Outline

- Introduction
- Background
- Distributed DBMS Architecture
- Distributed Database Design
- Distributed Query Processing
- Distributed Transaction Management
- Building Distributed Database Systems (RAID)
- I Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems

Useful References

- E. Pitoura and B. Bhargava, Data Consistency in Intermittently Connected Distributed Systems, IEEE TKDE, 11(6), 1999.
- E. Pitoura and G. Samaras, *Data Management* for Mobile Computing, Kluwer Academic Publishers, 1998.
- S. Bhowmick, S. Madria, and W. K. Ng, Web Data Management: A Warehouse Approach, Springer, 2003.

What is Pervasive Computing?

Pervasive computing is a term for the strongly emerging trend toward:

- Numerous, casually accessible, often invisible computing devices
- Frequently mobile or embedded in the environment

Connected to an increasingly ubiquitous network structure."

– NIST, Pervasive Computing 2001

Mobile and Wireless Computing

- Goal: Access Information Anywhere, Anytime, in Any Way.
- Aliases: Mobile, Nomadic, Wireless, Pervasive, Invisible, Ubiquitous Computing.
- **Distinction:**
 - Fixed wired network: Traditional distributed computing.
 - Fixed wireless network: Wireless computing.
 - Wireless network: Mobile Computing.
- > Key Issues: Wireless communication, Mobility, Portability.

and

Why Mobile Data Management?

- Wireless Connectivity and use of PDA's, handheld computing devices on the rise
- Workforces will carry extracts of corporate databases with them to have continuous connectivity
- Need central database repositories to serve these work groups and keep them fairly upto-date and consistent

Mobile Applications

- Expected to create an entire new class of Applications
 - new massive markets in conjunction with the Web
 - Mobile Information Appliances combining personal computing and consumer electronics
- Applications:
 - □ Vertical: vehicle dispatching, tracking, point of sale
 - Horizontal: mail enabled applications, filtered information provision, collaborative computing...

Mobile Data Applications

- Sales Force Automation especially in pharmaceutical industry, consumer goods, parts
- Financial Consulting and Planning
- Insurance and Claim Processing Auto, General, and Life Insurance
- Real Estate/Property Management -Maintenance and Building Contracting
- □ Mobile E-commerce

Mobility – Impact on DBMS

- Handling/representing fast-changing data
- □ Scale
- Data Shipping v/s Query shipping
- Transaction Management
- Replica management
- Integrity constraint enforcement
- □ Recovery
- Location Management
- Security
- User interfaces

DBMS Industry Scenario

- Most RDBMS vendors support the mobile scenario but no design and optimization aids
- Specialized Environments for mobile applications:
 - Sybase Remote Server
 - Synchrologic iMOBILE
 - $Microsoft \ SQL \ server \ \text{-} \ mobile \ application \ support$
 - Oracle Lite
 - Xtnd-Connect-Server (Extended Technologies)
 - Scoutware (Riverbed Technologies)

Query Processing

New Issues

- Energy Efficient Query Processing
- Location Dependent Query Processing
- Old Issues New Context
 - Cost Model

Location Management

New Issues

Tracking Mobile Users

Old Issues - New Context

- Managing Update Intensive Location Information
- Providing Replication to Reduce Latency for Location Queries
- Consistent Maintenance of Location Information

Transaction Processing

New Issues

- Recovery of Mobile Transactions
- Lock Management in Mobile Transaction
- Old Issues New Context
- Extended Transaction Models
 - Partitioning Objects while Maintaining Correctness

Data Processing Scenario

- One server or many servers
- Shared Data
- Some Local Data per client, mostly subset of global data
- Need for accurate, up-to-date information, but some applications can tolerate bounded inconsistency
- Client side and Server side Computing
- Long disconnection should not constraint availability
- Mainly Serial Transactions at Mobile Hosts
- **Update Propagation and Installation**

Mobile Network Architecture

Wireless Technologies

- Wireless local area networks (WaveLan, Aironet) Possible Transmission error, 1.2 Kbps-15 Mbps
- Cellular wireless (GSM, TDMA, CDMA)– Low bandwidth, low speed, long range - Digital: 9.6-14.4 Kbps
- Packet radio (Metricom) -Low bandwidth, high speed, low range and cost
- D Paging Networks One way
- Satellites (Inmarsat, Iridium(LEO)) Long Latency, long range, high cost

Terminologies

GSM - Global System for Mobile Communication

□ GSM allows eight simultaneous calls on the same radio frequency and uses narrowband TDMA. It uses time as well as frequency division.

TDMA - Time Division Multiple Access

□ With TDMA, a frequency band is chopped into several channels or time slots which are then stacked into shorter time units, facilitating the sharing of a single channel by several calls

CDMA - Code Division Multiple Access

- □ data can be sent over multiple frequencies simultaneously, optimizing the use of available bandwidth.
- □ data is broken into packets, each of which are given a unique identifier, so that they can be sent out over multiple frequencies and then re-built in the correct order by the receiver.

Mobility Characteristics

Location changes

- location management cost to locate is added to communication
- Heterogeneity in services
 - bandwidth restrictions and variability
- Dynamic replication of data
 - data and services follow users
- Querying data location-based responses
- Security and authentication
- System configuration is no longer static

What Needs to be Reexamined?

- Operating systems TinyOS
- □ File systems CODA
- Data-based systems TinyDB
- **Communication architecture and protocols**
- Hardware and architecture
- Real-Time, multimedia, QoS
- Security
- Application requirements and design
- PDA design: Interfaces, Languages

Mobility Constraints

- D CPU
- □ Power
- Variable Bandwidth
- Delay tolerance, but unreliable
- Physical size
- Constraints on peripherals and GUIs
- □ Frequent Location changes
- Security
- Heterogeneity
- Expensive
- Frequent disconnections but predictable

What is Mobility?

A device that moves between

- different geographical locations
- Between different networks
- □ A person who moves between
 - different geographical locations
 - different networks
 - □ different communication devices
 - different applications

Device Mobility

Laptop moves between Ethernet, WaveLAN and Metricom networks

- □ Wired and wireless network access
- Potentially continuous connectivity, but may be breaks in service
- Network address changes
- **Radically different network performance on different networks**
- Network interface changes
- Can we achieve best of both worlds?
 - □ Continuous connectivity of wireless access
 - Performance of better networks when available

Mobility Means Changes

Addresses

□ IP addresses

Network performance

□ Bandwidth, delay, bit error rates, cost, connectivity

Network interfaces

□ PPP, eth0, strip

Between applications

Different interfaces over phone & laptop

Within applications

□ Loss of bandwidth trigger change from color to B&W

□ Available resources

□ Files, printers, displays, power, even routing

Bandwidth Management

- Clients assumed to have weak and/or unreliable communication capabilities
- Broadcast--scalable but high latency
- On-demand--less scalable and requires more powerful client, but better response
- Client caching allows bandwidth conservation

Energy Management

- Battery life expected to increase by only 20% in the next 10 years
- □ Reduce the number of messages sent
- Doze modes
- Power aware system software
- Power aware microprocessors
- □ Indexing wireless data to reduce tuning time

Wireless characteristics

- Variant Connectivity
 - □ Low bandwidth and reliability
- Frequent disconnections
 - predictable or sudden
- Asymmetric Communication
 - Broadcast medium
- Monetarily expensive
 - □ Charges per connection or per message/packet
- Connectivity is weak, intermittent and expensive

Portable Information Devices

PDAs, Personal Communicators

- □ Light, small and durable to be easily carried around
- □ dumb terminals, palmtops, wristwatch PC/Phone,
- □ will run on AA+ /Ni-Cd/Li-Ion batteries
- may be diskless
- □ I/O devices: Mouse is out, Pen is in
- Wireless connection to information networks
 - either infrared or cellular phone
- Specialized Hardware (for compression/encryption)

Portability Characteristics

Battery power restrictions

- □ transmit/receive, disk spinning, display, CPUs, memory consume power
- Battery lifetime will see very small increase
 - □ need energy efficient hardware (CPUs, memory) and system software
 - planned disconnections doze mode
- Power consumption vs. resource utilization

Portability Characteristics Cont.

Resource constraints

- □ Mobile computers are resource poor
- □ Reduce program size interpret script languages (Mobile Java?)
- Computation and communication load cannot be distributed equally
- Small screen sizes
- > Asymmetry between static and mobile computers