To increase concurrency Commit soon
 To protect against failures Commit as late as possible

Analogy

Real life actions | system transactions Goal is to:

- Maximize commitment of actions/transactions
- Minimize rollback
- Maximize concurrency
- Minimize blocking

Obstacles

- Transmission delays
- Communication failure (network partition)
- Site failures
- Long and short transactions
- Nested transactions

Possible solution:

• Assign a degree of {commitment, importance, success} to a transaction

Many ideas were originally mentioned by:

C.T. Davies -	ACM Conf., 1972
L.A. Bjor -	ACM Conf., 1972
S.K. Srivastava -	Symp. of Reliability in Dist.
	Soft/OB, 1982

Degree of commitment (for a single transaction in the system)

- = 0 when transaction arrives in the system
- = 1 when
 - (a) transaction has left the system permanently
 - (b) transaction can no longer be rolled back
 - resources necessary to back out are lost
 - some undoable action has been performed

(when other transactions are involved)

- = 1 (a) when transaction has given results to other transactions who have a degree of comm = 1
 (b) down down information are transactions
 - (b) dependency information among transactions has been lost

Dependency Graph

 $\mathrm{GD}=(\mathrm{V},\mathrm{E})$

V: set of nodes representing transactions (T)

E: set of edges representing the dependency relation among T

Types of dependency relations:

(a) Concurrency control dependency $T_i \rightarrow T_j$ if R-W or W-W conflict T_i should commit before T_j

(b) User defined dependencies

- (i) $Ti \rightarrow Tj$ if Ti should commit before Tj
- (ii) $Ti \leftrightarrow Tj$ if Tj should commit simultaneously

(iii) Ti \leftrightarrow Tj if either T_i or T_j should commit, but not both

Sphere of Dependency

If T is aborted
then S(T) is aborted
Loss = W(S(T))

$$S_{cycle} (T_1) = \{T' / T' \in S(T_1) \text{ and} \\ T' \in A(T_1) \}$$

$$\label{eq:cycle} \begin{split} \text{If W}(\text{S}_{\text{cycle}}(\text{T}_1)) > \text{W}(\text{T}_1) \\ \text{then abort } \text{T}_1 \end{split}$$