be removed because of the
uguments about the initial state SO, They are not related to
the transaction processing at a node. Their presence is implied
when the terminal and the initial node events are identified.

To find the transaction subgraph, it is necessary to identify
the initial and the terminal events for transaction processing.
An initial transaction event neither follows any event nor is
wused by any event. It represents spontaneous activities such
o user requests.  An event e(i,j) is a terminal transaction
went if no further processing for transaction 7 at node j is
geded. For concurrency control algorithms, terminal trans-
wction events signify the final decision of acceptance or rejec-
lion on a transaction.

The following steps are used to find the transaction subgraph.
1) Remove all = edges from the causal graph.

2) For any event which is not a transaction terminal and has
no outgoing edges, include all outgoing = edges that are related
10 the processing of the same transaction,

3) For any event with incoming = edges (generated by the
nevious step), also include all outgoing = edges that are related
io the processing of the same transaction.

The intuition behind step 1) is based on the assumption that
messages are necessary for concurrency control in the distrib-
uted environment. When a local scheduler is waiting for a
message, it is the remote event of sending the message that
arries most of the control information. In other words, the
tontrol flow for processing a transaction can be viewed as
moving from node to node along with message transmission.
Note that by “‘advancing” it does not necessarily mean that
Iransactions are forwarded from node to node or remote pro-
cedures are invoked one by one. For example, the broadcast-
ing of locking requests represents that the control flow for
processing  the transaction has forked simultaneously at all
other remote nodes; the control flow will not return to the
initial node until a response message is received. Hence, the
= cdge between the message broadcasting event to the message
receiving event does not carry any semantic significance for
the transaction processing, The = edge, however, does carry
important ordering information for the node processing. It is
therefore included in the node subgraph as explained previously
in the procedure for generating node paths. The — edges are
not removed because they represent the order between local
events (events involving no messages). Both node processing
and transaction processing have to follow the order depicted
by the — edges.

The intuition behind step 2) is that nonterminal transaction
events without outgoing — or 2> edges (called halting transac-
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Fig. 5. The casual graph for the hypothetical algorithm,

tion events) represent a temporary halt in the control flow of
processing transactions. A typical example is a pending trans-
action waiting for the release of locks held by, say, a higher
priority transaction. No messages can be generated and no
further local processing is possible for that transaction. Hence
the local scheduler may put the transaction in a local waiting
list and resume normal processing. The transaction will be
awakened by later messages. Hence, there are only outgoing
= edges from this event. In this case, the flow of processing
for this transaction will be represented by these = edges, and
such edges should be included in the transaction subgraph.
Complication arises in selecting which outgoing = edges are to
be included. Because a local scheduler usually resumes normal
processing after a halting transaction event, outgoing = edges
from the event may lead to events that are not related to the
halted transaction. In this case, semantics expressed by the
predicate part of the causal rules for those = edges have to be
examined. Only the = edges leading to those events related
to the processing of the same halted transaction should be
included.

Step 3) follows the same intuition as in step 2). It deals
with the case that an awakened transaction may be asked to
wait again. The awakening message may generate further
messages that are associated with other transactions; this is
represented by the outgoing == edges from the event of re-
ceiving the awakening message. However, if the awakened
transaction should be put to wait again, its processing flow
cannot follow the outgoing = edges, which is for messages of
other transactions. Hence, the outgoing = edges are included
to indicate the fact that the halted transaction must be pro-
cessed locally. As in step 2), semantics have to be examined
to determine which edge is related to processing the same
transaction.

The causal graph of the hypothetic algorithm of Fig. 3 is
shown in Fig. 5. To simplify the drawing, the = edges are
represented by dotted arrows. The transaction subgraph is
shown in Fig. 6 and the node subgraph is shown in Fig. 7. The
initial transaction event is €0, and the terminal transaction
events are e5 and e2. The initial node events are €0 and el,
and the terminal node events are the same as the terminal
transaction events. The terminal events are represented by a
triangle rather than a circle.

The node subgraph is derived by removing all > edges and
all = edges from the terminal node events to the initial node
events. The transaction subgraph is derived by first removing
all = edges, then including the = edge between e4 and e3. The
= edge from e4 to €3 is included because e4 is a nonterminal
transaction event without outgoing — or = edges and the =
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Fig. 7. The mode subgraph for the hypothetic algorithm.

edge is related to the same transaction (see the corresponding
causal rule in Section II-B1).

D. Summary of the Causal Model

The causal model proposed in this paper is intended for
verifying concurrency control algorithms of distributed data-
base systems. An algorithm is modeled as a set of local
schedulers; each scheduler is associated with a node in a dis-
tributed database system. The scheduler is first represented
by a state transition diagram, where a state represents a finite
period of local processing. Messages are modeled as state
changes, and each state change constitutes an event. Then
the causal relationships between these events are described
by causal rules. A graphical representation of the causal rules,
the causal graph, is constructed to assist in determining the
possible event ordering, By considering events related to a
single node and events related to a single transaction, two sub-
graphs can be derived from the causal graph. The paths in
these two subgraphs and the semantic conditions related to
each edge will be used in the final verification process.

[II. ANALYSIS OF CONCURRENCY CONTROL ALGORITHMS
UsiNG THE CAUSAL MODEL

In our model for distributed database systems, the notion
of history is used to model system behavior. The concurrent
read/write activities of the transactions are modeled as a se-
quence of atomic operations. The eventsrelated to a particular
scheduler or a transaction can be described by subsequences
called node projections and transaction projections. This
sequence (either the overall history or the projections) repre-
sents the order of those atomic operations in real time, The
basic terminology and formal definitions of transaction, his-
tory, and serializability are included in Appendix A.

The performance of a concurrency control algorithm can be
measured by several parameters, e.g., average response time,
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average throughput, number of messages required to corel
synchronize, the degree of concurrency allowed, ete, So
these measures are dependent on the types of transae
arriving in the system while some others are based on th
ticular characteristics of the system parameters, €.g., a seco
ary storage access 1/O cost, CPU processing cost, data structus
employed to broadcast messages, etc.

The degree of concurrency allowed by a concurrency co
algorithm is a measure that is independent of the parti
system parameters and has been used by [14], [19]. A
chronization algorithm is viewed as a scheduler which obsery
the sequence of operations requested by different transact
If a particular sequence (or part of the history) is recog
by the scheduler to be acceptable, the scheduler allows fu
processing. If the scheduler cannot recognize a parti
history, it will change the execution sequence of some o
tions so as to map the current history into one that is acc
by the scheduler. This may require delaying the operatio
some transactions. If an algorithm recognizes more his
to be serializable, to a lesser extent, it will interfere with
Thus, by studying the class of serializable histories recog
by the algorithms, we can compare their degree of concurr
This measure is a qualitative comparison of algorithms rath
than a quantitative comparison.

The problem of testing any arbitrary history for serializabil
has been shown to be NP-complete [19]. Several subse
the serializable histories, however, have been identified fo
serializability test. These subsets called classes are defin
histories acceptable to a scheduler. We have extended
definitions of these classes for histories generated in adis
uted database system. In [6], five classes are defined:
two-phase locking (G2PL), local two-phase locking (L2
distributed conflict preserving (DCP), distributed seriali
in time-stamp order (DSTO), and distributed strictly serial
able (DSS).

To prove the correctness of an algorithm, the recogni
histories of the algorithm are tested against these class
the histories of an algorithm are contained within a ki
class, then the correctness of the algorithm is guarantee
the relative power of this algorithm with respect to the
rithms whose histories are contained in other classes ca
be decided [14].

This section is further organized as follows. In the fi
subsection, the link between the order of events ina h
and the causal rules is shown. In the second subsectio
mechanisms to check the semantic conditions in the
rules are discussed. The steps for verifying an algorit
the serializability of its output histories are described in
third subsection. Comments on the usage of causal grap
investigation of other aspects of the algorithm, such as
lock possibility and reliability, are included in the four
subsection. '

A. Event Ordering and Causal Rules

In the causal model, event sequences are represented by
in the causal graph. A path in the causal graph defines
partial order for the events of the path in the history
synchronization process of the schedulers can be traced:
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lversing the causal graph. An event 4 will precede another
tient B in the history if a path from 4 to B can be found in
the causal graph.
We introduce two sets of events Q(e) and R(e) that are
ieachable from an event e in the causal graph. Formally they
e defined as follows.
Let Q(e)= { f| fis an event and there exists local operation
L, predicate P such that <e,=, f,L,P> is a causal rule}, and
‘() {f|fis an event and there exists local operation L,
pedicate P such that <e,=,f,L,P> or <e,~ f,L,P>isa
ausal rule}.
‘The predicate part of each causal rule represents the condi-
fion that the specified causal relation between the two events
yill appear in the execution history of the system. For an
event (i, /) in the history, the local scheduler at node m will
txecute an event f(k,m),i,k €T, as the very next event if
1) there is either = or — causal relation between e(i,m) and
_;k ), and 2) the predicate for that causal relation has been
stisfied. In other words, f€ R(e). For a message-sending
eent e(f,7), some remote nodes will subsequently execute an
went f(k,m), i,k €T, j,meEN,j#*mif 1) there is = causal
elation between e(7,7) and f(k,m), and 2) the predicate for
that causal relation has been satisfied. Hence, f€ Q(e). If e is
¢ halting transaction event,i.e., an event with no outgoing - or
> edges in the transaction paths, the next event for the halted
fransaction will be one of the events reachable from e via =
idges. Hence, fE€ R(e). In all cases, the event f(k,m) can be
yiewed as selected by the predicate from the corresponding
set—R(e) for node processing or R(e) U Q(e) for transaction
processing.  The following proposition summarizes the above
dlscussmn and relates the partial ordering of scheduler events
inan execution history to the causal graph.
Proposition 3.1:
i) 7'(f(k, 7)) =7/(e(i,j)) + 1 for some i, k€ T,jEN,e, fE
Eiiff f(k,7) is selected from R(e).
ii) If e(i.j) is an event for transaction { and f(i, k) is selected
from R(e) U Q(e) for the same transaction i, j,k €N, then e
[1,)) > (e, ).
i) An event fE€ R(e) iff f is adjacent to e in the node
subgraph.
. iv) For events e, f of the same transaction, f€ R(e) U 0Ofe)
iff fis adjacent to e in the transaction subgraph.
The proof for Proposition 3.1 is intuitive and straightforward.
Proposition 3.1i) states that any event which occurred im-
mediately after event e in a node history must be one of the
events in R(e) since otherwise the local scheduler @, could
ot possibly have advanced from e to f. Proposition 3.1ii)
states that the nex!l event of the same transaction selected
fiom R(e)U O(e) should occur after e. Proposition 3.1iii)
relates the set R(e) to the node subgraph. The set R(e) can be
derived from the node subgraph since all = and — edges are
m the node subgraph. Proposition 3.1iv) relates the events of
the same transaction in R(e) U Q(e) to the transaction subgraph.
The permutation order of a node projection is related to the
node subgraph in Proposition 3.1 by i) and iii). The set of
possible next events for an event e at the same node are identi-
fied as those in the set R(e). The exact selection of the next
‘ovent depends on the semantics and the predicate part of the
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causal rule. If the selection is not unique, then nondeter-
ministic choice is possible.

If some of the events in R(e) can never be selected, they
become useless events because they can never be activated.
The algorithm can be redesigned to remove such events, and
the resulting algorithm will have the same behavior as the
original one. If no events in R(e) can be selected, then the
scheduler will be deadlocked after event e unless e is the last
event of the history. Hence, it follows from Proposition 3.1i)
that there exists at least one event from R(e) for any event
e in a history such that 7/(f)=n/(e) + 1 unless e is the last
event or a deadlock has occurred at node j. We assume that
an algorithm is free from useless events before it is analyzed.

The permutation order of a transaction projection is related
to the transaction subgraph in Proposition 3.1 by ii) and iv).
One event fin the set R(e) or O(e) must occur after e if both
e and f are events of the same transaction. The event f/ may
not occur immediately after ¢ in the transaction projection be-
cause, for example, the event e may be a message broadcasting
event and [ is one of the responses. Then, the event f by a
particular scheduler may not immediately follow e since this
Jf may not be the first response to e.

If an event e is a terminal transaction event, then the events
in R(e) must be associated with another transaction (from the
definition of terminal transaction events). If a nonterminal
transaction event e cannot select {rom R(e) or Q(e) a next
event for the transaction, then the transaction is deadlocked.
Hence, for a nonterminal and nondeadlocked transaction event
e, there exists at least one event f from either R(e) or Q(e)
such that f is for the same transaction and m;(f)> m;(e).
Proposition 3.1iii) and 3.1iv) indicates that the selected
events can be determined from examining the node and the
transaction paths.

From the above proposition, the following theorem can be
proven,

Theorem 3.1: lete(i,j),f(k,m)i,k €T,j,mEN, be events
in a history corresponding to events e, f of the causal graph. If
Jlk,m) is selected from R(e) U Q(e) then w(f(k,m))> (e
(@,7)).

Proof: From the definitions of the node and the transac-
tion projections, m(e) <w(f) iff 7/(e)<#/(f), and n(e) <
m(f) iff m(e) <m;(f) for events e, f. If f(k,m) is selected
from R(e) U Q(e), it is related to either the node processing or
the transaction processing. If f(k,m) is selected from R(e)
(node processing), then m=/ and 7/(f(k,})) = nle(i, )+ 1>
n/(e(i,)) from Proposition 3.1i). If f(k,m) is selected from
Q(e) (transaction processing), then k=i and m;(f(i,m))> (e
(1,7)) from Proposition 3.1ii). It follows from the above men-
tioned properties of m; and 7/ that w(f(k,m)) > n(e(i,j)). =

Theorem 3.1 says that any event from R(e) U Ofe) selected
by some predicate for an event e must follow ¢ in the history.
More than one event can be selected by different predicates,
but all selected events must follow Theorem 3.1,

B. Checking the Semantic Conditions of Causal Graphs

In a causal graph, the edges reflect the ordering defined by
the causal rules; the semantic information is captured by local
operations and the predicate associated with the corresponding
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causal rule. The local operations and the predicate are defined
over local data structures. Hence, it is necessary to examine
the value of local data structures for checking the semantic
conditions for the paths in the causal graphs. The following
theorem tells us about the conditions for effectively checking
the semantic conditions.

Theorem 3.2: The semantic conditions necessary for a
path from one event to another in a causal graph can be effec-
tively decided if the causal rules contain only first-order
predicates and primitive recursive functions.

Proof: The proof is presented by considering two cases for
the paths in the causal graph as discussed in the following.

Case 1—A Single Idge in the Causal Graph: Let D), be the
local data structure at node n, and let (D,,)" be the value of
D,, just after the occurrence of an event u. For the causal
rule

u—~v+LifP

and the corresponding edge in the causal graph, the data value
after v, (D,,)?, can be characterized as

(Dn)* P AL }.

It means that L is applied to (D,)* if the predicate P is true
over (D,)*. The above expression can be viewed as a small
program, which evaluates the predicate P on the given input
(D,))* and performs the operation L. Given (D,,)* and simple
P, L such as first-order predicates for P and primitive recursive
functions for L, (D,,)" can be effectively determined. Once
(D, )’ can be decided, the semantic conditions for any events
which are reachable from v via = edges can also be determined.
Let v be followed by some other events like in

v>e+l,if Py;
v—>f+ L, if Py

then P, and/or P, can be effectively decided, and
(D) =(Dn)’ Py {Ly } =@ P{L}YP, {L:1 };
DnY =Dn)' Py {Ly } =Dy P{L}P; {Ls }.

In this manner, given the initial value of D,,, the semantic con-
ditions for any — edges in the causal graph can be checked.

Similarly, the semantics of = and -2 relations can be repre-
sented as follows:

u=v+lL ifP";

"

wv+L"ifP".

Let n be the node at which the events u and v occur, then
(D,,)? can be characterized as

D)4 P {L'} P"A(woccurred) {L" }.

The data value of D,, after u, (D,)", is tested for P, then L'
is applied to D,,. L" will not be applied unless the condition
P"N\(w occurred) is satisfied. The first part of the above
notation for (D,)?, P'{L'}, represents the semantic interpre-
tation of the causal rule

u=v+L"if P
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where P' is independent of the message content from the ey
w. The second part has a predicate “‘w occurred,” w
represents the semantics for the occurrence of the event
How to check this predicate is the major task in checkiig
semantic conditions of causal graphs. '

Let m be the node where the event w occurred. There at
two aspects in representing the semantics of “‘w occurred.”

1) The data value (D,,)". This will characterize the logl
operations associated with the event w at node m. Predica
on (D,,)" can be determined by the same inference rulesg
described here.

2) The temporal order of the event w. The temporal rel
tionship between the event w and other events can be inferre
as follows. If there are causal rules

e>w
Fow

then “w occurred” implies that “e or f occurred.” Exac
which of the events e and f occurred depends on the seman
conditions of the two causal rules. To infer these conditio
the same procedure described in this section can be used, If
there are causal rules

e=w
f=w

then “w occurred” implies that “e and f occurred.” Th
semantic conditions for “e and f occurred” can again b
inferred recursively using the procedure in this section.
Cuse 2—A Loop in the Causal Graph: A loop in the causd
graph represents possible repetitions of a set of events, and
important semantic condition for a loop is the exit conditi
of that loop. The exit condition refers to any semantic con
tion that can stop the cyclic repetitions of the events o
loop. The cyclic processing is stopped either by a termind
event or by the invocation of some other events which are o
on the loop. A loop containing terminal events will not cat
endless repetitions because the terminal events signify |
completion of the processing; the edges coming out of th
terminal events are either referring to different transactions
not semantically significant (see the discussions on generat
node/transaction subgraphs). Hence, in general, the exit
ditions are the predicates that enable an event which is not o1
the loop.
For example, consider the following causal rule

u—v+LifP

where u is involved in a loop which does not involve v. Assum
that n is the node at which the events u and v occurred. |
exit condition for that loop is established when P is satisf
by (D,)*. Another situation for an exit condition is rep
sented by the following causal rules

u=uv+LifP';
w->uv+L"ifP".

Let the events u and v occur at node #, the event w at node s
If u is involved in a loop which does not involve v, thenar



et condition for the loop is established when “w occurred”
and P" is true over the data value

D) P {L"}.

(Compare this exit condition to the second part of the nota-
fion designating the value (D,)"). Note that if in the above
e w is also on a loop in which v is not involved, then the
ihove exit condition for the loop involving u is also a possible
axit condition for the loop involving w. The loop involving w
s broken when “w occurred” and P" allows the responding
gvent v to occur.

From the previous discussions on inferring the semantic con-
ditions about a single edge, the exit conditions of the loops
wan also be effectively decided. u

Example: To illustrate the inference procedure described
dbove, consider the following causal rules for the hypothetical
algorithm,

e0(i, /) > el (i, k) + X7, Vk #]:

el(i,j) = e3(i, k) + Ay, k=INIT(i), k#7j;
e3(i.7) > ed(i,))if 4; < IN|-1;

e3(i.j) > e5(i,7) + W[Y] + X; if 4, =
e0(i,7) = e3(i,j) + Aj +Xj';

ed(i,j) = e3(, /).

From the third and the fourth causal rules, (D;)** will be tested
‘against two predicates to determine which of the events e4
and e5 will follow. The two predicates, “if A; <|NJ-1" and
if 4;=IN1-1," can exclusively choose one of e4 and e5.
(D)** is identical to (D;)°® since no local operations are
involved in the third causal rule. (D;)*® will be

(D) “4; = INI-1” { W][Y] + X }

INI-1;

where the update of transaction / will be performed and X;
will be initiated to zero. Note that the predicate A= |N]= ]”
will be true for both (D;)®® and (D;)°S since no operatlons
on A; are involved in the fourth causal rule. The acknowledg-
ment count A; will be initialized in the fifth causal rule.

The first and the second causal rules represent the message
switching behavior for a transaction request. If j = INIT()),
the initial node of transaction 7, then the second rule can be
restated as

el(i, k)= e3(i,/) + A7, k#j

where k is some remote node having received the message by
(i, f) (the first rule). If node j has local data value (D;)°,
then the second and the fifth rule will produce

(D) = (D;)°° {47 + X7 } “el(i, k) occurred” {4} }.
If node  has local data value (D;)**, then the second and the
sixth causal rules will produce

(D))°* =(D;)°* “el(i, k) occurred” {47}

The predicate ““el(i, k) occurred® can be characterized by the
data value (Dy)! and the temporal ordering of events which
leads to the occurrence of el(i, k). From the causal rules (the
oomplete list of causal rules for the hypothetical algorithm),
‘el (i, k) occurred” implies that “e0(i, ), 7 = INIT(i), occurred.”
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In the transaction subgraph of the hypothetical algorithm
(Fig. 6), there is only one cycle formed by 3 and e4. The
exit condition is specified in the fourth causal rule. Although
the exit condition is “A]- = |N|-1,” the semantic condition for
the sixth causal rule has to be considered since the loop in-
volves this = edge. From the above discussion, the increment
to A; will occur only after el(i, k) occurred, and el(i, k)
occurred only because e0(f, INIT(f)) occurred. From the
quantifiers on k in the first and the second rule, only one
el(i, k) at any node k # INIT(i) can respond to eQ(i, INIT(7)).
Hence, the exit condition “A; = |N|-1" is equivalent to “el
(i,k), Yk #], occurred.” Sirigeighis database update W/ [Y] is
associated with the occurrence of the event e5(i, ), from the
exit condition, the database update will not occur until “el
(i,k), Yk #], occurred.” This demonstrates how the event
ordering semantics can be inferred from the exit condition
and the local data values.

Important semantics for each class have been identified in

[13].
C. Verification Strategies

In this section, the procedure for verifying the serializability
of the output histories of an algorithm is informally presented.
The basic idea is to view the causal graph and the subgraphs as
specifications for the order of system events. Using Theorem
3.2 and Proposition 3.1, all possible permutations of system
events can be derived from the node/transaction paths. Hence
an examination of the paths and the order of events specified
by them can decide whether all implied histories are serializable.

Three possible strategies are discussed below. The first
strategy is for verifying algorithms based on locking. The
second strategy is for verifying algorithms based on time stamps.
The third strategy is for verifying algorithms which output
DCP histories.

The procedure for finding whether a given set of causal
rules of an algorithm will generate a known class of serializable
histories can be characterized as follows. First, examine the
algorithm for obvious synchronization mechanisms such as
locks, time stamps, etc. If the algorithm uses locks, the strat-
egy for verifying locking algorithms can be applied. If time
stamps are used, the strategy for time-stamp-based algorithms
is applicable. It is recommended that the verification process
should start from a smaller class (G2PL or DSTO). The larger
classes should be attempted if the algorithm cannot be shown
to generate the smaller class. In this way, the characteristics of
the histories which are allowed by the algorithm but not in the
smaller class can usually be observed during the verification
procedure, which can assist in finding sample histories for
showing the hierarchical relationship between the algorithm’s
output and other classes. If none of the strategies for DSTO/
DSS and G2PL/L2PL is applicable, the strategy for the class
DCP should be applied. However, the class DCP lacksa general
strategy and the verification procedure proposed here is based
on heuristics.

1) Strategy for Verifving Locking Algorithms: Algorithms
based on locking are expected to generate either G2PL or
L2PL histories. Let the event a; represent the first database
access for transaction 7, and let the event w; represent the last
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database access (read or write) to an entity never accessed
before by the transaction i or a write access to an entity never
written before by the transaction. Intuitively, the w; signifies
the committment of a transaction. For more details, refer to
[6].

Definition G2PL: A history h is in the global two-phase
locking (G2PL) class iff there exists a set of global lock points
{L; 1€ T} such that for transactions  and j

) rla)<L;<m(w) VicT.

ii) If o;and o; conflict, and m(0;) <m(g;) then a) L; <Ly,
and b) m(0;) <L;.

Definition L2PL: A history is in the local two-phase lock-
ing (L2PL) class iff there exists a set of local lock points
(L} |i€eT,j GN} such that for transactions 7 and j

i) ViE TLE <nk(0)if m(ew;) <m(oy), and 7¥(@) <L{ if
a; is on node k.

u) If o; and o; conflict on node k, and *(0;) < nk(q,) then
EAY <L and b)'nk(o:)<Li :

iii) L, L <" <L, Vk,meEN.,

Note that mutuai exclustion, the conventional class of syn-
chronization in the operating systems, is just a special case of
the class G2PL. For mutually exclusive accesses, consider the
case L; = a;. The conflicting accesses will be forced to execute
serially. In other words, accesses are mutually exclusive since
m(0;) <L; = a; for conflicting transactions 7 and /.

The verification strategy for locking algorithm has the
following steps.

a) ldentify in the transaction subgraph the event(s) which
represent the lock points.

b) Identify in the node subgraph all events where the read/
write atomic operations can occur. These events are called
access events. Consider all possible pairs of these access events.
For each pair call the first event of each pair o; and the second
;.

]c) Find all the necessary events on the node paths from o;
to o;. “Necessary” means that these events are on all the paths
from 0;to 0} in the node subgraph.”

d) For every event e identified in step ¢), find in both trans-
action and node paths the corresponding lock point event(s)
which either precede or follow the event e.

¢) By Proposition 3.1 and Theorem 3.2, infer the order
between those events identified in ¢) and d).

f) Test whether the order in part ii) of the definitions GZPL
or L2PL is satisfied.

g) If all the event pairs meet the required order, then the
algorithm only produces histories in the class G2PL or L2PL.

Step b) considers only node paths since o; and g; in part ii)
of the definitions that are on the same node. Step c) traces
the node paths to identify the events which can decide the
order between o; and o;. Such identified events will be the
pivot points in the paths for inferring the order. Step d) uses
the transaction paths to determine the order between the lock
point event and the access event since they both belong to the
same transaction. If necessary, node paths will also be used.

21t is understood that there are implied = edges between the terminal
node events and the initial node events. These edges are usually not
important semantically, but are considered here because they are useful
in determining the events between o; and oj.
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Step ¢) is the major step. It has to infer all possible ordering
for identified events. Step f) and g) test the conditions for
G2PL or L2PL and lead to conclusions.

In step ¢), the inference process may be quite involved sin
cycles are possible. Cycles in the causal graph and the sub
graphs represent events that are executed repeatedly in the
actual history. The number of repetitions must be shown fo
be finite to exclude the presence of an infinite loop. The cycles
may also cause inconsistent ordering. For example, if both
the @ event and the access event ¢ are in a cycle, then both
orderings 7(a) < (o) and m(0) <m(a) are possible. Careful
examination of the semantics as described in the previous
sections will be necessary to decide the proper order.

In step a) the events representing the global or the local
lock points of a transaction must be identified. It may not be
possible to identify this event in a straightforward manner,
However, some useful heuristics are listed below. '

1) This event must be an event with local locking operations,
since the lock point is reached when a transaction acquires all
the necessary locks.

2) This event should precede an access event due to the fact
that a lock point must precede the w; access event and that
accesses can only be done after the lock has been granted.

3) This event may be the converging point of > edges in
the transaction paths for G2PL algorithms. Since synchroni:
zation by global locking often involves broadcasting request
and acknowledgment messages, this event may be activated
by the receipt of messages.

2) Stragegy for Verifving Time-Stamp-Based Algorithms:
For classes based on the locking approach such as G2PL, there
are identifiable events and specific ordering rules. For classes
such as DSTO, only the final serialization order is specified.’
The serialization order is defined by time stamps. The defini-
tions of two classes DSTO and DSS that are based on time
stamps are listed below.

Definition DSTO: The class DSTO contains all histories
that are distributed serializable in the time-stamp order. A
history h=<D, T, Z,7> is in DSTO iff there exists a serial
history g=<D, T, Z, p> such that

i) thgf VjEN, and

ii) Vi,jeT,i#],m(o;)<m(e)implies p(a;) < p(ey).

Definition DSS: The class DSS contains all histories that
are distributed strictly serializable. A history h=<D,T,Z 1>
is in DSS iff there is a serial history g=<D, T, Z, p > such that

i) h/ =g/ ¥jEN,and

ii) Vi,jE€T,i#], m(w;) <m(a;)implies p(w;) < p ().

The histories in these classes relay on the order of the a event
andfor the w event to decide the final serialization order,
Time stamps can be viewed as a means to register the order of £
« events for transactions.

The verification strategy for time-stamp-based algorithm has
the following steps.

a) Identify the event(s) defining the final serialization order,
In the case of DSTO, it is the event a for each transaction; for
the class DSS, the w; event must also be considered.

b) Infer the order of access events for two conflicting trans
actions at each node and its relation to the order of the event(s)
that define the serialization order.

e PR T S R L O
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t) Prove that the equivalent effect of accesses by conflicting
ansactions conforms to the order of the a/w events.

Siep c) relies on the semantic interpretation and the order-
formation obtained from step b). Step b) is a general
ent about a process that involves examining detailed
iantics of each causal rule. Normally the process will
e the node/transaction paths in both directions from the
ient(s) &/w to determine other access events and their rela-
lonship to conflicting accesses.

Strategy for Verifving Algorithms Producing DCP His-
: The histories in the class DCP have acyclic dynamic
onflict graphs (DCG). The definition for DCG is given below.
Definition DCG: A dynamic conflict graph (DCG) for a
story h =<<D, T, 2, w> is a digraph <V, E>: V is the set
of vertices which is the same as T, the set of transactions. £
s the set of edges, where <(7, 7> is an edge if and only if there
tiist atomic operations o; for transaction 7, o; for transaction
jsuch that o;, o; conflict and m(o;) < 7 (oy).

From the definition, a DCG of a history is a graph structure
hat reflects the order among conflicting database accesses
of several transactions. An acyclic DCG implies mean consis-
gnt ordering between the accesses from any two conflicting
mnsactions.  An acyclic DCG guarantees that the history is
grializable. This provides a test for whether a history is in
dass DCP or not,

To maintain acyclic DCG distributively in an algorithm,
lowever, is not easy. One technique is to associate the order
of database accesses to the order of a special event. Since the
grder of any particular event in processing each transaction is
recessarily acyclic, i.e., the special event for one transaction
unnot possibly precede and follow the special event for an-
other transaction simultaneously due to the natural law of
time, associating the order of accesses to a special event
rantees acyclic DCG. The technique, of course, can only
mit a subset of the DCP histories. As far as the author
tows, no general algorithms which implement the whole DCP
lass have been proposed. The verification strategy below is
eared toward this technique, but extensions of the verification
rategy for general DCP algorithms are possible.

The verification strategy is as follows.

a) Identify the special event that decides the order of con-
flicting database accesses.

b) Infer the relationship between the temporal order of the
geents representing conflicting database accesses and the
emporal order of the special events.

In step b) the inference procedure can use the techniques
for inferring the relationship between the access events and
fhe lock point events in the strategy for locking algorithms.
Step a) may involve heuristics to determine the special event.
‘Agood guess is when the first write access of a transaction is
ccepted since that instance will make the effect of a trans-
action visible to other transactions.

4) Example: To illustrate how to use the strategy for lock-
ing, we now analyze the hypothetic algorithm for mutual
exclusion. In [12], we have analyzed the majority consensus
dgorithm [25]. Recall that mutual exclusion is a special case
of G2PL; the global lock point is the first access event, . In
the algorithm, database access activities are associated with
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two events, e5 and e2. The event e5 represents the global lock
point since it is the first access activity, the « event, during
transaction processing.

Lemma 3.1: The hypothetic algorithm only produces
mutually exclusive accesses.

Proof: To prove the lemma, first, the event 5 is identified
as the a event of this algorithm since all €2 events must follow
e5 (e2 is only reachable from e5 in the transaction subgraph).
Then, the event €5 of this algorithm is identified as the global
lock point defined in Definition G2PL. The proof will follow
the strategy for verifying locking algorithms. Consider two
conflicting transactions i, j and (0;) <m(0g;) for accesses o;,
o; at node k. Then their accesses to the database on node %
are either e5 or €2 in this algorithm. There are four cases.

1) Both e5. It is obvious that the condition of Definition
G2PL is satisfied.

2) o;=e5(@, k) and o;=e2(j, k). w(e5C, k) <m(e2(j,k)).
Since e2 is reachable only from el in the node subgraph
(Fig. 7), the iocal scheduler at node k& must execute el(j, k)
immediately before e2(j, k) (Proposition 3.1). Hence, n(e5
(i,k)) <m(el(j,k))<m(e2(j, k)). In the transaction subgraph
in Fig. 6, there is a path from el to e5; hence m(el(7,k)) <
m(e5(j, m)) for some node m (Theorem 3.2). This is the only
possible ordering between el(j, k) and e5(f,m) since el and
e5 are not on a cycle. Therefore m(e5(, k) <n(e5(7, m)),
which satisfies Definition G2PL,

3) 0;=¢2(i,k) and 0; =e5(j, k). Again, from the transac-
tion subgraph (Fig. 6), w(e5(i, m)) < w(e2(i, k)) for some node
m. Hence, m(e5(i, m)) < w(e5(j, k)).

4) Both 2. Since €2 is the only member in R(el) from the
node subgraph (Fig. 7), m(e2(i,k))=m(el(i,k))+1 by
Proposition 3.1 (). Hence w(el(i, k) <m(e2(i,k))<m(el
(7, k) <m(e2(j, k)) due to the fact that w(e2(i, k)) <m(e2
(/. k)) and the properties of my.. Since m(e5(i, m)) <w(e2(i, k))
and w(el(7, k)) <m(e5(j, n)) for some node m, n (the require-
ment from the transaction subgraph), w(e5(i,m))<m(e2
(i, k) <m(e5(j,n)). =

Since e5 satisfies the condition of global lock point and it is
also the « event (see the transaction subgraph), this algorithm
will produce mutually exclusive accesses.

D. Other Aspects of Verification

Two operational aspects of an algorithm are the deadlock
possibility and the reliability. The use of the causal model for
the analysis of these aspects is presented in the following.

1) Deadlock Possibility: Both deadlock and livelock will
delay a transaction indefinitely. The term “deadlock” will
be used to refer to the indefinite delay of processing for the
sake of simplicity.

The emphasis here is to analyze whether a deadlock is possi-
ble for an algorithm. The following proposition is based upon
the observation in Section I1I-A,

Proposition 3.2: A concurrency control algorithm is dead-
lock free if and only if

a) the processing of a transaction starting from initial trans-
action events can reach the terminal transaction events in a
finite number of events in the transaction projection;

b) every local scheduler starting from initial node events
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can reach terminal node events in a finite number of events in
the node projection.

The justification for this proposition is intuitive.

Since event ordering in the node (transaction) projection is
closely related to the node (transaction) path, the following
list of conditions are used to verify the deadlock possibility
of an algorithm.

1) Every nonterminal event must be on a path leading to
terminal node/transaction events.

2) For every nonterminal event u, there is at least one event
vin R(u) U Q(u) such that v can be selected as the next event
after u.

3) Events on the cycles in the transaction/node subgraphs can
only be selected finitely many times for the same transaction,

Condition 1) guarantees that there exists a possible sequence
of events which can take a local scheduler or a transaction to
termination after the occurrence of a nonterminal event. Con-
dition 2) requires that no events can lead to a dead-end situa-
tion without any possible next event. Condition 3) limits the
number of times a transaction can execute the events on a
cycle.

Theorem 3.3: Conditions 1), 2), and 3) are satisfied if and
only if a concurrency control algorithm has the properties a)
and b) in Proposition 3.2.

Proof:

a) The sufficient condition. Recall the assumption that
an algorithm does not have “useless” events—events which will
never be selected. Then it is clear that the processing of an
algorithm will not be guaranteed to reach terminal events if
condition 3) is not satisfied. If an event cannot select a next
event [violation of condition 2)], the algorithm is deadlocked
once its processing reaches this event. If an event is not on
any path which may lead to terminal events, the processing of
an algorithm will not be able to reach terminal events after this
event no matter what next event it selects. Hence condition 1)
is also necessary for the properties in Proposition 3.2.

b) The necessary condition. There are two aspects: the
processing must end in terminal events and the processing must
reach there via a finite number of events, Assume that some
transaction (node) processing stops at a nonterminal event, It
directly violates condition 2). Assume that some transaction
(node) processing has incurred an infinite number of events.
Since there are only a finite number of transactions and a
finite number of events in the transaction (node) subgraphs,
there must be a cycle such that the processing can repeatedly
select events {rom the events on the cycle. This is a violation
of condition 3). L]

Since many deadlock or livelock situations can be examined
only through semantic information, the complete analysis of
the deadlock possibility cannot be performed by testing merely
the ordering of system events.

2) Reliability: A complete analysis of the reliability aspects
of a distributed concurrency control algorithm is beyond the
scope of this paper. In what follows is an informal description
of how to utilize the causal graph and event ordering to infer
some characteristics of the reliability of an algorithm.

One way to interpret the causal rules, or the edges in the
causal graph, is to view them as ordering specifications. This is
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the approach used in Section ITI-A. Another interpretatiof
however, is to view them as dependency specifications. Ifs
causal relation exists between events u and v, ie., <u,@j

L,P>is a causal rule for some @, L, and P, then the occurreny

u—=> v, then v depends on the occurrence of u. Further
implies that v also depends on the reliable transmission of fh

the reliability of an algorithm, especially the dependency of
algorithm on certain events. '

A possible scenario of the analysis is as follows.

1) Assume that some causal rule is not fulfilled, which indi-f
cates a failure situation.

2) Infer how many events are going to be affected: are they
altered or prohibited?

3) Examine the corresponding effects on the node and the !
transaction projections, respectively,

The types of failures that can be modeled by step 1) a!
node failures (e.g., u > v is nullified), and lost messages (e
u - v is nullified). This type of analysis is at best qualitatiye
in nature but should be adequate in identifying possible conse-
quences of failures.

3) Example: To illustrate the above concepts, the hype
thetic algorithm is analyzed for its deadlock possibility asd
reliability. To test whether a node will deadlock, the paths§
between initial node events and the terminal node events mus’
be shown not to block the local scheduler [Proposition 3.24)],

From the node subgraph (Fig. 7), event €0 is followed only
by e3 and the only condition for €3 to occur is the occurrenge
of event el. Also, the terminal node event e5 can be reachedt
if and only if all other nodes have performed el (from the .
transaction subgraph in Fig. 6). Hence, a node cannot b&
guaranteed to complete processing of a transaction unless
other nodes execute el. It can happen if the two local sched-
ulers simultaneously execute the event e0. Neither of then|
can execute el before executing eS, which can be execu
only if the other executes el. Thus, deadlock is possible it
this algorithm.

The deadlock possibility can also be shown in another way...:
In the node subgraph (Fig. 7), there is only one path from el
to the terminal event €2, Hence, only when a DONE message:
is received a node can finish the processing of a remote logk§
request. Any node which performs el cannot terminate unles
the transaction is finished. However, the completion of ¢
transaction depends on the global consensus; two nodes whih
simultaneously perform the event el for different transactions.
will create a deadlock because no transactions can get the
global consensus. 1

The reliability of this algorithm can be determined by ey
amining the node paths and the - causal rules for the evenis
on a node path. There are only three types of messages i
this algorithm; they are represented by €0, el, and e5. When
an €0 message (EXTREQ) from a node to another is lost, e,
e0 = el is nullified, no corresponding el is possible since ¢
is the only cause for el. No global consensus is possible for |
the transaction and the transaction is deadlocked. A lostel
(ACK) will have the same effect. Since e5 (DONE) is the only
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for €2, which is the terminal event for the node path
,a node will not be able to finish if an e5 message is
ence, any lost message causes deadlock, and this fact
dicated by the structure of the transaction subgraph
: Any loss of messages in one of the events €0, el, and
ectively breaks all the paths from the transaction initial
0) to the transaction terminal events.
node failure will cause the algorithm to halt. As indi-
by the node subgraph in Fig. 7, any local scheduler
ng from event e0 can reach the terminal node event e5
if el is responded to by all other nodes. If one of the
s failed to respond, the node that initiates eO will be kept
1g, and no other transactions can proceed. On the other
 if the node initiating e0 fails to complete e5, all other
 cannot proceed either since the only possible way to
iitel is after the node completes e5.
lgorithm is faulty because it allows deadlock to occur,
not reliable since deadlock will occur when the messages
tlost or a node fails.

IV. CoMPARISON TO OTHER MODELS

lle compare the causal model to three other modeling mech-
Petri nets, L systems, and path expressions. The
mparisons are based on the descriptive capability for syn-
jonization schedulers, Neither the exhaustive list of the
ling mechanisms nor the descriptive capability of the
for other modeling purposes is included. The comparison
sented for discussion and to show the specific advantage
r approach rather than to make a general claim on its
iits. For more details, refer to [13] . ]

etri Nets

i nets, surveyed in [20], are abstract formal models for
lormation and control in systems exhibiting concurrent and
jnchronous behavior. They consist of places where one or
tokens can reside and the places are connected via transi-
A transition is enabled (fired) when all of its input places
tokens. The firing of a transition causes tokens to be
wed from their input places to their output places. The
odeling of distributed processing is done by associating log-
nterpretations to places, tokens, and firing rules. For
ple, places can be thought of as different programs, such
producers and consumers, where tokens are resources to be
duced and consumed. Firing transitions can be used to
del the process of producing and consuming the resources.
properly connecting places, transitions into a net, and
ing the initial marking of tokens, the producer-consumer
blem can be represented. Petri nets can be used to model
aspects of systems: events and conditions, and their
tionships.

o prove the correctness of schedulers, we have to express
scheduler in the nets. To model a synchronization algo-
, the capability of representing value-dependent semantics
equired. The Petri nets in their original form are not quite
' to do this without increased complexity. The predicate/
sition nets represent an extension of the Petri nets and are
ained by adding predicates and semantics interpretation,
| detailed comparison of a distributed concurrency control
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algorithm using the causal model and predicate/transition
nets [10], [26] has been done in [13]. From this study, we
observe that the transformation from parallel processes to the
modeling Petri nets is nontrivial. Even if a net could be con-
structed, some problems about the net such as the reachability
problem, i.e., whether a target marking can be reachable from
a given marking, have an exponential lower bound of complex-
ity. Other problems such as the equivalence of reachable
marking sets are even undecidable. The complexity bounds as
well as the large number of places and transitions needed to
model indicate that, although some analysis questions may be
decidable using Petri nets, in a general case the cost of deciding
may make such analysis unfeasible. ,

Another limitation of nets seems to be the difficulty in
specifying the correctness condition for concurrency control
such as serializability. It is easy to associate the condition of
mutual exclusion with the exclusive presence of tokens in one
place but the specification of the serializability condition is
not obvious since it is necessary to know the ordering of
events in the history. The conditions over place markings
prescribe a set of configuration of tokens in places. These
conditions seem to be memoryless in nature, i.e., how the
tokens arrive at the prescribed configuration is not specified.

The causal model can easily represent value-dependent
semantics through local data structures and local operations
in the causal rules. The very general form of predicates for
causal relations enables us to express the semantic interpreta-
tion of an algorithm. The purpose of the causal graph model
is to concentrate on the global picture of event ordering.
Events and their causal relations are also natural extensions
from the descriptions of algorithmic state transitions, which
increase the descriptive power of our model.

Another advantage of expressing read/write requests as
events is that the transformation from serializability conditions
to event ordering information is straightforward. Not only
can problems such as mutual exclusion be modeled by the
causal graph model, more complex synchronization policy like
the two-phase locking protocol can also be described as event
ordering constraints.

B. Linguistic Models

Ellis introduced the modeling of synchronization schedulers
in distributed databases by L systems [8]. L systems, originally
studied in [22], are similar to phrase structure grammers but
with no terminal symbols and with simultaneous replacement
rules selected from an arbitrary finite set of tables. Ellis ex-
presses the synchronization algorithm in terms of evaluation
nets, a modified form of Petri nets, and then translates the
evaluation net semantics into a set of L system tables. The
rules mimic the operation of each node’s state transition and
the changes of local variables by manipulating a string of sym-
bols assembled from the state symbols of each node and the
local variables. The message switching is modeled by letting
one node examine/change other nodes’ states and variables,
i.e., the I system grammer is context sensitive, The algorithm’s
properties such as mutual update exclusion, and deadlock
avoidance capability are expressed as membership problems of
the language generated by the L grammer.
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Analyzing L system models for algorithms is relatively easy
because the membership problem of a context sensitive
grammer can be automated. However, the translation from
evaluation nets to L system grammers lacks a well-defined
methodology, and the context sensitivity of the Z grammars
makes the rule tables extremely complex if the message switch-
ing is of arbitrary configuration.

The expression of high level synchronization policies is also
a problem with L system models. In Ellis’ example, the analy-
sis is done by testing the membership of a string of local
variables and local scheduler’s state variables. The algorithm
is shown *incorrect” by showing that a string of variables
with two different nodes simultaneously having the same lock
and the update is a member of the language. However, an
algorithm is not necessarily correct if the above strings are
absent because the serializability is not simply the state of
local variables or the local program counters. To show an
algorithm correct with L system models, we need to prove
that members of the language are produced in correct se-
quences of derivation steps.

C. Path Expressions

Path expressions [7], [17], [23] follow the event ordering
notion and specify the behavior of concurrent program opera-
tions. A path expression is a formal definition of some order-
ing constraint on the way in which occurrences of events in a
system are to relate. The set of all path expressions for a
system is an abstract description of the system and can be
viewed as a set of grammar rules for generating strings repre-
senting system histories. From these path expressions, charac-
teristics such as deadlock avoidance capability can be analyzed
by expressing them in path expressions, then verifying whether
the description of the algorithm implies such characteristics or
not.

For example, the synchronization aspect for a version of the
producer/consumer problem can be described in path expres-
sions [7] in forms like

path {read}, {write} end

path write end.

The first path means that if the read procedure begins to
execute, all reading requests are accepted. Same is the case
with writes. A read and a write may not overlap, but a read
can overlap with other reads. The second path ensures that
the actions of writing are mutually exclusive. Thus,executions
of write are synchronized with respect to read in the first path
expression, the synchronization among writes is expressed in
the second path,

Path expressions were originally proposed as synchronization
tools rather than as verification models. Sometimes the descrip-
tion can be too abstract to leave any indication for implemen-
tation. The paths describe the desired ordering of operations
but give little indication for implementation as we can see
from the example. Although procedures for translating path
expressions into P’s and Vs are given in [7], no translations
to message switching algorithms are known,

Path expressions can be used as the verification tool by
viewing them as conditions that an algorithm has to satisfy.
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In other words, path expressions can be viewed as behal
descriptions of the operations in an algorithm. The probles
of proving that a set of path expressions for describing a sy
tem really represents the system, is difficult [23]. Contr
to the causal graph model, the originally proposed path g
pressions do not contain semantic as well as history infom
tion about the system’s behavior. This makes the process
deducing/transforming path expressions from/to an algoriths
difficult. An attempt of adding predicates to path expression
[1] is similar to our construct of causal rule predicates, butig
emphasis is still on using path expressions as programming
specification for synchronization. Andler presented an imple
mentation of predicate path expressions through shared moni
tors for abstract object types; the applicability of such con
struct in distributed environment needs further research work

APPENDIX A
Basic TERMINOLOGY

A distributed database management system (DDBMS) isy
database system distributed among a set of nodes N connected
by telecommunication links, Each node has its own indepen:
dent computing resources.

The database is modeled by a set of logical database entitis
which may have one or more physical copies of data valie.
The database entities are accessed by unique names; how t
naming is maintained is insignificant to this paper. The dat
base may be either completely or partially replicated, or if
may be partitioned on different nodes.

A distributed database is consistent if it satisfies some pre
defined assertions about the intrinsic characteristics of f the
data values. For a replicated distributed database, it is neces:
sary for the physical copies of the same database entity on
different nodes to remain identical.

The user actions on a distributed database consist of g
sequence of atomic operations. An atomic operation is TepIE..
sented by g; = A" [x] where i is a unique identification for il
transaction, 7 is a unique identification for a node, 4 is either
R or W representing read or write operation, and x is one of
more logical database entities. As far as the DDBMS is con-
cerned, these read/write operations constitute indivisible (or
atomic) operations to the database [11]. The atomic opera:
tions are grouped into logical units called fransactions that
will preserve the database consistency if executed alone. A
transaction can be viewed as a quantum change for the datg
base from one consistent state to another; however, the con.:
sistency assertions may be temporarily violated during thtf‘
execution of a transaction but must be satisfied when there|
arc no incomplete transactions or the system is quiescent,
The purpose of the concurrency control is to guarantee that
the concurrent execution of a set of transactions does not
result in an inconsistent database state.

The transaction set T represents all user transactions, and the
atomic operation set T contains all the atomic operations
specified by the transaction set. A transaction has to read
only one copy of a replicated data entity but has to update |
all copies. ‘

Two atomic operations oy, o; conflict if 1) they belong to
different transactions, 2) both access the same database entity



il the same node, and 3) at least one of them is a write opera-
In particular, conflicting atomic operations o; and 0j
¢ 1) WR-conflict if o, is a write operation and 0; is a read
ration, 2) RW-conflict if o; is a read operation and g isa
Wiite operation, and 3) WW-conflict if both ¢; and 0; are write
rations,

ere are two special atomic operations in a transaction that
important. The last new aromic operation w; of transac-
[ is its last atomic operation such that the access is to a
database entity or the access is at a higher level® than
efore for a previously accessed entity. Every atomic opera-
lon after w; either accesses some used entity or repeats a
ower level access. The earliest new atomic operation o; for a
ansaction 7 is the first atomic operation which starts access-
ng new entities. Since each atomic operation accesses some
htabase entities, a; is simply the first atomic operation in a
fransaction.

For example, w; of the following transaction

R [x)W? [y 1 W} (2] W} [y] W} [2]

i§ W7 [z] since z is the last new entity being accessed. The w;
of the following transaction

Rf [x| WP [y] W2 [21W7 [y1 W} [2] W} [X]R? [z] R} [x]

Wi [x] since it is the latest higher level access to any entity
[xin this case).
The concurrent activities of a distributed database system

sequence is called the history of the system, and is represented
by a quadruple A=<D, T, 2, 7> where D is a distributed data-
base, 7 is the transaction set, X is the atomic operation set,
d 7 is a permutation function which gives the permutation
dices for atomic operation o in h(c € ). For example, if a
tory £ is the following sequence

afy: - w

hen m(a) =1, m(8) =2, - -, m(w) = | Z|. Aserial history isone
in which each transaction runs to completion before the next
ane starts. In other words, in a serial history the atomic opera-
lions of different transactions are not interleaved.

Although the system’s activities can be modeled as a string
f atomic operations, the activity at one node is potentially
ndependent of those at other nodes. Each node records its
wn history. To capture this notion of local activities, the
wde projection h! =<h,=! 7/> of a history & is defined as
he subsequence of / containing only those operations pertain-
ig to node j where £/ = {g| o€ 2 and o is performed at
ode j} is a subset of =, and #/ is the permutation function
o b/, e, m/(0)) < /(o) iff w(0y) <m(oy) for oy, 0, €3V,
he order of the atomic operations in # is retained in 7/,

The activities of a transaction in a distributed database sys-
em can be modeled by a sequence of operations on the data-
ase related to this transaction. This sequence is called the
nsaction projection h;=<<h, Z; m;> where £;= {g|0EZ
nd ¢ belongs to transaction 7} is a subset of I, and 7; is the

3For the transaction model used here, the read operation is considered
lower level access when compared to the write operation.
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permutation function for h;, ie., m;(0;) <m;(0y) iff 7(0y) <
m(0,) for every 0y, 0, € Z,.

From the above definitions, it is clear that a serial history A
has the form

Huhphig ol forig €T, k= 1,7~ ¢

where ¢ = |T| and i;iyi3- - i, is a permutation of transaction
id’s (h;,, say, is the transaction projection for transaction i,
from the serial history #). Note that each node projection of a
serial history is essentially a sequential execution of transac-
tions following the same permutation order iyiy- - - i, of the
serial history.

Each operation in a history transforms one database state
into another one. Two histories are equivalent or indistinguish-
able if they transform a given initial state to the same final
database state. The notation = denotes the equivalence rela-
tion between histories. A history & is serializable iff there
exists a serial history g such that A/ =g/ for every node ;.

If every transaction when executed alone preserves the data-
base consistency, then each node projection of a serializable
history will also preserve the consistency. Since aserial history
produces node projections with the same serial transaction
order, a serializable history necessarily generates a consistent
database. An algorithm is considered correct if all its allowed
histories are serializable.

The use of serializability as a correctness criterion is popular
among researchers [2], [9], [19], [21]. Although nonserial-
izable histories can be consistent when semantic information
is available [15], [24], we still consider serializability to be
the correctness criterion. It has been shown in [14] that con-
currency control algorithms with only syntactic information
can at best produce serializable histories.
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