
Distributed DBMS Page 10-12. 1© 1998 M. Tamer Özsu & Patrick Valduriez

Outline

Introduction

Background

Distributed DBMS Architecture

Distributed Database Design

Distributed Query Processing

Distributed Transaction Management

Deadlocks

Building Distributed Database Systems (RAID)

Mobile Database Systems

Privacy, Trust, and Authentication

Peer to Peer Systems

Distributed DBMS Page 10-12. 2© 1998 M. Tamer Özsu & Patrick Valduriez

Useful References

Textbook Principles of Distributed Database
Systems,

Chapter 11.6

J. Gray, R. Lorie, G. Putzolu, I. Traiger,
Granularity of Locks and Degrees of
Consistency in a Shared Data Base, Modelling
in Data Base Management Systems, G.M.
Nijssen (ed). North Holland Publishing
Company, 1976.

http://www.cs.purdue.edu/homes/bb/cs542-16Spr/granularity-locks.pdf

Distributed DBMS Page 10-12. 3© 1998 M. Tamer Özsu & Patrick Valduriez

A transaction is deadlocked if it is blocked and will

remain blocked until there is intervention.

Locking-based CC algorithms may cause deadlocks.

TO-based algorithms that involve waiting may cause

deadlocks.

Wait-for graph

If transaction Ti waits for another transaction Tj to release

a lock on an entity, then Ti → Tj in WFG.

Deadlock

Ti
Tj

Distributed DBMS Page 10-12. 4© 1998 M. Tamer Özsu & Patrick Valduriez

Assume T1 and T2 run at site 1, T3 and T4 run at site 2.
Also assume T3 waits for a lock held by T4 which waits
for a lock held by T1 which waits for a lock held by T2

which, in turn, waits for a lock held by T3.

Local WFG

Global WFG

Local versus Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3

Distributed DBMS Page 10-12. 5© 1998 M. Tamer Özsu & Patrick Valduriez

Ignore

Let the application programmer deal with it, or
restart the system

Prevention

Guaranteeing that deadlocks can never occur in
the first place. Check transaction when it is
initiated. Requires no run time support.

Avoidance

Detecting potential deadlocks in advance and
taking action to insure that deadlock will not
occur. Requires run time support.

Detection and Recovery

Allowing deadlocks to form and then finding and
breaking them. As in the avoidance scheme, this
requires run time support.

Deadlock Management

Distributed DBMS Page 10-12. 6© 1998 M. Tamer Özsu & Patrick Valduriez

All resources which may be needed by a transaction
must be predeclared.

The system must guarantee that none of the resources will
be needed by an ongoing transaction.

Resources must only be reserved, but not necessarily
allocated a priori

Unsuitability of the scheme in database environment

Suitable for systems that have no provisions for undoing
processes.

Evaluation:

– Reduced concurrency due to preallocation

– Evaluating whether an allocation is safe leads to added
overhead.

– Difficult to determine (partial order)

+ No transaction rollback or restart is involved.

Deadlock Prevention

Distributed DBMS Page 10-12. 7© 1998 M. Tamer Özsu & Patrick Valduriez

Transactions are not required to request

resources a priori.

Transactions are allowed to proceed unless a

requested resource is unavailable.

In case of conflict, transactions may be

allowed to wait for a fixed time interval.

Order either the data items or the sites and

always request locks in that order.

More attractive than prevention in a

database environment.

Deadlock Avoidance

Distributed DBMS Page 10-12. 8© 1998 M. Tamer Özsu & Patrick Valduriez

WAIT-DIE Rule: If Ti requests a lock on a data item

which is already locked by Tj, then Ti is permitted to

wait iff ts(Ti)<ts(Tj). If ts(Ti)>ts(Tj), then Ti is aborted

and restarted with the same timestamp.

if ts(Ti)<ts(Tj) then Ti waits else Ti dies

non-preemptive: Ti never preempts Tj

prefers younger transactions

WOUND-WAIT Rule: If Ti requests a lock on a data

item which is already locked by Tj , then Ti is

permitted to wait iff ts(Ti)>ts(Tj). If ts(Ti)<ts(Tj), then

Tj is aborted and the lock is granted to Ti.

if ts(Ti)<ts(Tj) then Tj is wounded else Ti waits

preemptive: Ti preempts Tj if it is younger

prefers older transactions

Deadlock Avoidance –
Wait-Die & Wound-Wait Algorithms

Distributed DBMS Page 10-12. 9© 1998 M. Tamer Özsu & Patrick Valduriez

Transactions are allowed to wait freely.

Wait-for graphs and cycles.

Topologies for deadlock detection

algorithms

Centralized

Distributed

Hierarchical

Deadlock Detection

Distributed DBMS Page 10-12. 10© 1998 M. Tamer Özsu & Patrick Valduriez

One site is designated as the deadlock detector for

the system. Each scheduler periodically sends its

local WFG to the central site which merges them to

a global WFG to determine cycles.

How often to transmit?

Too often higher communication cost but lower delays

due to undetected deadlocks

Too late higher delays due to deadlocks, but lower

communication cost

Would be a reasonable choice if the concurrency

control algorithm is also centralized.

Proposed for Distributed INGRES

Centralized Deadlock Detection

Distributed DBMS Page 10-12. 11© 1998 M. Tamer Özsu & Patrick Valduriez

Build a hierarchy of detectors

Hierarchical Deadlock Detection

Site 1 Site 2 Site 3 Site 4

DD21 DD22 DD23 DD24

DD11 DD14

DDox

Distributed DBMS Page 10-12. 12© 1998 M. Tamer Özsu & Patrick Valduriez

Sites cooperate in detection of deadlocks.

One example:

The local WFGs are formed at each site and passed on to

other sites. Each local WFG is modified as follows:

Since each site receives the potential deadlock cycles from

other sites, these edges are added to the local WFGs

The edges in the local WFG which show that local

transactions are waiting for transactions at other sites are

joined with edges in the local WFGs which show that remote

transactions are waiting for local ones.

Each local deadlock detector:

looks for a cycle that does not involve the external edge. If it

exists, there is a local deadlock which can be handled locally.

looks for a cycle involving the external edge. If it exists, it

indicates a potential global deadlock. Pass on the information

to the next site.

Distributed Deadlock Detection

