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ABSTRACT A sequence of interleaved user transactions in a database system may not be serializable, 1e,
equivalent to some sequential execution of the mndividual transactions Using a simple transaction model, 1t is
shown that recognizing the transaction histories that are seralizable 1s an NP-complete problem. Several
efficiently recognizable subclasses of the class of senalizable histories are therefore introduced; most of these
subclasses correspond to seniahzabihty principles existing in the literature and used in practice Two new
principles that subsume all previously known ones are also proposed Necessary and sufficient conditions are
gwven for a class of histones to be the output of an efficient history scheduler, these conditions imply that there
can be no efficient scheduler that outputs all of serializable histonies, and also that all subclasses of senalizable
histories studied above have an efficient scheduler Finally, 1t 1s shown how these results can be extended to far
more general transaction models, to transactions with partly interpreted functions, and to distributed database
systems
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1. Introduction

In many situations many users may consult and update a common database. We can think
of such independent user transactions as sequences of atomic database operations, inter-
leaved with computations that are local to the user, that 1s, they do not affect or depend on
the current state of the database. It is a function of database management to handle the
update and retrieval requests made by the users in such a way so that the resulting overall
process is in some appropriate sense correct. It 15 generally accepted (see, e.g., [3, 7, 18,
19]) that the nght notion of correctness in this context is that of serializability. A sequence
of atomic user updates/retrievals is called serializable essentially if its overall effect is as
though the users took turms, in some order, each executing their entire transaction
indivisibly. The simplest example of a nonserializable sequence is a primitive form of a
“race.” Imagine two users that increment a counter by first sensing its value and later
registering an increased one. If both users retrieve the value of the counter before either of
them has updated 1t, the resulting execution sequence—or hustory—is not serializable. This
1s because both possible serial executions of these transactions would have resulted in a
larger total increment. Naturaily, much subtler examples exist.

The appeal of senalizability as a correctness criterion 1s quite easy to justify. Databases
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are supposed to be faithful models of parts of the world, and user transactions represent
instantaneous changes in the world. Since such changes are totally ordered by temporal
priority, the only acceptable interleavings of atomic steps of different transactions are those
that are equivalent to some sequential execution of these transactions. Another way of
viewing serializability is as a tool for ensuring system correctness. If each user transaction
is correct—i.e., when run by itself, it is guaranteed to map consistent states of the database
to consistent states—and transactions are guaranteed to be intermingled in a serializable
way, then the overall system is also correct.

In this paper we consider transactions that consist of two atomic actions: a retrieval of
the values of a set of database entities—called the read set of the transaction—followed by
an update of the values of another set of entities—the write set. This is exactly the kind of
transactions handled by the system SDD-1 [2, 17]. However, the main reason for consid-
ering this model here 1s that it provides a nice framework for understanding and comparing
very different philosophies of senalizability that already exist 1n the literature (e.g., [2, 4,
7, 19]). Despute its apparent simplicity, it yields a theory of serializability that is rich in
combinatoral intricacies and raises interesting complexity questions. Since our model is
the most general common restriction of the models in the various references cited above,
our negative results apply verbatim to those models. Furthermore, most of our positive
results and characterizations are also easily generalizable to more general situations,
although their proofs—in many cases their very statements—would be extremely cumber-
some. Hence we view our model as a convenient language, of the right degree of conceptual
complexity, for developing and communicating our ideas about serializability, rather than
as a set of restrictions that enable the proofs of certain theorems. We formahze our model
of transactions in Section 2, where some preliminary results are also proved.

In Section 3 we prove that the question of whether a given sequence of read and write
operations corresponding to several transactions (called a history) is senalizable 15 NP-
complete [1, 9]. This suggests that, most probably, there is no efficient algorithm that
distinguishes between senializable and nonserializable histories.

In Section 4 we study some efficiently recognizable subsets of the set of seralizable
histories In other words, we present polynomial-time “heuristics” that approximate the
NP-complete predicate of seriahzability, in a manner quite reminiscent of efficient ap-
proximations of NP-complete optimization problems [8, 16]. We show that the two-phase
locking strategy of [7] and the protocol P3 of [2] are incommensurate special cases of two
more general classes called Q and DSR—the latter is related to the model of {19]. These
two senalizability principles are therefore very general (and applicable) new serialization
methods. We also introduce the class SSR of histories that can be serialized without
reversing the order of temporally nonoverlapping transactions; it is not known whether
this class 1s efficiently recognizable In Section 5 we observe that the quite intricate
interrelations among these interesting classes are simplified considerably if some “static”
restrictions are imposed on the read and write sets. We point out there that the simple
serializability theory of [19] 1s due to such a restriction of their model.

For all efficiently recognizable classes of histonies studied in Sections 4 and 5 there is
also an efficient scheduler, an algorithm, that is, which takes any history and transforms it
to its closest (according to some appropriate metric) history within the class considered. In
Section 6 we show that this 1s no accident. a class of histories has an efficient scheduler if
and only if it 1s efficiently recognizable plus a regularity condition, namely, that its set of
prefixes 1s also efficiently recognizable. By this result, the complexity theory developed 1n
Sections 3 through 5 1s practically relevant, because the practical question of the existence
of an efficient scheduler for a given class of histories is explicitly linked to the complexity
properties of the class. Another implication is the negative result that, unless # = /2,
there is no efficient “serializer” of histories, and hence considering efficient but more
restrictive schedulers—such as the ones discussed above—is a reasonable alternative.
Finally, Section 7 concludes our treatment of the subject. We discuss there a number of
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possible extensions of our results, such as to general (multistep) transactions and distributed
databases.

2. Defimtions and Notation

A history is a quadruple h = (n, =, V, S), where n is a positive integer; 7 is a permutation
of the set £, = {R), W1, R;, W>, ..., R,, W,}—that 1s, a one-to-one function #:3, —
{1,2, ..., 2n}—such that #(R,) < m(W,) for i = 1, 2, ..., n (a permutation 7 is represented
by (#7'(1), 77 '(2), ..., 7 (2n))); and finally, S is a function mapping =, to 2", where V' 1s
a finite set of variables. Each pair (R, W,) will be called a transaction T.. S(R,) will be
called the read set of T,, and S(W)) its write set. We shall represent histories in a compact
way by exhibiting =, with the sets S(-) given in brackets following each element of Z,.. For
example, the history & = (3, (R1, Ro, Wi, Rs, W, W3), {x, y}, S), where S(R1) = S(R3) =
{x}, S(Ry) =, S(W3) = {y}, and S(W1) = S(W2) = {x, y}, is represented as

h = R{x]RWi[x, yIRAxIWelx, I Wil y].

The set of all histores is denoted by H.

We can think of each transaction 7, as starting with an instantaneous reading of the
values in the variables 1n S(R,), performing a possibly lengthy local computation, and then
instantaneously recording the results in a different set S(W,) of variables. We do not look
into the details of the exact nature of the local computation. In fact, we view each
transaction T, as a set of {S(W))| uninterpreted |S(R,)|-ary function symbols {f,:; =
1, ..., | S(W)|}. 7 1s the sequence in which these atomic read and write operations take
place. Thus, a history can be viewed as a special case of a fork-join parallel program
schema 1n which the local computations involve a number of local temporary variables ¢,
and are executed in paraliel with other read-write operations (see Figure 1).

The concatenation of two histories by = (n, n, V, S), ho = (m, p, V, T) is a history hy o h;
= (n+m, 7, V, P), where P(W,) = S(W))1f i = n, and P(W,) = T(W,—,) for i > n. Similarly,
P(R) = S(R)1f i < n,and P(R) = T(R,-,) for 1 > n. Also 7(W,) = m(W,) if i < n, and 7(W))
= p(W,-n) + 2n for i > n, (R,) = #(R,) for i = n, 7(R)) = p(R,—,) + 2r for i > n. In other
words h; © h is a juxtaposition of the two histories, only with the transactions of s, renamed.
Thus, if

h1 = Ri[x]Ro[ y]1Wol yIRs Wil zZ] W3l v}

and

h2 = Ri[x, yIRAx]1 W[ y] W 2],
then

hioh = Ri[x]Rel y]Wal y)RsWilz]Wo[ y1Rd[x, yIRs[x]Wi[ y] Wil 2].

We say that two histories 1y = (n, 7, ¥, S) and he = (n, 7', ¥, S) are equivalent (written
hy = hy) iof and only if the corresponding schemata are (strongly) equivalent. In other
words, given any set of | V| domains for the variables, any set of initial values for the
variables from the corresponding domains, and, furthermore, any interpretation of the
functions f,, the values of the variables are identical after the execution of both histories.
Notice that our defimtion of equivalence requires that the two histories involve the same
set of transactions. Thus hy = Ry[ y]R: W x]Wi[x] 1s not equivalent to hy = Ryf y]Wi[x],
despite the fact that their corresponding schemata are equivalent (essentially because T is
“dead” in h;). Thus is a matter of convenience, and little change to our derivations would
be necessary in order to broaden equivalence in this sense.

To give a syntactic characterization of equivalence, it 1s necessary to first introduce some
terminology. Let h = (n, =, V, S) be a history. The augmented version of h is the history A
=(n+2,7 V,§), where 7 = (Rnss, Was1, 7, Rusz, Waez) and S(R) = S(R), S(W) =
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Fic. 1 The history k = Ri[x]R:Wi[x, y]Ro[x]W:x, y]W3[y] viewed as a program schema

S(W,) for i = n, and also S(Rn+1) = S(Wyi2) =D, S(Wpis1) = S(Rn+2) = V. In other words,
h is h preceded by a transaction that initializes all variables without sensing any, and
followed by a transaction that reads the final values of all the variables, without changing
them. Suppose that x € S(R,). We say that R, reads x from W, in h if W, is the latest
occurrence of a write symbol before R, in k such that x € S(W,). Notice that since 7
contains W, with S(W,+1) = V, such a write symbol always exists. The definition of a
live transaction in & is as follows:

(@) Tneoislivein h.

(b) If for some live transaction 7,, R, reads a variable from W, in A, then 7, is also live

in h.
(c) The only kinds of live transactions in h are defined by (a) and (b) above.
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The following is now a simple syntactic characterization of history equivalence, essen-
tially a restatement of the charactenzation of schema equivalence m terms of Herbrand
interpretations [14]:

ProposiTioN 1. Two histories hy = (n, w, V, S) and hy = (n, @', V, S) are equivalent if
and only if they have the same sets of live transactions, and a live R, reads x from W, n h, if
and only if R, reads x from W, in h,.

One of the implications of Proposition 1 is that equivalence of histories can be decided
efficiently. The sets of live transactions can be found in O(n-| V'|) time by applying the
recursive definition given above, and so can the reads from relation for transactions. Hence
we have:

CoRroLLARY. Egquivalence of histories can be decided in O(n-|V'|) time.

The main theme of this paper is the notion of serializability. A history h = (n, @, ¥, S)
is sertal if M(W)) = m(R) + 1 for alli = 1, 2, ..., n; in other words, a history is serial if R,
immediately precedes W.init fori =1, ..., n. A history h is serializable (notation: h € SR)
if and only if there is a serial history A, such that h = A, In the next section we shall
present a syntactic characterization of serializable histories analogous to (and based on)
Proposition 1.

3. The Complexity of Serializability

In order to examine the complexity of the serializability problem, we need first to introduce
some graph-theoretic terminology.

Definition 1. A polygraph' P = (N, A, B) is a digraph (N, 4) together with a set B of
bipaths; that is, pairs of arcs—not necessarily in 4—of the form ((v, u), (u, w)) such that
(w, v) € A.

Alternatively, a polygraph (N, 4, B) can be viewed as a family (N, 4, B) of digraphs.
A digraph (N, 4") is in Z(N, A, B) if and only if 4 C 4’, and, for each bipath (a;, a;) €
B, A’ contains at least one of ai, a;. Polygraphs will be represented schematically as in
Figure 2(a). Arcs in 4 will be drawn as ordinary arrows, and pairs of arcs in B will be
marked by a circular arc centered on their common node.

Definition 2. A polygraph (N, A, B) is acyclic 1f there is an acyclic digraph in
2(N, A, B).

For example, the digraph of Figure 2(b) is both in Z(N, 4, B) and acyclic; it follows that
(N, 4, B) of Figure 2(a) is acyclic. Notice that for a polygraph (N, 4, B) to be acyclic, the
digraph (N, 4) must definitely be acyclic.

Given any history # = (n, =, ¥, S), we are going to define a polygraph P(h) =
(N, A, B). N is the set of live transactions of 7, the augmented version of A. First, 4 contains
the arcs {(Ty+1, v):v € N — {741} ), and also the arcs {(v, The2):v € N — {Tns2}}. Second,
whenever transaction v reads some variable x from v in kA, we add the arc (v, u) in A.
Furthermore, if for a third transaction w, x is in the write set of w, then we add the bipath
((4, w), (w, v)) in B. This concludes the construction of P(h).

Intuitively, P(h) captures a partial order that can be interpreted as “happened before”
and with which any history that is equivalent to # must be consistent. Each arc (v, )
means that u read some variable from v and hence must follow it. Also, a bipath ((u, w),
(w, v)) means that w wntes on the same variable and hence cannot be in between v and u;
it must either precede v or follow u. This is stated as a lemma:

LemMMA 1. Two histories hy = (n, w, V, S) and ho = (n, 7', V, S) are equivalent if and only
if P(hy) and P(hy) are identical.

Proor. Both directions follow from Proposition 1 and the definition of P(h). []

LemMMA 2. A history h = (n, m, V, S) without dead transactions is serializable if and only
if P(h) is acyclic.

Proor. If h is serializable, there exists a serial history A, such that h = h; or, by Lemma

! We nsist on this termiology only because 1t has already become notorious for sts improprety.
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1, P(h) = P(h.) However P(h.) = (N, A, B) is acyclic. To see this, let (T, ..., T,,) be ordered
according to their occurrence mn k.. We construct a digraph (N, A") € D(P(h,)) as follows:
A’ contains the arcs m A4, and for each bipath ((T,, T)), (T, 1)) in B we add to A the arc
(T T) 1f i<y, or (T, Ty if y < k. To show that exactly one of these must occur, recall that
in h,, T, reads a variable x € S(W)) from T, and hence kK < 1 and not k < j < i.
Consequently, the above construction yields a digraph (N, 4") in 2(P, A, B). Next, notice
that (N, 4") 1s acyclic since it 1s a subgraph of the total order (Tn+y, T4, ..., Tn, Thao). S0
P(h) 1s also acyclic.

Now let (N, 4’) be an acychc digraph in 2(P(h)). The senal history h, resulting from
topologically sorting (N, 4') is then equivalent to A. This follows from Proposition I and
from the fact that since one of the two arcs of each bipath i B is in 4’, all transactions 1n
h, read all variables from the same transaction in ) as they do in h,. [J

Unfortunately, the combinatorial characterization of serial reproducibility shown in
Lemma 2 does not directly suggest an efficient test. In fact, the theorem below is strong
evidence that no such test exists.

THEOREM 1. Testing whether a history h is serializable 1s NP-complete, even if h has no
dead transactions.

In order to proceed with the proof of Theorem 1 we first need another lemma. It is well
known (see [1, 9]) that the satisfiability problem of Boolean formulas in conjunctive normal
form with two or three literals in each clause (abbreviated SAT) is NP-complete. We can
show that a more restricted version of this problem is still NP-complete. Call a clause
mixed if it contains both variables and negations of vanables, and call a formula noncircular
if at most one of the occurrences of each variable is 1n a mixed clause.

LEMMA 3. SAT is NP-complete even if the formulas are restricted to be noncircular.

Proor. Consider any instance F of SAT and a variable x in it. Let m be the number
of occurrences of x in the formula F. and let xi, X3, ..., X be new variables. We replace x
in 1ts first occurrence by x;, in 1ts second by X, in its third by xs, etc. Finally, we add the
clauses (x; V x2) A (X1 V X2) A (x2V x3) A (X2 V Xs) A -+~ , which is the conjunctive normal
form of x; = X = x3 = X4 = .... Repeating this for all variables, we observe that
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the resulting formula is trivially noncircular, and the construction requires only a polyno-
mial amount of time. [J

Proor oF THEOREM 1. The set of SR histories is definitely in 42, since to show that
h1s SR, one only needs to construct a serial history Ag (of length not greater than that of
h) and check by Proposition 1 that /# and hs are equivalent.

We will show next that a known NP-complete problem, the noncircular SAT problem
of Lemma 3 above, reduces to SR-testing in polynomial time.

Given any such formula F, we are going to construct a polygraph Pr = (N, 4, B) such
that Pris acychc if and only 1if F1s satisfiable. We will then show that Pr can be considered
as P(h) for a suitable history h, without dead transactions. In view of Lemma 2, this will
conclude the proof.

We start from the construction of Pr = (N, A4, B). Fhas m clauses Cy, ... , G and 1nvolves
n Boolean variables x,, ..., x,. Each clause C, consists of three literals A;; \ Az \V A, where
A 15 either a variable or a negation of one. N contains the nodes a,, b,, ¢, for each variable
x;, and yu, zm, k = 1, ..., m, for each clause C, with m, literals. For each variable x, we add
the arc (a, b)) to 4 and the bipath ((b,, ¢)), (¢, a))) to B. For each clause C;, we add the arcs
(ks Zu4+1) (addition mod m,) to A. Finally, of A = x;, we add the arcs (¢, y.) and (B, z.2)
to A and the bipath ((zix, yu), (Y, b)) to B. If A = X,, then we add the arcs (zu, ¢;) and
(yu, @) to A, and the bipath ((a, z.z), (2.2, yu)) to B. For example, 1f the literal A, is x, the
subpolygraph of Figure 3 will appear in Pr.

Finally, we add to N the nodes no, n., and ny, together with the arcs (no, n), (n, n.), and
(n, ny) for all n € N — {no, n., ns}, and also the arc (n., ny). This concludes the construction
of Pr. In Figure 4(a) we 1llustrate the construction for the Boolean formula

F=0aVx) NV IV x)A (V).
For simphcity, in Figure 4 we have omutted the nodes no and ny.

We will now argue that Pr is acychce if and only if F is satisfiable. Suppose that Pr is
acyclic. This means that there 1s an acyclic digraph (N, A") € 2(Pr). Obviously, for each
J» exactly one of the edges (b, ¢;) and (¢, ;) is in A’ Consider the fact that (¢, a) € 4’
means that x; 1s assigned the value srue. We may immediately note that if a literal A is
given the value false by this assignment, the corresponding arc (z., y.) is also in A’, since
otherwise, a cycle of the form (¢, yw, b)—or (zu, ¢, @) if A = X,—would exist in
(N, A"). Hence, the only way for (N, A4”) not to have a cycle of the form (z.1, yu, za, ... » Vi3)
1s that at least one literal in each clause is assigned the value frue, which means that F is
satisfiable.

Conversely, suppose that F is satisfied by some truth assignment 7. We will construct an
acyclic digraph (N, A") € 2(Pr). A’ contains all of 4 and the arcs (¢, a) if T(x,) = true,
(b, ¢) if T(x)) = false, and the arcs (zu, yu) iIf T(A\x) = false, (yu, b)) if An. = X, and T(x))
= true, and (a), za) If A = x, and T(x,) = false. Obviously, (N, A’) is .n Z(Pr); the claim
is that it 1s acychic. We first note that since F 1s by hypothesis noncircular, (N, A4) is acyclic.
This 1s because by the construction of 4, the clauses containing variables only or negations
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only correspond to node sets with only incoming or, respectively, only outgoing arcs; node
sets corresponding to mixed clauses have both incoming and outgoing arcs, but no two
such node sets are reachable from each other in (V, 4) by F’s noncirculanty; it follows that
(N, 4) is indeed acyclic. It is easy to check that the arcs in 4” — A can harm the digraph’s
acyclicity only by introducing a (z., yu, ... , ys) c¢ycle; however, this would mean that some
clause has no frue (under T) literal, and hence T does not satisfy F, a contradiction. In
Figure 4 we show in broken lines the arcs of an acyclic digraph in 2(Py); this digraph
corresponds to the truth assignment T(x)) = true, T(x2) = false, T(x3) = false, which
satisfies F.

In order to conclude the proof we need to construct a history & such that P(h) = Pr. All
nodes of Pr correspond to distinct transactions. To construct the read and write sets of the
transactions (except for n, n., and ny), we start by having all read sets empty and a variable
X, in the write set of each transaction v. For each arc (v, ) € 4 we add a variable x,, to
the write set of v and the read set of u, and for each bipath ((v, u), (u, w)) € B we add x.,
to the write set of ». Finally, R(no) = &, W(no) = {x,:v € N}, R(n) = {xu:(u, v) € A4},
R(n;) = {x,;:u € N}, Win) = &, W(n) = {xu:(u, v) € A}. In order to sketch the
construction of h, we represent the read and write operations corresponding to the node v
of Pr by R(v), W(v) respectively. We use v to stand for R(v) W(v). We start the construction
of h from left to nght. First, for each clause C, consisting of just negations we add the
subhistory 2(C.)) = ya -+ yum. Next, for each variable x; that appears unnegated in the
mixed clause C; (i.e., Ar = x;) we add the subhistory h(x,) = R(a)z.mc, W(a)R(b)ynW(b).
The z,» part appears only if C, is purely negated and A, = X;. Further, if A,; = x, for some
purely unnegated clause C, then y,, appears also after yx. Then follow subhistories
corresponding to the remaining variables. If x, does not appear unnegated in a mixed
clause, then we add to h the subhistory h(x,) = R(a)zumc, W(a)R(b)ynW(b,). Again, yu
appears only if Az = x, for some purely unnegated clause C,, and if x; also appears in a
purely negated clause C, (A\p, = X), then z,, comes after z,». Finally, we have #(C) =
zn - Zim, for each purely negated clause C,, and at the end the transaction ..
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To argue that Pr = p(h), first note that all (yy, z,,+1) (mod m,) arcs are realized by 4, and
that the subpolygraph of Figure 3 1s realized for each x, = Ay and the symmetric
subpolygraph for X, = Az Furthermore, 1t is quite easy to check that no other arcs and
bipaths are added by the construction. Hence Pr = P(h), which completes the proof of
Theorem 1. O

4. Efficiently Recognizable Classes of Serializable Histories

Given that SR 1s NP-complete, it is reasonable to look for subsets of SR that are efficiently
recognizable. In this section we study several such classes of serializable histories.

4.1 Tue Crass DSR.

Definition 3. Let hy = (n, m, V, S) and hy = (n, #’, V, S) be histories. We write that i,
~ hy whenever 7(o) = 7’'(0) for all ¢ € Z, except for two elements 6,, 62 € Z,, with m(01)
=a'(6z) =, m(62) =7'(01)=j+ lforsome 1l =j<n-—1,and

(@) o1 = R,, 00 = R, for some i, j<n, or
) oi=R,0:= W, i#j,i,j<n,and S(R) N S(W)) =3, or
) o1=W,02=W,1,j<n,and S(W)) N S(W)) = 2.

As an 1llustration, we have that

RXIRAXIWi[xIWo y] ~ Ri[x]RAx]Wo y]Wi[x]
~ R x]Ri[x]W: yIWi[ y]
~ Rof x]Wl y]Ri[x]I Wi x],

because at each step the next history is obtained from the previous one by switching two
adjacent symbols obeying one of the conditions (a), (b), and (c) of Definition 3 above.
The following is a direct consequence of Proposition 1 and the above definition:
PROPOSITION 2. If hy ~ h, then hy = h,.
Let ~ be the reflexive-transitive closure of ~. Since ~ is symmetric,~ is an equivalence
relation that is, by Proposition 2, a restriction of =. We can show that < is a proper
restriction of = by observing that for the two histories

hy = RiR:Wix, y]Walx, zZ]Rs[x]W3[x]

and
hs = RiRWolx, z]Rs[xIWh[x, y]W3[x]
we have
hy = hy,
but
h # he.

We say that the history h is D-serializable (DSR) if there is a serial history hs such that
h ~ hs. Obviously, if a history is DSR, it is certainly SR.

We can associate with a history & = (n, #, V, S) a digraph D(h) defined as follows: The
nodes of D(h) are the transactions {71, ..., T} of h, and the pair (T, 7;) is an arc of D(h)
if and only if one of the following holds:

(@) S(R) N S(W)) # O and 7(R,) < m(W)), or

(b) S(W) N S(R) # D and =(W,) < n(R,), or

(©) S(W) N S(W)) # D and n(W)) < n(W)).

LemMa 4. Suppose that for two histories hy = (n, w, V, S) and b = (n, 7', V, S), D(h1)
and D(h2) have no cycles of length 2. Then hy ~ hs if and only if D(h) = D(hs).

Proor. It should be obvious from the definition of D(h) and the ~ relation that
whenever hy ~ hs, also D(h1) = D(hs). Consequently, by ~ h; implies D(h1) = D(h2).
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For the other direction, assume that D(h,) = D(hs). We shall transform h; to h; by a
sequence of ~ transformations as follows: Take the symbol in Z, that is the first symbol in
h, (i.e., #7'(1)) and bring it to the first place of k. by successively switching it with all
symbols preceding it in A2; then take 7~'(2) and bring it to the second position by switching
it with all symbols preceding it, except #'(1); and so on, until A, is transformed to h,. It
remains to show that all these switchings have been legal ~ transformations. Suppose that
at some time we had to switch ¢, and o; in a manner not allowed by Definition 3; that 1s,
one of the following holds:

(a) 61 = R,, 0: = W,. This means, however, that in h;, W, precedes R,, and hence h, is
not a history.

(b) 01 = R,, 02 = W), and S(R) N S(W)) # . This would mean, however, that (T,, T))
1s in D(hs) and (T}, T)) is in D(hy). Since D(h;) and D(h2) have no cycles of length 2,
we can conclude that D(h,) # D(hy).

(c) A similar argument holds for 6, = W,, 62 = W), and S(W) N S(W)) % . 0O

We can now prove the following theorem.

THEOREM 2. A history h = (n, m, V, S) is DSR if and only if D(h) is acyclic.

ProofF. Suppose that D(h) is acyclic. We can thus sort topologically the set {71, .., T}
of nodes of D(h). Think of this order as a serial history hs. It is immediate that D(hs) =
D(h), and hence, by Lemma 4, h * hs. It follows that A is DSR.

For the other direction, assume that 4 is DSR. We have two cases:

(a) D(h) has a cycle (T, T,, T,) of length 2. This means that 7(R,) < =(W)) < m(W.), and
S(R) N S(W)) # D, S(W)) N (S(W)) U S(R))) # . 1t is easy to show that in all histories 4’
for which & ~ b’ we will also have 7'(R,) < #'(W)) < 7'(W)), as otherwise h # h’ and
h 2h’, by Proposition 2. Hence there is no serial history hs such that h *~ hs, a
contradiction.

(b) D(h) has no cycles of length 2. By Lemma 4, there 15 a serial history As such that
D(h) = D(hs). However, serial histories hs have acyclic D(hs), and hence D(h) is acyche. (]

Theorem 2 suggests that histories that are DSR can be detected efficiently by checking
D(h) for acyclicity:

COROLLARY 1. Checking whether a history h = (n, @, V, S) is DSR can be done in
O(| V|n® time.

Also, we can rephrase Theorem 2 as follows (compare with Definition 4 below):

COROLLARY 2. A history h = (n, n, V, S) is DSR 1f and only if we can find real numbers
{S1, .., Su} such that

(@) If S(W) N S(R) % @ and m(W,) < n(R)), then S, < S;
B If S(R) N S(W)) # B and n(R,) < 7(W)), then S, < Sj;
(¢) If S(W) N S(W)) % D and m(W,) < (W), then S, < S,.

4.2 THE CLASS Q.
Definition 4. A history h = (n, @, ¥, S) is in Q if there exist noninteger, distinct real
numbers S1, Sz, ..., S» with the following properties:

@) m(R) < S, <m(W).
(b) If S(R) N S(W,) % @, i # j, and m(R) < (W), then S, < S,.
(© If S(W) N S(W,) # & and (W) < 7(W,), then S, < S,.

The real numbers Sy, ..., S» in Definition 4 are called serializability points. Their intuitive
meaning is that the history 4 is the same as though transaction T, had executed indivisibly
at the time instance S (during which, by (a) above, it was active), transaction T> at S;, and
so on. As an illustration, the history

h = Ri[x]Rz] Wl y]Rs[z} W3[x] Wil y]

is in the class Q, since the values $, = 3.5, §; = 2.5, and S5 = 4.5 satisfy, as the reader can
check, the requirements of the definition. The class Q was independently introduced
in [22].
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THEOREM 3. If hisn Q, then h s DSR

Proor. Conditions (b) and (c) of the defimtion of the class Q above are identical to
(b) and (c) of Corollary 2 to Theorem 2. Hence 1t suffices to show that condition (a) above
implies condition (a) of Corollary 2. But this is immediate, because if m(W,) < m(R)) we
have that S, < m(W,) < 7(R)) < §,, no matter what S(R)) and S(W)) are. O

Gaven a history h = (n, 7, ¥, §) we can construct another digraph D’(h)—a superdigraph
of D(h)—with node set again {71, ..., T,} and (7, T)) an arc if and only if one of the
following holds:

(a) m(W)) < m(R,).
(b) m(R) < 7(W)) and S(R,) N S(W)) # @.
(¢) m(W,) < n(W,) and S(W)) N S(W)) # D.

In other words, D’(h) contains all the arcs of D(h) and possibly some other arcs for the
cases 1n which 7(W,) < m(R)) and S(R)) N S(W,) = 2.
THEOREM 4. The history h = (n, m, V, S) is in the class Q if and only if D'(h) is acyclic.
PrROOF. Suppose that h € Q, and let S, ..., S, be appropriate numbers. Without loss
of generality S, < §; < --- < S,. We shall show that whenever (T, T)) 1s in D’(h), then
i <. Suppose that i > j; by the defimtion of D’(h) one of the following must hold:

(a) m(W.,) <7(R)). However, S, < #(W.,) < 7(R)) < §,, which contradicts our assumption
that $; < S; <+« < S,and i> .

(b) #(W)) < m(W)) and S(W.) N S(W)) # @. By (c) of Definition 4, however, S, < S,
again a contradiction.

(¢} m(R) < m(W)) and S(R) N S(W)) # &. Similarly, a contradiction is reached by (b)
of Definition 4.

Consequently, D’(h) 1s acyclic, since it 1s a subgraph of a total order.

For the other direction, suppose that D'(h) is acyclic. We can sort its nodes topologically
to obtain the order, say, (T, T3, .. , 7). We can define the real numbers S;, S, ..., Sn, and
Sr+1 (for convenience) as follows.

(@) Suer=2n+ 1.
(b) S, =min{Ss,, (W)} — 1/(n+ 1), j=nn—-1,..,1.

It is clear that the S;’s are distinct, increasing, noninteger real numbers, and that they
satisfy (b) and (c) of Defimtion 4. It suffices thus to prove (a) of Definition 4, in particular,
that S, > #(R,) for all .. Suppose that, for some i, S. < 7(R,). Let j be the smallest index, no
smaller than 1, for which #(W)) < §,+1 Thus

Se=a(W) = (j—i+ D/n+1)>a(W) - L

Consequently m(R,) > m(W,) — 1, or #(R,) > m(W)). Hence (T,, T.) € A, which contradicts
the fact that ; = i in the topological sorting of D'(h) [

COROLLARY. Testing whether a history h = (n, m, V, S) is in Q can be done in O(} V|n2)
fime.

4.3 Two-PHASE LOCKING AND THE PrOTOCOL P3. A very influential proposal for
guaranteeing seriahizability of update systems has been the two-phase locking mechanism
of [7], also discussed extensively in [4]. Also, the essence of a quite different serializability
principle (which was used in the development of the SSD-1 distributed system [2, 17]) 1s
captured by the so-called protocol P3 (see [4]). In this subsection we show that these two
different philosophies of serializability are reduced, in our model, to two efficiently
recognizable incommensurate subsets of our class DSR.

The two-phase locking strategy requests and releases actual locks—i.e., mechanisms that
guarantee exclusive data access—during the execution of the different operations of an
update. The rule that 1s proven sufficient for guaranteeing seralizability is: Never request
a lock after a lock has been released. We have, therefore, two phases: one during which
locks may only be requested, followed by one during which locks can only be released.
The first release of a lock dehmits the two phases. In our model of two-step updates the
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authors of [4] note that two-phase locking for a history & = (n, =, ¥, S) essentially amounts
to dividing the interval from #(R)) to #(W)) into two intervals: one during which no symbol
W, with S(R)) N S(W,) # & can exist, followed by one during which no symbol o € X,
with S(e) N S(W)) # D can exist. This is captured by the following definition:

Definition 5. A history h = (n, m, V, §) 1s two-phase locked (notation: h € 2PL) if and
only if there exist distinct noninteger real numbers /Iy, ..., [, (the lockpoints) such that:

(@ n(R)<lh<m(W)fori=1,..,n
&) I S(RY N S(W) # D, 1 # j, and m(R) < (W), then [, < I,
(c) If S(W) N S(W)) #* & and m(W,) < m(W)), then =(W)) <1,

To understand Definition 5, consider a transaction (R,, W,) in a history » € 2PL, and its
lockpoint /,. The intuitive meaning of the lockpoint is the following: During the interval
[7(R)), [,] all variables in S(R)) are “protected” from writing by other transactions, by virtue
of (b). Also, during the interval [/, #(W))] the vanables in S(W)) are protected from
reading and writing. Conditions (b) and (c) therefore essentially say that the interval
[L, =(W))] overlaps no interval [L, m(W,)] with S(W:) N S(W)) # & and no interval
(7(Ry), 1] with S(W)) N S(Ry) # . Thus, the second lock is granted before the first is
released, in accordance with the two-phase locking principle.

Although Defimitions 4 and 5 differ only slightly in condition (c), the latter is a
substantial restriction. First, we notice that 2PL C Q. Indeed, if # € 2PL then the
lockponts Iy, ..., I, are automatically valid serializability points S, ..., S» in Definition 4.
To see this, just notice that condition (c) of Definition 5 (m(W,) < ) and (a) (I. < #(W.))
together imply (c) of Definition 4 (namely, S, < §)). To show that the inclusion 1s proper,
notice that for the history

h = RiR:R{xIWi[xIWol y, 2} W3l y],

we have that h € Q (see Figure 5(a) for D'(h)) but h & 2PL. The explanation for the latter
fact is that transaction 3 has no lockpoint /, since if it had, /5 should obey /3 < /; < 4 (by
(b)) and also /s > 5 (by (c)).

We can, however, check very efficiently whether a history A is two-phase locked. Given
any history h = (n, m, V, S) we define the history A* = (2n, #*, V, 5*), where h* is
obtained from A by inserting a transaction Rn+;,, Whs, after W,in hfory= 1, ..., n; S*(Rn+,)
=, and S*(W,.,) = S(W)). For example, the history h* for & of the example above is

h* = R1R2R3[x] W1[X]R4 W4[X] Wz[y, Z]R5 Ws[y, Z] Wa[y]Rs Ws[y].

THEOREM 5. Fora historyh=(n,m, V, S), h € 2PL ifand only if h* € Q.

Proor. Let {/;, ..., .} be a set of distinct, noninteger, real numbers, and let a(y) be the
number of positions to the right that the symbol 77*(j) was shifted in 2*; in other words,
a(y) =2-|{W.: (W) <j}|. Consider the set {Si, ..., Szn}, where S, = I, + a([L]) fori =
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nand S, = 7(W,_,) + a(n(W.-,)) + 3 for i > n. We claim that {1} 1s an acceptable set of
lockpoints satisfying Definition 5 if and only if {S;} is a set of serializability points
according to Definition 4. Both directions follow from the definitions. The formal deriva-
tion is omtted. [l

To 1llustrate the theorem, the history A above is in Q, since D’(h) 1s acyclic (Figure 5(a)).
However, 1t is not in 2PL, because D’(h*) is not acyclic (Figure 5(b)). Naturally, Theorem
5 yields

COROLLARY. Testing whether a history h = (n, , V, S) is two-phase locked can be done
in O(n*| V) time.

We now turn to formalizing and studying in our model the protocol P3 of [2] and [4].
Recall the digraph D(h) defined for any history h in Subsection 4.1; see Figure 6(a) for an
illustration in the case of

h = Ri[ZJRsW3[x]RAxIW1[2]Rs Wol y, 2] W[ x].

Definition 6. Let G(h) be the undirected graph corresponding to D(h) (Figure 6(b)). A
cycle in G(h) is a sequence (7., T.,) of m = 2 transactions such that [T, T, ] are edges
of G(h),j=1,..,m—1,and sois [T, , T, ]. Notice that all edges are cycles according to
this definition. A cycle (T3, ..., To,) is bad1f

[S(R,) U S(W, )] 0 S(W.)) # 2,

and
S(R,)) N S(W,,) # 2.

Notice that in the above definition the first node of a cycle and the order of listing of the
nodes are important. For example, in Figure 6 (T, T?) is a bad cycle, whereas (T, T1) is
not. Bad cycles are, intuitively, those cycles that can correspond to a direct cyclé in D(hr’)
for some other history h’ involving the same transactions.

Definition 6 (continued). Let h = (n, m, ¥, S) be a history. We say that T, is a guardian
of T, if there exists a bad cycle (T, T,, ..., Tx) in G(h). We say that h obeys the protocol P3
(notation h € P3) if whenever 7, is a guardian of 7, we do not have m(R) < #(W)) <
m(W).

For example, consider the history A of Figure 6. The only bad cycle in G(h) (Figure
6(b)) is (T, T»), and hence the guardian relation is simple: just T is a guardian of Ti.
Since m(W2) > #(W)), we have that h € P3.

THEOREM 6. Suppose that h = (n, w, V, S) is in P3. Then it is also in DSR.

Proor. We shall show that & € P3 implies that D(h) is acyclic. Suppose that D(h) has
a cycle (T4, Ty, ..., Tm), m > 2. Consider the arc (T, T)+1) of D(h)—addition mod m; we
have three cases:

(@) S(W)) N S(W,.1) # © and m(W)) < 7(W,.1).

(b) S(W)) N S(R,+1) # D and m(W)) < m(R,+1).

(© SRR) N S(W;+1) # D and 7(R)) < m(W,11).
Notice that in both cases (a) and (b) we have that 7#(W)) < m(W,.,) and that more than one
case may be applicable to the same arc. Case (c) is spht into two subcases:
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(c1) Cases (a) and (c) do not apply to the arc (T-;, T)).
(c2) j =1, or case (a) or case (c) applies to (T}, T;).

In case (c1) we have that 7(W,_;) < m(R)) < m(W,+1). In case (c2), however, we notice that
T+ is a guardian of T,. Consequently, since m(R;) < m(W}+,) we must necessarily have that
(W) < n(W,1).

Now consider the operations O,, j = 1, ..., m, where O, = R, if case (c1) is applicable to
the arc (7, T;+1), and O, = W, otherwise. We have shown that m(0),) < #(0,+1) for
Jj = 1,.., m (addition mod m) This is a contradiction, since it implies that =(W#)) <
m(W1). O

Theorem 6 implies the following, independently proved in [4]:

COROLLARY. Histories that obey the protocol P3 are serializable.

Our next result concerns the complexity of recognizing those histories that obey protocol
P3. By the definition of this class, this complexity is determined by the complexity of
computing the guardian relation among the transactions in a history. We shall show how
this relation can be computed efficiently. For each transaction T, let I'(T)) be the set of all
transactions 7, that satisfy S(R)) N S(W)) # &. Thus I'(T}) is the set of all transactions that
are possibly guardians of T,. To determine whether a transaction T, € I'(7)) is indeed a
guardian of T), we delete all edges [T}, Tx] such that S(W)) N [S(W}:) U S(Rx)] = & from
G(h) and then determine whether T, and T; are on the same biconnected component of the
resulting graph. This can be done in O(n?) time by the algorithm of [20]. If T and T, are
on the same biconnected component, this means that there is a bad cycle (T}, T, ..., 7)) in
G(h), and hence T, is a guardian of T;; otherwise, it is not. Repeating this for all 7}’s, we
get an algorithm of total complexity O(n*(| V| + n®)). Hence we have

THEOREM 7. Testing whether a history h = (n, m, V, S) € P3 can be done in
On* (| V| + n?)) time.

4.4 THE CLAss SSR. Certain histories, though perfectly serializable, have a curious—
and, according to some, undesirable—property. Consider, for example, the history

h = R\[x]R: W xJR: W3 y, z]Wi[ y].

This history is serializable. However, the only serial history equivalent to A is easily shown
to be

hs = R; Wg[_y, z]Rl[x] W][_y]Rz Wz[x].

What is interesting is that in & transaction 2 has completed execution before transaction
3 has started executing, whereas the order in As has to be the reverse. This phenomenon is
quite counterintuitive, and 1t has been thought that perhaps the notion of correctness in
transaction systems has to be strengthened so as to exclude, besides histories that are not
serializable, also histories that present this kind of behavior. This leads to the following
definition:

Definition 7. A history h = (n, =, V, S) is said to be serializable in the strict sense
(notation: h € SSR), if there is a serial history hs = (n, 7', V, §) such that h = hs and =(W))
< m(R)) implies #'(W)) < #'(R)).

It is not hard to verify that all histories in the class Q satisfy Definition 7. To see this,
recall that a history 4 in Q has a set of serializability points §; < Sz < --- < §,,, say, such
that hs = RiW; --- R,W, = h. Now if 7(W,) < m(R)), we have, by the definition of S,, S,
< m(W,) < m(R)) < S,, and therefore 1 < j. Hence transactions i and j have the same order
in hg that they have in A. It follows that @ C SSR.

Nevertheless, the classes Q@ and SSR are not the same, as conjectured in [22]). A
counterexample is

h = Ri[z]Ro[ 2] Wil x, Z]Ro[xJWilx, y]Wol 1R y] Wil x].
This history is equivalent to the serial history
hs = Ri[z]Wi[x, y1R:[zJ W2l x, z]Rs[x]W3[z]Rd[ y]1 Wil x]
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satisfying Defimition 7. However, k is not in Q; to check this, just notice that the digraph
D’(h) shown in Figure 7 is not acyclic. It 1s not known whether the class SSR is efficiently
recognizable.

4.5 SumMARY. The topography of the set of all histories H and its subclasses SR, S (the
serial histories), Q, SSR, DSR, P3, and 2PL is depicted in Figure 8. The inclusions shown
either follow from the results of this section or are straightforward. We also show below an
example of a history for each of the 12 regions in this diagram.

h1 = Rl[x] W][X]Rz[x] Wz[x]
hz = Ri[x]R:{ y]Wi[x]W: y]
h; = R1R2R3[X] W][X] W2[y, Z] Wa[y]
hy = Rl[x]Rz Wz[x, y] Wl[Z]R:;Wa[y, Z]
h5 = h3 ° h4
he = R z]RiWox, Z]RAXIW3[z]Wilx, yIRJ y]1Wx]
hr = R[x]RiWh[x]R:{ y]W. W y]
hs = Ro[z]Ri[2]W:lx, z]Ralx]Wilx, yIWs[z]Rd y] Wil x]
h9 = R1R3 W3[x]R2[x] Wl[x] Wz[x]
hio = h7°hy
hiy = hohy
hy = R][X]Rz[x] Wl[x] Wz[x]

5. Restrictions on the Read and Write Sets

It turns out that if we impose certain restrictions on the structure of the map S of a
history—i.e., the read and write sets of the transactions in the history—the topography of
H (shown in Figure 8 for the general case) is simplified considerably. The most striking
such result is that of [19]. A basic assumption in the model of [19]—which is otherwise
more general than the present in that it allows more than two steps—is that no database
entity (or variable) 1s updated unless it has been previously read. In our model and notation
this means that S(W,) C S(R,). What is surprising is that serializability, an NP-complete
predicate in our model, is efficiently decidable in theirs. We explain this in view of our
previous discussion as follows:

THEOREM 8. Suppose that for a history h = (n, mn, V, S') we have S(W)) C S(R)) for j =
1, ..., n. Then h is serializable if and only if h is in DSR.

ProoF. It suffices to show that if S(oy) N S(o2) # & and 7(61) < 7(a2) for oy, 02 € =,
such that at least one of o1, 0 is a write symbol, then 7'(61) < 7'(02) in any hustory (n, =,
V, §) equivalent to h. Suppose that a: = W), 0, = We. S(W)) and S(W>) share a variable
x, which by hypothesis is also in S(R)) and S(R;). Consequently, in A, T, reads x from
either T or from another transaction which, by the same argument, reads x from another,
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and so on, up to T1. Now notice that the S(R)) D S(W)) assumption implies that in any
seriahzable history there can be no dead transactions. Hence, by Proposition 1, in any
history (n, 7', ¥, S) equivalent to h we must also have #'(W1) < #'(W2). The other two
cases are settled very similarly. O

It turns out that the rest of the classes of histories discussed previously have a
considerably simpler structure under the assumption that S(W,) C S(R). We show in
Figure 9 without proofs the corresponding diagram.

Under a different restriction on S, the class SSR coincides with SR:

THEOREM 9. Suppose that in a history h = (n, @, V, S) there is a subset X =
{x1, X2, ..., Xn} © V such that for j= 1,2, ..., n we have (a) X C S(R)), (b) x, € S(W)) if and
only if i = j. Then h s serializable if and only 1if h € SSR.

SKETCH OF PrOOF. Imagine that the variable x, is a Boolean signaling whether
transaction 7, has completed. Therefore, if T, completed in h before T, started, the same
must hold in any other history equivalent to &. 0O

6. Schedulers of Histories

The practical importance of the classes of histories 2PL and P3 discussed in Section 4
stems from the fact that they are known to correspond to simple schedulers. A scheduler
for a class of histories (to be defined formally below) 1s generally an algorithm that takes
as an input an arbitrary history—possibly nonserializable—and returns a history which is
the “closest” to the given one among those belonging to the class. If the class is a subset of
SR, therefore, the scheduler guarantees that its output history is serializable. Such a
scheduler can be used in the serializability component of the database management system.
Of course, in practice one would expect that a scheduler operates on-line and is reasonably
efficient.

The history-input of the scheduler 1s the sequence of arriving user requests. The output
of the scheduler is the actual execution sequence. The basic fact that makes our approach
very different from previous work on concurrency control which was motivated by
operating systems (e.g., the notion of determinacy of [6]) is that the supplier of this input
history is a population of users, each user being unaware of the actions of the others. This
implies that the order of arrival of these requests has no semantic content whatsoever, and
therefore the scheduler is not bound to produce an output which is equivalent (or related
in any prescribed way) to the input. In fact, the operation of the scheduler becomes
interesting and important exactly when the scheduler must necessarily transform the input
to an inequivalent output, because the input is nonsenalizable, say.

There are, however, certain performance criteria that the input-output mapping of a
scheduler should satisfy. For example, a trivial scheduler which guarantees serializability
is the one that outputs only serial histories. This is, however, too restrictive a mechanism
to be of practical value. Intuitively, the richer the output class, the more powerful the
scheduler, because a less restrictive class of histories will require less reshuffling of the
operations and will cause fewer and shorter unnecessary delays. Ideally, we would like to



Serializability of Concurrent Database Updates 647

have a serializer whose output spans all of SR. Unfortunately, we shall soon see that the
existence of such a practically useful device is very improbable.
Definution 8. The metric d(., .) on the set H is defined as follows:

@) d((n, 7, ¥, $), (n,p, V, $)) = n— max{j. 7)) = p' @, 1= 1, .., j}.
by d(m, m, V, S), (n, p, W, T)) = oo 1if any one of m # n, V ## W, S # T holds.

The distance between two histories defined on the same set of transactions is therefore
n minus the length of their longest common prefix. Notice that d(., .) satisfies the metric
axioms. A variety of other metrics would suffice for what follows.

Definition 8 (continued). Let C be a nonempty subset of H. A scheduler for C is a
function A¢: H — C such that

d(h, Ac(h)) = min{d(h, h'): k' € C).

Thus, Ac can be thought of as projecting H onto C under the metric d(., .). Notice that
Ac(h) and h will not be equvalent in general. The metric d(., .) requires that Ac leaves
histories 1n C 1ntact, and 1n fact 1t leaves intact as long prefixes of arbitrary histories as
possible.

Let us restate now the assumptions of our model of schedulers:

(a) A scheduler 4c minimizes the d-distance between its input and its output. This
intuitively means that the scheduler operates online, and furthermore that it acts in an
optinustic way: As long as the history seen so far could possibly be extended to a correct
history (here by “correct istory” we mean one that the scheduler, in its limited sophisti-
cation, recognizes as correct, or, equivalently, an element of C = A¢(H)), the scheduler
does not intervene to rearrange read and write requests. As a corollary, if the scheduler is
fed with 1its own output, it leaves it intact; it is therefore idempotent, or a projection.

This 1s a quite reasonable assumption to make. Although we cannot totally exclude the
possibility of schedulers that operate otherwise (for example, anticipating future requests
that will make the history nonserializable), all schedulers proposed in the past satisfy this
assumption. Any scheduler implemented by natural constructs such as locks {7, 11] or
queues has this property.

(b) Among all listories in C that have the longest possible common prefix with the
nput history, A¢ selects any one as its output. Clearly, in practice this choice would be
made so as to mimimize some more refined metric d’. However, the results obtained below
for our weaker metric 4 would apply to more relaxed metrics, too.

We say that A¢ 1s an efficient scheduler if Ac is computable in polynomial time. Our goal
in this section 1s to understand which classes of histories have efficient schedulers. It is
tempting to conjecture that if a class is in & then it has an efficient scheduler. To show
that this conjecture 1s not plausible, consider the following:

Example. Let E = {hohs: hs1s serial, and h = hs}. Obviously, E can be recogmzed in
polynomial time; the algorithm involves splitting a given history 1n two halves, testing
whether the second half 1s serial, and whether the second half 15 equivalent to the first.
However, it 1s also easy to see that E cannot have any efficient scheduler, unless = A%
Suppose that E has an efficient scheduler Az. Then we could test whether an arbitrary
history 1 1s senializable by first computing Az(h k), and then checking whether Ag(hoh)
starts with A. Since Ag is supposed to leave unchanged as long prefixes of its input as
possible, 1t will alter the first half of 4ok only if £ is not serializable. Since serializabihty
1s known to be NP-complete, E cannot have an efficient scheduler unless 2 = A2,

Our next result essentially says that efficiently recognizable classes have efficient
schedulers, unless they are as pathological as our example E above. Let h = (n, o, V, S) be
a history, considered now as a string of symbols representing n, V, S and the permutation
7. A prefix of h is an imtial segment of this representation, containing the encoding of n,
V, S, as well as an imtial part of 7—i.e., (7 '(1), 77 (2), ..., 77 *(;)) for some 0 < j < 2n.
If C 1s a class of histories, then PR(C) 1s the set of all prefixes of all hustories in C.

THEOREM 10. Let C be a subset of H. C has an efficient scheduler if and only if PR(C)
€2
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Scheduler Ac
Input. a history h = (n, m, ¥, §)

Output. a history A’ = (n, p, ¥, §) € C such that d(h, h’)
1s the smallest possible, 1f such an h’ exists
begin
if (n, ( ), V, S) € PR(C) then return
comment { } 1s the empty permutation,
else begin
p=1()
fory=1,..,2ndo
begin
done .= false,
for:=4,7+ 1, ,2ndo until done
if (n, {p, 77'(1)), ¥, S) € PR(C) then
begin
done = true,
interchange »'(1) and 77'(),
p = (p, 7)),
end,
end,
end,
return (11, p, V, S);
end
Fic 10

ProoF. Suppose that C has an efficient scheduler Ac. In order to determine whether
a stning g is a prefix of a history h € C we may act as follows: We first verify that g
contains encodings of n, V, and S, together with an initial segment p of a permutation 7 of
Z,.. We then generate a completion p of p by juxtaposing to p the symbols W, such that R,
but not W, 1s present in p, and then the strings R, W, for all ;’s such that neither R, nor W,
appears in p. We then calculate b’ = Ac((n, p, V, S)). It is straightforward to see that g is
a prefix of h’ if and only if g € PR(C). Thus we can efficiently determine whether g €
PR(C).

For the other direction, suppose that PR(C) € £ Based on the recognition algorithm for
PR(C) we design an efficient scheduler 4¢, shown in Figure 10. Ac computes dc(h) =
(n, p, V, S) by determining p element by element. It should be obvious that 4¢ operates as
prescribed within a time bound of O(n*C(n, | V'])), where C(n, | V) is the complexity of
recognizing PR(C). The theorem follows. [J

It is now easy to link the discussion of Sections 3 and 4 with the existence of efficient
schedulers We get two types of results:

+ COROLLARY 1. Unless 2= A%, SR has no efficient scheduler.

COROLLARY 2. The classes S, 2PL, P3, Q, DSR have efficient schedulers.

“Proor. We have shown that these sets are in 2, it is usually straightforward to show
that their sets of prefixes are also in £ (this 1s not a general property of #; there are
languages in 2 that have nonrecursive sets of prefixes). As an illustration, we will sketch
a proof that PR(P3) € 2. First, given an encoding of n, ¥, S, and a segment p of 7, we
compute from S the digraph F of the guardian relation among {73, ..., 7,.}. We next make
sure that whenever T; 1s a guardian of T; and p(W)) is defined, then either p(W,) < p(W)),
or p(R,) > p(W)), or p(R,) is undefined. Finally, we make sure that p can be completed in
a manner not violating P3. It turns out that this amounts to verifying that the restriction
of F to the transactions that are active (i.e., p(R)) is defined but p(W)) 1s not) is acyclic
(a discussion of this part follows the proof). Hence we have an efficient algorithm for
PR(P3). O

We show in Figure 11, without proofs, stylized versions of efficient schedulers for the
classes P3 (11(a)), 2PL (11(b)), and DSR and Q (l1(c); for Q we also include the two
statements labeled Q). Besides serializability, these algorithms must also guarantee the
absence of deadlocks. The issue of deadlocks appears to be orthogonal to that of serializ-
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process R,
when the deadlock graph with 7 1s acyclic do output (R)

process W,
when T 15 not the guardian of an active transaction do output (W)

(2)

process R,
when the deadlock graph with T 1s acychic and
no variable 1n S(R)) 1s read-locked do
ibegin
write-lock all vaniables in S(R)),
output (R)
iend,
when a process W, with S(W)) N S(R)) # & or 1 = j has been mtiated and
no vanable i S(W)) — S(R)) 1s wnite-locked do
ibegin
write-lock and read-lock all vanables in S(W));
un-write-lock all variables in S(R)) — S(W)),
iend
process W,
when R, has terminated do
ibegin output (W)),
unlock all vanables in S(W)),
iend

(b}

process R,
declare L, sequence of symbols in T, U {f}
comment L, contains all R, or W, such that T, 1s reachable by a path
from 7, n D (respectively D), up to this pont,
when the deadlock graph 1s acychc and
forno T, 7 T with S(R) N S(W,) # D, S(R)N S(Wr) % D1s W, € L, do
ibegin
output (R),
L, = {R},
add R, to all L, contaming W, with S(R)) N S(W,) # &,
Q- add R, to all Li contaming f;
iend
process W,
when the deadlock graph contains no arc (7, 7)) do
ibegin
output (W),
add W, to all L, contaiing o such that S(W,) N S(o) % &,
Q. addftoall L, contaiming R, or W,,
set L, =,
iend

(©)
Fic 11

ability, and, in fact, clever serializability methods are known to introduce increased danger
of deadlocks of the “circular waiting” variety [6, pp. 40-60]. A unified treatment of
serializability and deadlocks in a restricted data model is attempted in [18]. In all cases of
interest to us, deadlocks can be prevented by testing a dynamically changing deadlock
graph for acyclicity. For example, in two-phase locking deadlock can occur if a number of
transactions have each locked their read set, and are waiting for each other to release their
locks. Hence, in this case the deadlock graph has variables as nodes and has an arc from
x to y if and only if some transaction currently on phase 1 reads x and writes y. In P3 the
deadlock graph is the restriction of the guardian relation to the currently active transac-
tions—this was mentioned in the proof of Corollary 2 to Theorem 10. Finally, the deadlock
graph in DSR (respectively, Q) has as nodes the active transactions and includes the arc
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(T, T,) if and only if there is a path from T, to T, in D(h)—respectively D'(h)-—and S(W)
N S(W) # Q.

Our notation in Figure 11 assumes that the process R, or W, is initiated as soon as
corresponding read or write requests arrive. We use constructs such as when (denoting the
waiting for a condition) and ibegin...iend (bracketing statements that are to be executed
indivisibly). It should be obvious that these algorithms can be implemented deterministi-
cally and efficiently on any standard model of computation.

7. Discussion

We shall consider extensions of our results in three directions: general multistep transac-
tions, interpreted transactions, and distributed databases.

7.1 MULTISTEP TRANSACTIONS. We shall briefly discuss how our entire development of
Sections 2 through 6 can be easily extended to a far more general multistep model of
transactions. We consider transactions that consist of sequences of steps; each step may
involve both reading and writing. The values wntten must be considered as uninterpreted
functions of all variables read at the present or previous steps of the same transaction. Our
definition of liveness now applies to individual steps of transactions. No further modifi-
cations are necessary for stating the analog of Proposition 1.

Serializability is obviously NP-complete in this model, as it subsumes ours. Assuming
that no transaction reads intermediate results of another or reads two different versions of
the same variable at two different steps—in which case the history is not serializable—
Lemma 2 is also valid. The four serializability principles discussed in Section 4 remain
virtually unchanged—in fact, two-phase locking was initially proposed for a similar model
in (7). For another example, we shall describe in a somewhat more detailed manner the
generalized P3 class of histories. In the multistep model a step s of a transaction can be an
(i, y)-guardian of another transaction, where i < j are steps. This means that s interacts with
i—i.e., either its write set includes variables of i or vice-versa—and there is a chain of
interactions from s to j. If this is the case, s is not allowed to occur between i and j. This P3
protocol always yields DSR (and hence serializable) histories. For the classes DSR and @,
we have similar graphs D(h) and D’(h). An arc (T, T;) is in D(h) if a step of T, interacts
with a subsequent step of T,. For D’(h) it may just be that the last step of T, precedes the
first step of 7,. The acyclicity of D(h) again guarantees serializability and that of D’(h)
strict serializability. Hence, these remain two most general serializability techniques,
subsuming two-phase locking and P3, in this general setting, too.

Finally, it is easy to see that the results of Section 6—the necessary and sufficient
condition for the existence of efficient schedulers and its corollaries—apply even more
directly to multistep histories. We hope that the reader is by now convinced that introducing
general multistep transactions would have resulted in an unmanageably cumbersome
notation but in very few new important ideas.

7.2 INTERPRETED TRANSACTIONS. A significant departure from our model would be to
look more closely into the computations performed by the transactions and exploit their
details for studying serializability—or correctness, in general. If only syntactic information
about the transactions is available (e.g., the read and write sets) then serializability can be
formally proved to be the right concurrency concept [11]. If, however, semantics of the
functions performed, or even the integrity constraints, are known, then it may be the case
that more liberal concurrency pnnclples than serializability are applicable. An example is
the correctness theory proposed in {12], where the concurrency control mechanism takes
into account information about the semantics and integrity constraints supplied by
correctness proofs of the individual transactions. The extent to which such information is
helpful is investigated in [11].

It is doubtful whether complete semantic information can be used effectively for
concurrency control. Any reasonably complex domain of interpretation (e.g., arithmetic)
would soon make the serializability problem undecidable. There should be, however, ways
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to use partial semantic information in order to improve our understanding of serializability.
One possibihity is to use the fact that two transactions perform precisely the same function;
one of the implications 1s that they commute. It is not too hard to see that this adds nothing
to the model developed thus far. Incidentally, this allows us to extend our original model
so as to permit multiple occurrences of a transaction in a history.

Another possibility would be to selectively consider certain very simple transactions to
be interpreted. A good example of a very common transaction that performs a well-
understood function is the coprer, a transaction that reads x and later records its value at
y. Senalizability becomes trickier. For example the history

h = Ri[x1R2R[x W x]Ws[ y1R[ y] Wi xIRs[x] W[ 2] W' 2]

is not seriahizable in our ordinary sense, but becomes equivalent to the serial history hs =
T;ThT:TsT, once we assume that transactions 3 and 4 are copiers. Proposition 1 becomes
somewhat more complex in the presence of copiers. However, it is interesting to note that
if copiers are restricted not to read variables from other copiers, then the introduction of
copiers adds no strength to our model, and Proposition 1 and Lemma 2 remain unchanged
under this assumption. This remark plays an important role in the next topic of our
discussion. '

7.3 DisTRIBUTED DATABASES. There is a large body of literature aiming at the under-
standing of the quite elusive notion of distributed computing (see, e.g., [13]). Distributed
databases have inherited some of the intricacies of this area [17, 21]. We shall limit our
discussion to the case of two complete copies of the database in different locations,
although there are difficulties which first appear in the cases of three copies or of selective
redundancy [5]. A major problem is, what happens when a transaction 1s run in one
location, thus changing only one of the two copies. A simple technique for solving this
would be to send an update message [2] to the other location as soon as the transaction has
completed. We have therefore a sequence of genuine transactions and update messages
running 1n the system, and we can thus view the two copies of the database as a single
database—think of the two copies of the variable x as two variables x; and x..

A difficulty appears when we try to define a history. The distributed nature of our
computation, the communication delays and imperfect clocks, make temporal priority—
on which our ordinary notion of history was based—less tangible. The observation here is
that mustakes in our arrangement of the events that are due to the above factors preserve
history equivalence. Hence, we can put together a history—the global log of [2]—as long
as 1t 18 consistent with local priorities and arrivals of messages. Now the update messages
are in fact just copiers, and they only read variables that were updated by ordinary
transactions. Hence the last remark of the previous subsection is applicable, and the
serializability problem has been reduced to the one already studied! Of course, we are not
just looking for serializability but for the existence of an equivalent serial history in which
an update message immediately follows the corresponding transaction. This, however, does
not change the essence of the task All our special case results hold with very minor
modifications. ‘

What is considerably more complex in the distributed context is the subject of schedulers.
There 1s no obvious neat way to compile syntactic restrictions on the global history into
distributed algorithms that achieve them. It therefore appears that distributed history
schedulers must concern themselves with the details of the underlying model of distributed
computation in order to implement the intended serializability principle; the formidable
algonthms of [21] and [5] illustrate this point. Nevertheless, it is still natural to conjecture
that the more general 1deas related to the classes DSR and Q would prove advantageous
in the distributed environment as well.

7.4 OpeN PrROBLEMS. We have proposed a formalism for the concurrency control
problem for databases. There are two aspects of this formalism that may limit its
apphcability and must therefore be modified in a second attempt. One is our basic
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assumption, manifested throughout the paper, that the syntactic description of all trans-
actions to occur in the history is known to the scheduler a priori. It is not clear how to
remove this assumption and still retain the wealth of available solutions. One way would
be to have, following [5], a certain number of prototype transactions—or classes—to one
of which any arriving transaction can be matched. Another way out would be to adopt
only transaction-driven concurrency controls. Two-phase locking [7] is an example of such
a concurrency control, and so would be any other locking scheme. The limitations of such
approaches are studied in [11]. On the other hand, it is possible that variants of the
schedulers presented here could also be implemented in a transaction-driven manner.

Second, our way of evaluating the performance of schedulers is also in need of an
improvement. We propose only a qualitative measure of the performance of a scheduler—
namely, the set of all output histories. Thus leads to only a partial order of schedulers. This
was shown to be a reasonable and useful approximation of reality when the goal is to
derive indicative results or compare general principles of serializability. It 1s clear, however,
that a more concrete measure of performance is needed for more practical applications.
One promusing direction would be to somehow count the total number of delays imposed
on requests—at a first approximation, the number of transaction steps that cannot execute
immediately upon arrval. This would be a refinement of our measure: our measure,
roughly speaking, assigns a perfect score to all histories that remain the same and zero
score to all histories that are changed, however small the change. A more refined measure
might even put to test some of our assumptions, like the “optimastic scheduler” assumption
(Section 6): in certain cases 1t may be preferable to intervene and modify slightly the
history when serializable completion becomes extremely unlikely, although not impossible.
Naturally, adopting a more concrete measure of performance for schedulers will most
likely requrre the introduction of specific and pragmatic details of the particular application,
and the overall approach may have to be probabilistic.

By considering only serializability as our notion of correctness we have somehow limited
our scope. Examples of concurrency control techniques more general than serializability
can be found in [12] and [10}. They are arnived at by assuming that the scheduler has more
than syntactic mformation about the transaction system that it handles—e.g., semantic
information or understanding of the integrity constraints. It is pointed out n [11] that
serializability 1s just one point in the trade-off between information and performance of
schedulers. However, we feel that there is something natural about the use of syntactic
information for concurrency control, and the importance of concurrency techniques
stronger than serializability is of limited practical value.

Finally, we recall two other problems that are left open here: the complexity of
recognizing the class SSR, and developing techniques for designing distributed schedulers
from syntactic specifications.
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