Outline

- Introduction
- Background
- Distributed DBMS Architecture
- Distributed Database Design
- Distributed Query Processing
 - Query Processing Methodology
 - Distributed Query Optimization
- Transaction Management
- Building Distributed Database Systems (RAID)
- Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems

Useful References

 Textbook Principles of Distributed Database Systems, Chapter 6

Query Processing

Distributed DBMS

Query Processing Components

- Query language that is used
 - □ SQL: "intergalactic dataspeak"
- Query execution methodology
 - □ The steps that one goes through in executing highlevel (declarative) user queries.
- Query optimization
 - □ How do we determine the "best" execution plan?

Selecting Alternatives

SELECT	ENAME	Π Proj
FROM	EMP,ASG	σ Sele
WHERE	EMP.ENO = ASG.ENO	× Join
AND	DUR > 37	

Strategy 1

 $\Pi_{ENAME}(\sigma_{DUR>37 \land EMP.ENO=ASG.ENO}\,(EMP\times ASG))$ Strategy 2

 $\Pi_{ENAME}(EMP\bowtie_{ENO} (\sigma_{DUR>37} (ASG)))$

Strategy 2 avoids Cartesian product, so is "better"

ect

ct

What is the Problem?

Cost of Alternatives

- Assume:
 - \Box size(EMP) = 400, size(ASG) = 1000
 - □ tuple access cost = 1 unit; tuple transfer cost = 10 units

□ Strategy 1

	produce ASG': (10+10)*tuple access cost	20
	transfer ASG' to the sites of EMP: (10+10)*tuple transfer cost	200
	produce EMP': (10+10) *tuple access cost*2	40
	transfer EMP' to result site: (10+10) *tuple transfer cost	200
	Total cost	460
Str	ategy 2	
	transfer EMP to site 5:400*tuple transfer cost	4,000
	transfer ASG to site 5 :1000*tuple transfer cost	10,000
	produce ASG':1000*tuple access cost	1,000
	join EMP and ASG':400*20*tuple access cost	8,000
	Total cost	23,000
Distributed DBN	MS © 1998 M. Tamer Özsu & Patrick Valduriez	Page 7-9. 7

Query Optimization Objectives

Minimize a cost function

I/O cost + CPU cost + communication cost

These might have different weights in different distributed environments

Wide area networks

- \Box communication cost will dominate (80 200 ms)
 - low bandwidth
 - □ low speed
 - high protocol overhead
- most algorithms ignore all other cost components

Local area networks

- \Box communication cost not that dominant (1 5 ms)
- □ total cost function should be considered

Can also maximize throughput

Complexity of Relational Operations

- \Box relations of cardinality n
- sequential scan

Operation	Complexity
Select Project (without duplicate elimination)	O(<i>n</i>)
Project (with duplicate elimination) Group	$O(n \log n)$
Join Semi-join Division Set Operators	O(nlog n)
Cartesian Product	$O(n^2)$

Query Optimization Issues – Types of Optimizers

Exhaustive search

- cost-based
- optimal
- combinatorial complexity in the number of relations

Heuristics

- □ not optimal
- **regroup common sub-expressions**
- perform selection, projection first
- replace a join by a series of semijoins
- **□** reorder operations to reduce intermediate relation size
- optimize individual operations

Query Optimization Issues – Optimization Granularity

□ Single query at a time

- cannot use common intermediate results
- Multiple queries at a time
 - efficient if many similar queries
 - □ decision space is much larger

Query Optimization Issues – Optimization Timing

- **Static**
 - \Box compilation \Rightarrow optimize prior to the execution
 - $\square \quad \text{difficult to estimate the size of the intermediate results} \\ \Rightarrow \text{error propagation}$
 - □ can amortize over many executions
 - □ R*

Dynamic

- □ run time optimization
- exact information on the intermediate relation sizes
- □ have to reoptimize for multiple executions
- Distributed INGRES

Hybrid

- □ compile using a static algorithm
- if the error in estimate sizes > threshold, reoptimize at run time
- □ MERMAID

Query Optimization Issues – Statistics

Relation

- cardinality
- □ size of a tuple
- fraction of tuples participating in a join with another relation

□ Attribute

- cardinality of domain
- actual number of distinct values
- Common assumptions
 - □ independence between different attribute values
 - uniform distribution of attribute values within their domain

Query Optimization Issues – Decision Sites

Centralized

- □ single site determines the "best" schedule
- □ simple
- need knowledge about the entire distributed database
- Distributed
 - cooperation among sites to determine the schedule
 - need only local information
 - \Box cost of cooperation
- Hybrid
 - one site determines the global schedule
 - each site optimizes the local subqueries

Query Optimization Issues – Network Topology

- □ Wide area networks (WAN) point-to-point
 - □ characteristics
 - low bandwidth
 - low speed
 - high protocol overhead
 - communication cost will dominate; ignore all other cost factors
 - **global schedule to minimize communication cost**
 - local schedules according to centralized query optimization
- Local area networks (LAN)
 - communication cost not that dominant
 - □ total cost function should be considered
 - □ broadcasting can be exploited (joins)
 - special algorithms exist for star networks