
Distributed DBMS Page 10-12. 1© 1998 M. Tamer Özsu & Patrick Valduriez

Outline

Introduction

Background

Distributed DBMS Architecture

Distributed Database Design

Distributed Query Processing

Distributed Transaction Management

Transaction Concepts

Building Distributed Database Systems (RAID)

Mobile Database Systems

Privacy, Trust, and Authentication

Peer to Peer Systems

Distributed DBMS Page 10-12. 2© 1998 M. Tamer Özsu & Patrick Valduriez

Useful References

C. Papadimitriou, The serializability of concurrent
database updates, Journal of the ACM, 26(4), 1979.

S. B. Davidson, Optimism and consistency in
partitioned distributed database systems, ACM
Transactions on Database Systems 9(3): 456-481, 1984.

B. Bhargava and C. Hua. A Causal Model for Analyzing
Distributed Concurrency Control Algorithms, IEEE
Transactions on Software Engineering, SE-9, 470-486,
1983.

Textbook Principles of Distributed Database Systems,

Chapter 10.1, 11.1

Distributed DBMS Page 10-12. 3© 1998 M. Tamer Özsu & Patrick Valduriez

Transaction

A transaction is a collection of actions that make
consistent transformations of system states while
preserving system consistency.

concurrency transparency

failure transparency

Database in a

consistent

state

Database may be

temporarily in an

inconsistent state

during execution

Begin

Transaction

End

Transaction

Execution of

Transaction

Database in a

consistent

state

Distributed DBMS Page 10-12. 4© 1998 M. Tamer Özsu & Patrick Valduriez

Definition 1: A history is a quadruple h = (n, , M, S) where

n is a positive integer,

 is a permutation of the set

n = {R1, W1, R2, W2, …,Rn, Wn}

equivalently a one-to-one function

: n -> {1, 2, …, 2n}

that (Ri) < (Wi) for i = 1,2, …, n

M is a finite set of variables representing physical data items,

S is a function mapping n to 2M

Set of all histories is denoted by M.

Definition 2: A transaction Ti is a pair (Ri, Wi). A transaction is a single execution of a
program. This program may be a simple query statement expressed in a
query language.

Definition 3: Read set of Ti is denoted by S (Ri) and Write set of Ti is denoted by S(Wi).

Formal Definitions and Models

Distributed DBMS Page 10-12. 5© 1998 M. Tamer Özsu & Patrick Valduriez

Definition 4: A history h = (n, , M, S) is serial if (Wi) = (Ri) + 1 for all i = 1,2, …, n.

In other words, a history is serial if Ri immediately precedes Wi for i = 1,2, …, n.

Definition 5: A history is serializable if there is some serial history hs such that the effect of
the execution of h is equivalent to hs. Note serializability requires only that
there exists some serial order equivalent to the actual interleaved execution
history. There may in fact be several such equivalent serial orderings.

Definition 6: A history h is strongly serializable if in hs the following conditions hold true:

a) (Wi) = (Ri) + 1

b) (R (i + 1)) = (Wi) + 1
If t(i + 1) is the next transaction that arrived and obtained the next
time-stamp after Ti. In strongly serializable history, the following constraint
must hold “If a transaction Ti is issued before a transaction Tj, then the total
effect on the database should be equivalent to the effect that Ti was executed
before Tj.

Note if Ti and Tj are independent, e.g., {S(Ri) U S(Wi)} {S(Rj) U S(Wj)} = ø
then the effect of execution TiTj or TjTi will be the same.

Formal Definitions and Models

Distributed DBMS Page 10-12. 6© 1998 M. Tamer Özsu & Patrick Valduriez

history

Live transaction (set can be found in O(n · |V|).

Two histories are equivalent () if they have the same set of live

transactions.

Equivalence can be determined O(n · |V|).

Theorem: Testing whether a history h is serializable is NP-complete

even if h has no dead transactions.

- Polygraph: Pair of arcs between nodes

- Satisfiability: Problem of Boolean formulas in conjuctive normal forms

with two-/three literals

(SAT)

(Non-circular)

Formal Definitions and Models

ℎ = 𝑛, 𝜋, 𝑉1𝑆

തℎ = 𝑛 + 2, ത𝜋, 𝑉1 ҧ𝑆

ℎ = 𝑇𝑛+1 ∙ ℎ ∙ 𝑇𝑛+2

Distributed DBMS Page 10-12. 7© 1998 M. Tamer Özsu & Patrick Valduriez

Concatenation of histories:

1 1 1 1 1

2 2 2 2 2

2 1 2 1

1

2

1 1 1

2 1 1

1 2 1 1 2 2

2 for

i i

i i n

h (n , ,V ,S)

h (n , ,V ,S)

h, h (n n , ,V ,P)

(w) (w) i n

(w) (w) n i n

h RW

h RW

h h RW RW

−

=

=

= +

 =

 = +

=

=

=

same true for Ri

Distributed DBMS Page 10-12. 8© 1998 M. Tamer Özsu & Patrick Valduriez

Two-phase locking:

Distributed DBMS Page 10-12. 9© 1998 M. Tamer Özsu & Patrick Valduriez

The Class DSR

Distributed DBMS Page 10-12. 10© 1998 M. Tamer Özsu & Patrick Valduriez

Transaction Example –
A Simple SQL Query

Transaction BUDGET_UPDATE

begin

EXEC SQL UPDATE PROJ

SET BUDGET = BUDGET1.1

WHERE PNAME = “CAD/CAM”

end.

Distributed DBMS Page 10-12. 11© 1998 M. Tamer Özsu & Patrick Valduriez

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)

CUST(CNAME, ADDR, BAL)

FC(FNO, DATE, CNAME,SPECIAL)

Distributed DBMS Page 10-12. 12© 1998 M. Tamer Özsu & Patrick Valduriez

Example Transaction – SQL Version

Begin_transaction Reservation
begin

input(flight_no, date, customer_name);

EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

output(“reservation completed”)
end . {Reservation}

Distributed DBMS Page 10-12. 13© 1998 M. Tamer Özsu & Patrick Valduriez

Termination of Transactions
Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight_no AND DATE = date;

if temp1 = temp2 then
output(“no free seats”);
Abort

else
EXEC SQL UPDATEFLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

Commit
output(“reservation completed”)

endif
end . {Reservation}

Distributed DBMS Page 10-12. 14© 1998 M. Tamer Özsu & Patrick Valduriez

Example Transaction –
Reads & Writes

Begin_transaction Reservation

begin

input(flight_no, date, customer_name);

temp Read(flight_no(date).stsold);

if temp = flight(date).cap then

begin

output(“no free seats”);

Abort

end

else begin

Write(flight(date).stsold, temp + 1);

Write(flight(date).cname, customer_name);

Write(flight(date).special, null);

Commit;

output(“reservation completed”)

end

end. {Reservation}

Distributed DBMS Page 10-12. 15© 1998 M. Tamer Özsu & Patrick Valduriez

Characterization

Ti

Transaction i

Read set (RS)

The set of data items that are read by a transaction

Write set (WS)

The set of data items whose values are changed by this
transaction

Base set (BS)

RS WS

Distributed DBMS Page 10-12. 16© 1998 M. Tamer Özsu & Patrick Valduriez

Let

Oij(x) be some operation Oj of transaction Ti operating on

entity x, where Oj {read,write} and Oj is atomic

OSi = j Oij

Ni {abort,commit}

Transaction Ti is a partial order Ti = {i, <i} where

i = OSi {Ni }

For any two operations Oij , Oik OSi , if Oij = R(x)

and Oik = W(x) for any data item x, then either

Oij <i Oik or Oik <i Oij

Oij OSi, Oij <i Ni

Formalization Based on
Textbook

Distributed DBMS Page 10-12. 17© 1998 M. Tamer Özsu & Patrick Valduriez

Consider a transaction T:

Read(x)

Read(y)

x x + y

Write(x)

Commit

Then

 = {R(x), R(y), W(x), C}

< = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)}

Example

Distributed DBMS Page 10-12. 18© 1998 M. Tamer Özsu & Patrick Valduriez

Assume

< = {(R(x),W(x)), (R(y),W(x)), (R(x), C), (R(y), C), (W(x), C)}

DAG Representation

R(x)

C

R(y)

W(x)

