Outline

- Introduction
- Background
- Distributed DBMS Architecture
- Distributed Database Design
 - Fragmentation
 - Data Location
- Distributed Query Processing (Briefly)
- Distributed Transaction Management (Extensive)
- Building Distributed Database Systems (RAID)
- Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems

Useful References

- W. W. Chu, Optimal File Allocation in Multiple Computer System, IEEE Transaction on Computers, 885-889, October 1969.
- Textbook Principles of Distributed Database Systems,
 - Chapter 3.3, 3.4

Allocation Alternatives

- □ Non-replicated
 - partitioned : each fragment resides at only one site
- Replicated
 - □ fully replicated : each fragment at each site
 - partially replicated : each fragment at some of the sites
- □ Rule of thumb:

If $\frac{\text{read - only queries}}{\text{update queries}} \ge 1$

replication is advantageous,

otherwise replication may cause problems

Comparison of Replication Alternatives

	Full-replication	Partial-replication	Partitioning
QUERY PROCESSING	Easy	Same D	fficulty
DIRECTORY MANAGEMENT	Easy or Non-existant	Same D	fficulty
CONCURRENCY CONTROL	Moderate	Difficult	Easy
RELIABILITY	Very high	High	Low
REALITY	Possible application	Realistic	Possible application

Information Requirements

□ Four categories:

- Database information
- Application information
- **Communication** network information
- **Computer system information**

Fragment Allocation

Problem Statement

Given

 $F = \{F_1, F_2, ..., F_n\}$ $S = \{S_1, S_2, ..., S_m\}$ $Q = \{q_1, q_2, ..., q_q\}$

fragments network sites applications

Find the "optimal" distribution of F to S.

- Optimality
 - Minimal cost
 - Communication + storage + processing (read & update)
 - Cost in terms of time (usually)
 - Performance
 - Response time and/or throughput
 - □ Constraints
 - Per site constraints (storage & processing)

Information Requirements

- Database information
 - selectivity of fragments
 - □ size of a fragment
- Application information
 - $\hfill\square$ access types and numbers
 - access localities
- Communication network information
 - unit cost of storing data at a site
 - unit cost of processing at a site
- Computer system information
 - □ bandwidth
 - □ latency
 - communication overhead

Allocation

File Allocation (FAP) vs Database Allocation (DAP):

□ Fragments are not individual files

relationships have to be maintained

- □ Access to databases is more complicated
 - remote file access model not applicable
 - relationship between allocation and query processing
- □ Cost of integrity enforcement should be considered
- □ Cost of concurrency control should be considered

Allocation – Information Requirements

- Database Information
 - selectivity of fragments
 - □ size of a fragment
- Application Information
 - number of read accesses of a query to a fragment
 - number of update accesses of query to a fragment
 - □ A matrix indicating which queries updates which fragments
 - □ A similar matrix for retrievals
 - originating site of each query
- Site Information
 - unit cost of storing data at a site
 - □ unit cost of processing at a site
- Network Information
 - communication cost/frame between two sites
 - □ frame size

General Form min(Total Cost)

subject to

response time constraint storage constraint processing constraint

Decision Variable

$$x_{ij} = \begin{cases} 1 \text{ if fragment } F_i \text{ is stored at site } S_j \\ 0 \text{ otherwise} \end{cases}$$

Total Cost

 $\sum_{\text{all queries}} \text{query processing cost} +$

 $\sum_{\text{all sites}} \sum_{\text{all fragments}} \text{cost of storing a fragment at a site}$

□ Storage Cost (of fragment F_j at S_k)

(unit storage cost at S_k) * (size of F_j) * x_{jk}

Query Processing Cost (for one query)

processing component + transmission component

Query Processing Cost

Processing component

access cost + integrity enforcement cost + concurrency control cost

 \Box Access cost

 $\sum_{\text{all sites}} \sum_{\text{all fragments}}$ (no. of update accesses+ no. of read accesses) *

 x_{ij} *local processing cost at a site

Integrity enforcement and concurrency control costs
Can be similarly calculated

Query Processing Cost

Transmission component

cost of processing updates + cost of processing retrievals

□ Cost of updates

 $\sum_{all \ sites} \sum_{all \ fragments} update \ message \ cost \ +$

 $\sum_{\text{all sites}} \sum_{\text{all fragments}} acknowledgment cost$

Retrieval Cost

 $\sum_{\text{all fragments}} \min_{\text{all sites}} (\text{cost of retrieval command} +$

cost of sending back the result)

Constraints

- □ Response Time
 - execution time of query $\,\leq$ max. allowable response time for that query
- □ Storage Constraint (for a site)

 $\sum_{\text{all fragments}} \text{storage requirement of a fragment at that site } \leq$

storage capacity at that site

Processing constraint (for a site)

 $\sum_{\text{all queries}}$ processing load of a query at that site \leq

processing capacity of that site

- Solution Methods
 - □ FAP is NP-complete
 - DAP also NP-complete
- Heuristics based on
 - □ single commodity warehouse location (for FAP)
 - knapsack problem
 - branch and bound techniques
 - network flow

- □ Attempts to reduce the solution space
 - assume all candidate partitionings known; select the "best" partitioning
 - □ ignore replication at first
 - □ sliding window on fragments