
Distributed DBMS Formal-Concurrency-Control. 1

General Comments

• Information needed by Concurrency Controllers
– Locks on database objects (System-R, Ingres,

Rosenkrantz…)

–

– Time stamps on transactions (Kung, SDD-1, Schlageter,
Bhargava…)

• Observations

– Time stamps mechanisms more fundamental than locking

– Time stamps carry more information

– Checking locks costs less than checking time stamps

Time stamps on database objects (Thomas, Reed)

Distributed DBMS Formal-Concurrency-Control. 2

• When to synchronize
– First access to an object (Locking, pessimistic validation)

– At each access (question of granularity)

– After all accesses and before commitment (optimistic
validation)

• Fundamental notions
– Rollback

– Identification of useless transactions

– Delaying commit point

– Semantics of transactions

General Comments (cont.)

Distributed DBMS Formal-Concurrency-Control. 3

Definition

A dynamic conflict graph (DCG) for a history H = <D, T, , > is a
diagraph <V,E> where V is the set of vertices representing T, the
set of transactions; E is the set of edges where <I,J> is an edge if
and only if there exist conflicting atomic operations j, j for
which (1)< (j).

Lemma: The DCG of a serial history is acyclic.

Theorem: A history is in DCP if and only if the DCG of H is acyclic.

Theorem: In a two-step transaction model (all reads for a transaction
precede all writes) whenever there is a transaction rollback in the
optimistic approach due to failure in validation. There will be a
deadlock in the locking approach and will cause a transaction
rollback.

Distributed DBMS Formal-Concurrency-Control. 4

Basic Terms

• Database

• Database entity

• Distributed
database

• Program

• Transaction, read
set, write set

• Actions

• Atomic

• Concurrent
processing

• Conflict

• Consistency

• Mutual consistency

• History

• Serializability

• Serial history

Distributed DBMS Formal-Concurrency-Control. 5

Basic Terms (cont.)

• Serializable history

• Concurrency control

• Centralized control

• Distributed control

• Scheduler

• Locking

• Read lock, write lock

• Two phase locking,
lock point

• Live lock

• Dead lock

• Conflict graph

• Timestamp

• Version number

• Rollback

• Validation

• Commit

Distributed DBMS Formal-Concurrency-Control. 6

• Optimistic approach

• Majority voting

• Transaction class

• Crash

• Node failure

• Network partition

• Log

• Redo log

• Undo log

• Recovery

• Abort

Basic Terms (cont.)

Distributed DBMS Formal-Concurrency-Control. 7

Concurrency Control

Interleaved execution of a set of transactions that satisfies given
consistency constraints.

Concurrency Control Mechanisms:

Locking (two-phase locking)

Conflict graphs (SDD-1)

Knowledge about incoming transactions or transaction typing

Optimistic

Requires validation (backout and starvation)

Some Examples:

Centralized locking

Distributed locking

Majority voting

Local and centralized validation

Distributed DBMS Formal-Concurrency-Control. 8

Locking

Problem

• Maintenance

• Deadlock

• Pessimistic

• Necessary in worst case

Advantage

• Do not have to worry
about type of consistency
constraint

Centralized Locking

Problem

• Crash of central

• Node

• Congestion/less parallelism

Advantage

• Simple and requires low
overhead

Distributed Locking

Problem

• Lock management (not
possible in some cases)

Advantage

• More concurrency

Distributed DBMS Formal-Concurrency-Control. 9

Locking Protocols

1. Maintenance

2. Deadlock and livelock

3. Congested (often accessed) node

4. Crashes and release of locks

5. Pessimistic

6. Necessary in the worst case

Distributed DBMS Formal-Concurrency-Control. 10

Conflict-Graph Analysis

Needs knowledge about incoming transactions
(access patterns) not possible in many cases.

Optimistic

• Back out

• Validation

• Track hole lists

Distributed DBMS Formal-Concurrency-Control. 11

Conflict

Two atomic opns i and j conflict if:

1. They belong to different transactions.

2. Both access the same entity.

3. At least one of them is a WRITE OPN.

R-W conflict

W-R conflict

W-W conflict

Conflict preserving exchange in a history

1 i 2 2

 1 1 1 2 (if 1, 2 do not conflict)

Distributed DBMS Formal-Concurrency-Control. 12

Definition: A Dynamic Conflict Graph (DCG) for a history

H = <D,T,,> is a diagraph <V,E> where V is the set of vertices

representing T, the set of transactions; E is the set of edges where

<I,J> is an edge if and only if there exist conflicting atomic operations

J, J for which (I) < (J).

Lemma: The DCG of a serial history is acyclic.

Theorem: A history is in DCP if an only if the DCG of H is acyclic.

Distributed DBMS Formal-Concurrency-Control. 13

• Restriction on the Read-Write sets

S(Wi)  S(Ri) for i = 1….

 SR  DSR

SSR  O

• Multi-step transactions

• Interpreted transactions

• Distributed databases

Distributed DBMS Formal-Concurrency-Control. 14

Start

Read,

Compute,

And

Write Local

Semi-Commit

On

Initiating

Site

Integrity

Control

&

Local

Validation

Integrity

Control

&

Global

Validation

Commit,

Global Write

Finish

Fail

Success

Fail

Success

Figure: States of a Transaction

Distributed DBMS Formal-Concurrency-Control. 15

Committed Transactions

Semi-Committed Transactions

Transactions Still Reading/Computing

Validating

Transactions

Figure: Transaction Types on a Site

Distributed DBMS Formal-Concurrency-Control. 16

S(RI)

S(WI)

S(RJ)

S(WJ)

TI TJ

S(RI)  S(WJ)  ø AND

(RI) < (WJ)

 TI → TJ

Locking

RI RJ WI WJ

Optimistic

RI RJ WI WJ

RI RJ WJ WI

Distributed DBMS Formal-Concurrency-Control. 17

Distributed DBMS Formal-Concurrency-Control. 18

S

H

SR

DSR

O
2PL

SSR

Degree of concurrency provided by different classes of histories

Distributed DBMS Formal-Concurrency-Control. 19

Distributed Database Systems

• Computer network (communication system)

• Database systems

• Users (programs, transactions)

Examples: Issues:

Distributed INGRES Correct processing (serializability)

SDD-1 Consistency of databases (integrity,

commitment)

System R* Resiliency to failures

SIRIUS – DELTA Performance (response time, throughput)

RAID Communication delay

Distributed DBMS Formal-Concurrency-Control. 20

Computer Networks: Communications:

Ethernet UDP/IP

ATM TCP/IP

FDDI ISO

ARPANET

BITNET

NSF NET

…

Database Systems: User Interaction:

INGRES SOL

DB2 Transaction

RAID

Distributed DBMS Formal-Concurrency-Control. 21

Definition 1: A history is a quadruple h = (n, , M, S) where

n is a positive integer,

 is a permutation of the set

n = {R1, W1, R2, W2,…,R, W}

equivalently a one-to-one function

:  -> {1,2,-----,2n}

that (Ri) <  (Wi) for i = 1,2,--n,

M is a finite set of variables representing physical data items,

S is a function mapping n to 2M

Set of all histories is denoted by M.

Definition 2: A transaction Ti is a pair (Ri, Wi). A transaction is a single
execution of a program. This program may be a simple query
statement expressed in a query language.

Definition 3: Read set of Ti is denoted by S (Ri) and Write set of Ti is
denoted by S(Wi).

Distributed DBMS Formal-Concurrency-Control. 22

Definition 4: A history h = (n, , M, S) is serial if (Wi) = (Ri) + 1 for all
i = 1,2,---n. In other words, a history is serial if Ri immediately
precedes Wi in it for I = 1,2---n.

Definition 5: A history is serializable if there is some serial history hs such
that the effect of the execution of h is equivalent to hs. Note
serializability requires only that there exists some serial order
equivalent to the actual interleaved execution history. There
may in fact be several such equivalent serial orderings.

Definition 6: A history h is strongly serializable if in hs the following
conditions hold true:

• (Wi) = (Ri) + 1

• (Ri + 1) = (Wi) + 1
If ti + 1 is the next transaction that arrived and obtained the next
time-stamp after Ti. In strongly serializable history, the following
constraint must hold “If a transaction Ti is issued before a
transaction Tj, then the total effect on the database should be
equivalent to the effect that Ti was executed before Tj.

Note if Ti and Tj are independent, e.g., {S(Ri)  S(Wi)}  {S(Rj) U S(Wj)} = ø
then the effect of execution TiTj or TjTi will be the same.

Distributed DBMS Formal-Concurrency-Control. 23

history

Live transaction (set can be found in O(n · |V|).

Two histories are equivalent () if they have the same set of live

transactions.

Equivalence can be determined O(n · |V|).

Theorem: Testing whether a history h is serializable is NP-complete

even if h has no dead transactions.

- Polygraph: Pair of arcs between nodes

- Satisfiability: Problem of Boolean formulas in conjuctive normal forms

with two-/three literals

(SAT)

(Non-circular)

ℎ = 𝑛, 𝜋, 𝑉1𝑆
തℎ = 𝑛 + 2, ത𝜋, 𝑉1 ҧ𝑆

ℎ = 𝑇𝑛+1 ∙ ℎ ∙ 𝑇𝑛+2

Distributed DBMS Formal-Concurrency-Control. 24

Concentration of histories

1 1 1 1 1

2 2 2 2 2

2 1 2 1

1

2

1 1 1

2 1 1

1 2 1 1 2 2

2 for

i i

i i n

h (n , ,V ,S)

h (n , ,V ,S)

h , h (n n , ,V ,P)

(w) (w) i n

(w) (w) n i n

h R W

h R W

h h R W R W

−

= 

= 

= + 

 =  

 =  + 

=

=

=

same true for Ri

Distributed DBMS Formal-Concurrency-Control. 25

Two-Phase Locking

Distributed DBMS Formal-Concurrency-Control. 26

Definition G2PL

Distributed DBMS Formal-Concurrency-Control. 27

Definition L2PL

Distributed DBMS Formal-Concurrency-Control. 28

All the classes G2PL, L2PL, DCP, DSTO, and DSS are serializable and

form a hierarchy based on the degree of concurrency.

SR is the set of all serializable histories.

