Outline

- Introduction
- Background
- Distributed DBMS Architecture
- Distributed Database Design
 - I Fragmentation
 - Data Location
- Distributed Query Processing (Briefly)
- Distributed Transaction Management (Extensive)
- Building Distributed Database Systems (RAID)
- Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems

Useful References

- Textbook Principles of Distributed Database Systems,
 - Chapter 3.1, 3.2

□ In the general setting :

Making decisions about the placement of *data* and *programs* across the sites of a computer network as well as possibly designing the network itself.

- In Distributed DBMS, the placement of applications entails
 - placement of the distributed DBMS software; and
 - placement of the applications that run on the database

Dimensions of the Problem

Top-down

- mostly in designing systems from scratch
- mostly in homogeneous systems
- Bottom-up
 - when the databases already exist at a number of sites

Distribution Design Issues

- □ Why fragment at all?
- How to fragment?
- How much to fragment?
- How to test correctness?
- How to allocate?
- Information requirements?

- □ Can't we just distribute relations?
- □ What is a reasonable unit of distribution?
 - □ relation
 - views are subsets of relations
 - extra communication
 - □ fragments of relations (sub-relations)
 - concurrent execution of a number of transactions that access different portions of a relation
 - views that cannot be defined on a single fragment will require extra processing
 - semantic data control (especially integrity enforcement) more difficult

Fragmentation Alternatives – Horizontal

$PROJ_1$: projects with budgets less than \$200,000

 $PROJ_2$: projects with budgets greater than or equal to \$200,000

PROJ

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P2	Database Develop.	135000	New York
P3	CAD/CAM	250000	New York
P4	Maintenance	310000	Paris
P5	CAD/CAM	500000	Boston

PROJ₁

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P2	Database Develop.	135000	New York

PROJ₂

PNO	PNAME	BUDGET	LOC
P3	CAD/CAM	250000	New York
P4	Maintenance	310000	Paris
P5	CAD/CAM	500000	Boston

Fragmentation Alternatives – Vertical

$PROJ_1$: information about project budgets $PROJ_2$: information about project names and locations

PROJ

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P2	Database Develop.	135000	New York
P3	CAD/CAM	250000	New York
P4	Maintenance	310000	Paris
P5	CAD/CAM	500000	Boston

PROJ₁

PNO	BUDGET
P1 P2 P3 P4 P5	150000 135000 250000 310000 500000

PROJ₂

PNO	PNAME	LOC
P1	Instrumentation	Montreal
P2	Database Develop.	New York
P3	CAD/CAM	New York
P4	Maintenance	Paris
P5	CAD/CAM	Boston

Degree of Fragmentation

Finding the suitable level of partitioning within this range

Correctness of Fragmentation

Completeness

- Decomposition of relation R into fragments $R_1, R_2, ..., R_n$ is complete if and only if each data item in R can also be found in some R_i
- Reconstruction
 - □ If relation R is decomposed into fragments $R_1, R_2, ..., R_n$, then there should exist some relational operator ∇ such that

$$R = \nabla_{1 \le i \le n} R_i$$

- Disjointness
 - □ If relation *R* is decomposed into fragments $R_1, R_2, ..., R_n$, and data item d_i is in R_j , then d_i should not be in any other fragment R_k ($k \neq j$).

Other Fragmentation Issues

- Privacy
- Security
- Bandwidth of Connection
- Reliability
- Replication Consistency
- Local User Needs