Outline

- Introduction
- Background
- Distributed DBMS Architecture
 - Introduction to Database Concepts
 - Alternatives in Distributed Database Systems
 - Datalogical Architecture
 - □ Implementation Alternatives
 - □ Component Architecture
- Distributed Database Design (Briefly)
- Distributed Query Processing (Briefly)
- Distributed Transaction Management (Extensive)
- Building Distributed Database Systems (RAID)
- Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems

Useful References

- Textbook Principles of Distributed Database Systems,
 - Chapter 1.7

Alternatives in Distributed Database Systems

Dimensions of the Problem

- Distribution
 - Whether the components of the system are located on the same machine or not
- Heterogeneity
 - □ Various levels (hardware, communications, operating system)
 - □ DBMS important one
 - data model, query language,transaction management algorithms
- □ Autonomy
 - □ Not well understood and most troublesome
 - Various versions
 - Design autonomy: Ability of a component DBMS to decide on issues related to its own design.
 - Communication autonomy: Ability of a component DBMS to decide whether and how to communicate with other DBMSs.
 - Execution autonomy: Ability of a component DBMS to execute local operations in any manner it wants to.

Datalogical Distributed DBMS Architecture

ES: External Schema GCS: Global Conceptual Schema LCS: Local Conceptual Schema LIS: Local Internal Schema

Datalogical Multi-DBMS Architecture

GES: Global External Schema
LES: Local External Schema
LIS: Local Internal Schema

Timesharing Access to a Central Database

Multiple Clients/Single Server

Task Distribution

Advantages of Client-Server Architectures

- More efficient division of labor
- Horizontal and vertical scaling of resources
- Better price/performance on client machines
- □ Ability to use familiar tools on client machines
- Client access to remote data (via standards)
- Full DBMS functionality provided to client workstations
- Overall better system price/performance

Problems With Multiple-Client/Single Server

- Server forms bottleneck
- Server forms single point of failure
- Database scaling difficult

Multiple Clients/Multiple Servers

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Server-to-Server

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Components of a Multi-DBMS

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez

Directory Issues

