
Distributed DBMS Page 10-12. 1© 1998 M. Tamer Özsu & Patrick Valduriez

Outline

Introduction

Background

Distributed DBMS Architecture

Distributed Database Design

Distributed Query Processing

Distributed Transaction Management

Concurrency Control Algorithms

Building Distributed Database Systems (RAID)

Mobile Database Systems

Privacy, Trust, and Authentication

Peer to Peer Systems

Distributed DBMS Page 10-12. 2© 1998 M. Tamer Özsu & Patrick Valduriez

Useful References

Textbook Principles of Distributed Database
Systems,

Chapter 11.3-11.5

Distributed DBMS Page 10-12. 3© 1998 M. Tamer Özsu & Patrick Valduriez

Concurrency Control
Algorithms

Pessimistic

Two-Phase Locking-based (2PL)

Centralized (primary site) 2PL

Primary copy 2PL

Distributed 2PL

Timestamp Ordering (TO)

Basic TO

Multiversion TO

Conservative TO

Hybrid

Optimistic

Locking-based

Timestamp ordering-based

Distributed DBMS Page 10-12. 4© 1998 M. Tamer Özsu & Patrick Valduriez

Locking-Based Algorithms

Transactions indicate their intentions by
requesting locks from the scheduler (called lock
manager).

Locks are either read lock (rl) [also called shared
lock] or write lock (wl) [also called exclusive lock]

Read locks and write locks conflict (because Read
and Write operations are incompatible

rl wl

rl yes no

wl no no

Locking works nicely to allow concurrent
processing of transactions.

Distributed DBMS Page 10-12. 5© 1998 M. Tamer Özsu & Patrick Valduriez

Two-Phase Locking (2PL)

A Transaction locks an object before using it.

When an object is locked by another transaction,
the requesting transaction must wait.

When a transaction releases a lock, it may not
request another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o
. o

f lo
c
k
s

Distributed DBMS Page 10-12. 6© 1998 M. Tamer Özsu & Patrick Valduriez

Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction

duration
period of

data item

use

Distributed DBMS Page 10-12. 7© 1998 M. Tamer Özsu & Patrick Valduriez

Testing for Serializability

Consider transactions T1, T2, …, Tk

Create a directed graph (called a conflict graph),
whose nodes are transactions. Consider a history
of transactions.

If T1 unlocks an item and T2 locks it afterwards,
draw an edge from T1 to T2 implying T1 must
precede T2 in any serial history

T1→T2

Repeat this for all unlock and lock actions for
different transactions.

If graph has a cycle, the history is not serializable.

If graph is a cyclic, a topological sorting will give the
serial history.

Distributed DBMS Page 10-12. 8© 1998 M. Tamer Özsu & Patrick Valduriez

Example

T1: Lock X

T1: Unlock X

T2: Lock X

T2: Lock Y

T2: Unlock X

T2: Unlock Y

T3: Lock Y

T3: Unlock Y

T1→T2

T2→T3

T
2

T
1

T
3

Distributed DBMS Page 10-12. 9© 1998 M. Tamer Özsu & Patrick Valduriez

Theorem

Two phase locking is a sufficient condition to ensure
serializablility.

Proof: By contradiction.

If history is not serializable, a cycle must exist in the
conflict graph. This means the existence of a path
such as

T1→T2→T3 … Tk → T1.

This implies T1 unlocked before T2 and after Tk.

T1 requested a lock again. This violates the condition
of two phase locking.

Distributed DBMS Page 10-12. 10© 1998 M. Tamer Özsu & Patrick Valduriez

2PL from Jeff Ullman's book

Distributed DBMS Page 10-12. 11© 1998 M. Tamer Özsu & Patrick Valduriez

Centralized 2PL

There is only one 2PL scheduler in the distributed system.

Lock requests are issued to the central scheduler.

Data Processors at

participating sites Coordinating TM Central Site LM

Distributed DBMS Page 10-12. 12© 1998 M. Tamer Özsu & Patrick Valduriez

Distributed 2PL

2PL schedulers are placed at each site. Each

scheduler handles lock requests for data at that site.

A transaction may read any of the replicated copies

of item x, by obtaining a read lock on one of the

copies of x. Writing into x requires obtaining write

locks for all copies of x.

Distributed DBMS Page 10-12. 13© 1998 M. Tamer Özsu & Patrick Valduriez

Distributed 2PL Execution

Coordinating TM Participating LMs Participating DPs

Distributed DBMS Page 10-12. 14© 1998 M. Tamer Özsu & Patrick Valduriez

Timestamp Ordering

Transaction (Ti) is assigned a globally unique timestamp ts(Ti).

Transaction manager attaches the timestamp to all operations issued

by the transaction.

Each data item is assigned a write timestamp (wts) and a read

timestamp (rts):
rts(x) = largest timestamp of any read on x

wts(x) = largest timestamp of any read on x

Conflicting operations are resolved by timestamp order.

Basic T/O:

for Ri(x) for Wi(x)

if ts(Ti) < wts(x) if ts(Ti) < rts(x) and ts(Ti) < wts(x)

then reject Ri(x) then reject Wi(x)

else accept Ri(x) else accept Wi(x)

rts(x) ts(Ti) wts(x) ts(Ti)

Distributed DBMS Page 10-12. 15© 1998 M. Tamer Özsu & Patrick Valduriez

Basic timestamp ordering tries to
execute an operation as soon as it
receives it

progressive

too many restarts since there is no delaying

Conservative timestamping delays each
operation until there is an assurance
that it will not be restarted

Assurance?

No other operation with a smaller
timestamp can arrive at the scheduler

Note that the delay may result in the
formation of deadlocks

Conservative Timestamp
Ordering

Distributed DBMS Page 10-12. 16© 1998 M. Tamer Özsu & Patrick Valduriez

Multiversion Timestamp Ordering

Do not modify the values in the database,

create new values.

A Ri(x) is translated into a read on one version

of x.

Find a version of x (say xv) such that ts(xv) is the

largest timestamp less than ts(Ti).

A Wi(x) is translated into Wi(xw) and accepted if

the scheduler has not yet processed any Rj(xr)

such that

ts(Ti) < ts(xr) < ts(Tj)

Distributed DBMS Page 10-12. 17© 1998 M. Tamer Özsu & Patrick Valduriez

Optimistic Concurrency Control
Algorithms

Pessimistic execution

Optimistic execution

Validate Read Compute Write

ValidateRead Compute Write

