
Evaluation Criterion

1. Degree of Concurrency

Less reshuffle \Rightarrow High degree of concurrency

2. Resources used to recognize

- Lock tables
- □ Time stamps
- Read/write sets
- Complexity
- 3. Costs
 - Programming ease

Distributed DBMS

General Comments

□ Information needed by Concurrency Controllers

- Locks on database objects (System-R, Ingres, Rosenkrantz...)
- Time stamps on database objects (Thomsa, Reed)
- Time stamps on transactions (Kung, SDD-1, Schlageter, Bhargava...)

Observations

- Time stamps mechanisms more fundamental than locking
- Time stamps carry more information
- Checking locks costs less than checking time stamps

General Comments (cont.)

□ When to synchronize

- First access to an object (Locking, pessimistic validation)
- At each access (question of granularity)
- After all accesses and before commitment (optimistic validation)
- Fundamental notions
 - Rollback
 - Identification of useless transactions
 - Delaying commit point
 - Semantics of transactions

Probability that two transactions do not share an object

$$=\frac{{}^{M}C_{B_{S}} {}^{*M-B_{S}}C_{B_{S}}}{{}^{M}C_{B_{S}} {}^{*M}C_{B_{S}}}$$

$$= \left(\frac{M-B_s}{M}\right) * \left(\frac{M-B_s-1}{M-1}\right) * \left(\frac{M-2B_s+1}{M-B_s+1}\right)$$

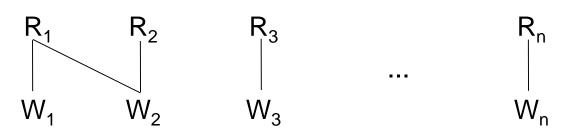
Lower bound on this problem $= \left(\frac{M - 2B_s + 1}{M - B_s + 1}\right)^{B_s}$

Maximum problem that two transactions will share an object

$$=1 - \left(\frac{M - 2B_{s} + 1}{M - B_{s} + 1}\right)^{B_{s}}$$

BS	Μ	Probability of conflict		
5	100	.0576	Probability of cycle	
10	500	.0025	$= 0(PC^2)$	
20	1000	.113	≅small	

Concurrency/Multiprogramming level is low


Example:

I/O	=	.005 seconds
CPU	=	.0001 seconds
Trans size	=	5
Time to execute trans.	=	.0255 seconds

For another trans. to meet this trans. in the system

Arrival rate >
$$\frac{1}{.0255}$$
 or > 40 per second

Example:
$$h = R_1 R_2 W_2 R_3 W_3 \dots R_n W_n W_1$$

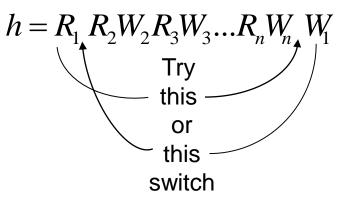
Locking: This history not allowed

 W_2 is blocked by R_1 T_2 cannot finish before T_1

What if T_1 is a log trans. and T_2 is a small trans.?

 T_1 blocks T_2 ; can block $T_3 \dots T_n$ if $(R_2 \cap W_2 \neq \phi)$

Optimistic [Kung]


 T_i (i = 2,...,n) commit. W_i saved for valid_n R_1 validated with W_i , T_1 aborted

$$h = R_1 R_2 W_2 \dots R_n W_n W_1$$
switch to ______

Distributed DBMS

Optimistic CC Performance. 6

Optimistic Validation (first modification)

 T_i 's can commit, W_i and R_i saved from validation W_1 validates with W_i and R_i

T₁ aborted if validation fails (second modification)

 $h = R_1 R_2 W_2 R_3 W_3 \dots R_n W_n W_1$

Switch R₁ to the right after W₂, W₃...W_n Switch W₁ to the left before R_n, R_{n-1}...R₂ If R₁ and W₁ are adjacent, T₁ is successful $h \equiv R_1 R_2 W_2 ... R_k W_k ... R_n W_n W_1$

 $\equiv R_2 W_2 \dots R_1 W_1 R_k W_k \dots R_n W_n$