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Abstract-Many distributed systems are now being developed to
provide users with convenient access to data via some kind of com-
munications network. In many cases it is desirable to keep the system
functioning even when it is partitioned by network failures. A serious
problem in this context is how one can support redundant copies of
resources such as files (for the sake of reliability) while simultaneously
monitoring their mutual consistency (the equality of multiple copies).
This is difficult since network faiures can lead to inconsistency, and
disrupt attempts at maintaining consistency. In fact, even the detection
of inconsistent copies is a nontrivial problem. Naive methods either
1) compare the multiple copies entirely or 2) perform simple tests
which will diagnose some consistent copies as inconsistent. Here a new
approach, involving version vectors and origin points, is presented and
shown to detect single file, multiple copy mutual inconsistency effec-
tively. The approach has been used in the design of LOCUS, a local
network operating system at UCLA.

Index Terms-Availability, distributed systems, mutual consistency,
network failures, network partitioning, replicated data.

I. INTRODUCTION
NUMBER of operating systems have been developed

A recently in which user files are distributed almost with-
out restriction around a network. These systems range from
network operating systems (NOS's) such as RSEXEC, NSW,
ELAN [17], and DCS [4], to distributed database manage-
ment systems (DDBMS's) like SDD-1 [5], [13] and INGRES
[15]. These- systems emphasize the uniform interfacing of
multiple file systems. Files are to be accessible throughout the
network, without regard to the accessor or file location.
Unfortunately, a file can be made inaccessible by network

failures or crashes of the site where the file is located, so users
may obtain randomly fluctuating views of the state of the
network. To alleviate this problem, many of the systems
propose to keep duplicate copies of files as a reliability mech-
anism. This solution engenders another problem. As soon as
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multiple copies of a file exist, the system must ensure the
mutual consistency of these copies: when one copy of the file
is modified, all must be modified correspondingly before an
independent access can take place.
Much has been written about the problem of maintaining

consistency in distributed systems, ranging from intemal
consistency methods (ways to keep a single copy of a resource
looking consistent to multiple processes attempting to access it
concurrently) to various ingenious updating algorithms which
ensure mutual consistency [1], [21, [61, [8], [161, etc. We
concern ourselves here with mutual consistency in 'the face of
network partitioning, i.e., the situation where various sites in
the network cannot communicate with each other for some
length of time due to network failures or site crashes. This is a
very real problem in most networks. For example, even in the
Ethemet [101, gateways can be inoperative for significant
lengths of time, while the Ether segments they normally
connect operate correctly.
Network partitioning can completely destroy mutual con-

sistency in the worst case, and this fact has led to a certain
amount of restrictiveness, vagueness, and even nervousness in
past discussions, of how it may be handled. In some environ-
ments it is desirable or necessary to permit users to continue
modifying resources such as files when the network is parti-
tioned. A network operating system would be a good example.
In such environments mutual inconsistency becomes a fact of
life which must be dealt with. This paper shows that in this
case mutual inconsistency can be efficiently detected through
the use of what we call version vectors and origin points.
Once inconsistency is detected, some reconciliation steps are
needed. In those cases where the semantics of the operations
involved are straightforward, automatic reconciliation may be
possible.

It is worth reflecting for a moment on the worth of keeping
redundant copies. Although redundancy increases reliability
and availability, and in most cases improves access time, it
leads to mutual consistency problems when network partitions
occur. When considenng whether to store a file redundantly
one must weigh the advantage of greater availability, the
probability of a mutual inconsistency, and the ramifications of
such an inconsistency. In many NOS environments, file
update rates are moderate and "conflicts" would occur only
rarely. However, in transaction-oriented DDBMS's update
rates may be high, semantics of operations complex, and con-
sistency extremely important.
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The results of this paper may be nevertheless useful in any
system where mutual inconsistency, presumably due to net-
work partitioning, is tolerated. Since our application (LOCUS
[121, [14], [181) is concerned with files, we will restrict our

discussion henceforth to mutual consistency of files rather
than of general resources. It is clear, however, that all results
here may be applied to more general contexts.
The paper is organized as follows. Section II briefly surveys

previous research on the partitioning problem. Section III
then lays the formal groundwork on inconsistency detection.
An accurate and easily implemented technique for detecting
mutual inconsistency is developed. Section IV points out
bnrefly what must be done in the reconciliation of inconsistent
copies. Although the reconciliation of these conflicts must
necessarily be left to the user in some cases, it is also demon-
strated that for certain kinds of files (mailboxes, directories)
the reconciliation may be performed automatically by the
system. Finally, conclusions are offered in Section V.

II. PREVIOUS WORK ON PARTITIONING

Network partitioning is the situation occurring when a

network is broken into logically separate components because
of site or link failures. There are many partitioning-related
issues which must be addressed in the design of distributed file
systems. These issues include the relative importance of avail-
ability over mutual consistency of files, what occurs when one

finds a file has become inaccessible or out of date, and so

forth.
To our knowledge, however, partitioning has not been

investigated very thoroughly. It has been mentioned in several
proposed methods for updating files in distributed systems.
The most typical response has been to enforce consistency by
permitting files to be accessed only in one partition. Unfortu-
nately, effective implementation of this policy can often result
in the files being accessible in zero partitions. We outline
several existing proposals below.

Voting: In voting-based systems such as proposed by
Thomas [16] and Menasce et al. [9], mutual consistency is
guaranteed at the expense of availability. Users desiring to
modify a file must lock it by obtaining majority assent in a

vote. Since there can be at most one partition containing a

majority of the sites, any file will be accessible in at most one

partition. Unfortunately, it is possible that there will be no

partition which contains a majority of the sites, so in this case

no updates could occur anywhere.
Tokens: Here it is assumed that. each file has a token asso-

ciated with it, which permits the bearer to modify the file.
Obtaining the token is another issue, reducible more or less to
locking. In this model only sites in the partition containing
the token are permitted to modify the file, so using tokens is
less restrictive than using voting. However, the problem of
recreating lost tokens is nontrivial. Moreover, when a partition
occurs, the token may happen to be resident in a rarely
used part of the network, effectively making the resource

unavailable.
Primary Sites: Originally discussed by Alsberg and Day [1],

this approach suggests that a single site be appointed respon-

sible for a file's activities. Upon partitioning (possibly involving
a primary site crash) either 1) a backup site is elected as the
new primary site and consistency becomes a possible problem
(the proposed approach), or else 2) the file becomes inacces-
sible in all but the primary site partition.
Reliable Networks and Optimism: Communications in the

SDD-1 system are based on the use of a "reliable network"
[51, which guarantees the eventual delivery of all messages
even if partitioning occurs. This delivery depends on "spoolers"
which save messages to be transmitted following a break in
communications. No guarantee of postpartition consistency
exists; as with the primary site model, assuming consistent
data afterwards is "optimistic" [6] in the sense that it may
work out, but quite possibly the work done in different parti-
tions will have to be detected in some way as inconsistent, and
then undone or coalesced somehow by users.
Disk Toting: In this approach, employed at Xerox Parc and

other installations where very intelligent terminals are linked
via a network, files are not stored redundantly but are kept on
removable storage media which can be carried around during
prolonged partitions. Thus, availability and consistency are
simultaneously achieved, but they are not achieved automati-
cally. This approach is clearly only useful for local networks
with compatible portable storage media at each site, where the
delay and inconvenience implied is acceptable.
Note that none of these approaches openly states either

1) how conflicting versions of files are detected or 2) what is
to be done when these conflicting files are detected upon
merge of several partitions. Either the possibility of conflict is
precluded by restricting file availability, or else any seemingly
conflicting files must be "rolled back" to the most recent
point at which there was no conflict. We show in the next
sections how, without restricted availability, we can ensure
correct propagation of updates in all cases except when
unavoidably conflicting file versions are found.

III. DETECTION OF MUTUAL INCONSISTENCY
One of the reasons the partition problem is so difficult is

that each partition can break into subpartitions and/or merge
with other partitions many times before the entire network
finally becomes connected. Indeed, it is possible that the net-
work will never be completely reconnected! However, all
messages sent might be delivered eventually through dynami-
cally changing partitions. In this unpleasant eventuality, how
can one hope to guarantee mutual consistency of files without
restricting file availability as in Section II? We now show how
inconsistencies or "conflicts" in the file system can be accu-
rately detected easily; this solves the major part of the prob-
lem. The next section will discuss how these inconsistencies
may then be reconciled.
We must formalize what we mean by a file "conflict" which

arises after a partition, and pinpoint the kinds of inconsistency
which partitioning can cause. This is important since, as men-
tioned above, many basic systems principles are invalidated in
systems subject to partitioning. First, the semantics of re-
naming, deletion, and even creation of redundantly stored files
or resources in systems which are partitioned are totally
unclear. Second, and worse, user-visible names of entities in
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the system may no longer be assumed to either uniquely
specify, or even correctly specify, the entities themselves.
After a partition, it may be discovered either that two files
with the same name have been independently created, or that
two independent updates to the same file have been made. In
general, names in one partition bear no relation to entities in
another. This is a principle reason for the difficulty in defining
the semantics of renaming and deletion of files. We need some
form of identification of system entities which is immune to
partitioning. We achieve this below by using "origin points"
and "version vectors."

A. File Conflict Types and Origin Points

A (network) partition is a set of sites which share a common,
synchronized, view of some set of files.
An origin point OP(f) of a file f is a system wide unique

identifier which is generated when f is created. It is an immu-
table attribute of f, although f's name is not (indeed f may
have multiple system wide names). Thus, no number of modi-
fications or renamings off will change OP(f).
An origin point for a file might be something like a (creation

time, creation site) pair. Now, just as names cannot uniquely
specify files, origin points cannot either, but they do give us

important information. Origin points tell us when two files
are based on a common file, but do not tell us whether the
two files are identical, since both could have been indepen-
dently modified.
There are two types of conflicts that we wish to consider:

name conflicts and version conflicts. A name conflict occurs

when two files with different origin points have the same

system wide name. In contrast, a version conflict occurs when
two versions of the same file (same origin point) have been
"incompatibly" modified. After some preliminaries, a ver-

sion conflict occurrence is defined more precisely below.
A modification id for a version of a file f is a system wide

unique identifier of a modification of f in some partition and
at some time relative to that partition. A modification history
for a version of a file f is the set of modification ids corre-

sponding to the modifications of that version of f which have
occurred. Two modification histories are compatible if they
are identical or if one is an initial history of the other, and
incompatible otherwise.
We define a version conflict to occur when two versions of

the same file f (same origin point) have incompatible modifica-
tion histories.
Note that when two versions of a file are not equal, their

modification histories are always different. However, it is
possible for two versions of a file to be equal yet have incom-
patible histories. For example, consider a file which contains
a bank account balance. If the balance is $20 million initially,
and both partitions decrease it to $0, then at partition merge

time although both versions are $0 a conflict will be indicated.
Further, if the semantics of "decrease" mean "withdraw," a

conflict intuitively should occur.

We claim that this definition of version conflict occurrence is
a reasonable one given that nothing is known about the file
content's semantics.

Clearly, name conflicts are easy to detect, Version conflicts,

however, are more difficult to detect efficiently. This latter
problem is addressed in the following sections: modifying,
deleting, or renaming the various copies.

B. The Problem of Version Conflict Detection

One might think that a simple timestamp scheme could be
used to detect possible version conflicts among files: every
time a file is modified in a partition, one marks it with an
update time and the previous update time. Upon partition
merge, one checks whether the timestamps on the copies
of a file are either all identical (no update on the file occurred),
or one copy of the files differs from the others by a single
update. Thus, no conflict is signaled when at most one update
is made, but in any more complex situation a version conflict
condition is raised. This approach is deficient in general, since
some nonconflict situations will be handled as conflicts.
Let us describe the version conflict problem in the following

way. Think of a partition for a file as a subset of sites in the
network in which all copies of the file may be maintained with
mutual consistency. Note that this definition is not strictly
tied to the physical details of network failure. Instead, here
partitions are defined relative to files and to the higher con-
cept of consistency. Although two sites with different versions
of a file f may be communicating for some time, we do not
consider the sites to be in a common partition relative to f
unless this difference in the two versions is resolved.
Definition: A partition graph G(f) for any file f is a directed

acycic graph (dag) which is labeled as follows. The source
node (and the sink node if it exists) is labeled with the names
of all sites in the network having copies of file f, and all other
nodes are labeled with a subset of this set of names. Each node
can only be labeled with site names appearing on its ancestor
nodes in the graph; conversely every site name on a node must
appear on exactly one of its descendants. In addition, a node
is marked with a "+" iff is modified one or more times within
the corresponding partition, and/or a version conflict had to
be reconciled.
We define this latter situation recursively as follows. Let P

be a node in G(f). A version conflict had to be reconciled at
P if there are backward paths from P to distinct nodes P1 and
P2 in G(f), such that

1) an update to f and/or a version conflict reconciliation for
f occurred at both P1 and P2, and

2) there is no ancestor node ofP having two backward paths
to both PI and P2.
Each node in G(f) thus corresponds to a partition for f,

a period of time during which the labeled sites maintain
"synchronized" information about f. All sites appearing in the
node label resolve any differences that might exist among their
copies of f. All connections in G(f) between nodes indicate
transitions of the network under partitions or merges.
The definition of conflict and reconciliation models the

notions of Section III-A for the following reasons. First, any
version conflict that is reconciled must have been generated
by two prior partitions P1 and P2, giving incompatible modifi-
cation sets. Second, and conversely, if a file modification of
some kind (update or reconciliation of updates) occurs inde-
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pendently in two partitions P1 and P2, a version conflict must
arise later whenever sites from these partitions inspect f. Con-
dition 2) guarantees that partition P is the first point at which
mutual consistency is again established.
An example of a partition graph is shown in Fig. 1. Here

there are four sites, A, B, C, and D, which support f. Multiple
partitions of these initially connected sites occur, so that at
first sites A and B can communicate, but are isolated from
sites C and D. Later A and B become isolated, as do C and D,
but B and C resume communication. Ultimately, all four sites
are reconnected in the bottom node of the graph. The file f
is modified first in the {A, B} partition, and subsequently in
both the {A} and {B, C} partitions. Note that this sequence of
modifications should not result in a version conflict in the BC
or BCD partitions since site B at all times has the latest version
of f; intelligent implementation of conflict detection should
realize this fact and avoid notifying sites C or D that their f
versions conflict with the current one. However, in the final
ABCD partition a conflict is (and should be) reconciled, since
in this case both versions off have incompatible modification
sets.
Now, as mentioned above it is simple to provide some

mechanism which detects all possible version conflicts; a
simple timestamp algorithm will be adequate. What is more
difficult is to find a mechanism which detects version conflicts
only when they are real. In Fig. 1, for example, even though
the first update may have been initiated by site A, this in-
formation is transitively passed by site B without conflict to
sites C andD.

C. Version Conflicts and Version Vectors
Many possible approaches exist for attacking the problem of

accurately detecting version conflicts. More elaborate time-
stamp schemes are a possibility, and there are a number of
methods based on "update log files" (sometimes referred to as
"journaling"). Unfortunately, these approaches suffer from
either or both 1) a need to maintain some kind of global
network time (in itself nontrivial [7]) and 2) a need to store
the entire partition graph-or its equivalent-someplace where
it may be accessed later on. Since the partition graph may get
arbitrarily large, the latter requirement is undesirable. We now
present instead a straightforward solution to this problem
based on a version numbering scheme encoding just the
necessary characteristics of the history graph.
One maintains a vector with each copy of each file. Within

every partition (unit of mutual consistency), these vectors
keep an update history for the file. As partitions merge, these
vectors for the possibly inconsistent files are compared. It
tums out that version conflicts are signalled when, and only
when, the vectors are "incompatible." We formalize this as
follows.
Definition: A version vector for a file f is a sequence of n

pairs, where n is the number of sites at Whichf is stored. The
ith pair (Si: vi) gives the index of the latest version offmade
at site Si. In other words, the ith vector entry counts the
number vi of updates to f made at site Si. We will use leters
A, B, C, * * * to designate site names, and vectors will be written
as <A:9, B: 7, C:22, D :3>.

+

+

Fig. 1. Partition graph G(f) for file stored redundantly at sites A, B,
C, D.

Definition: A set of version vectors are compatible when
one vector is at least as large as any other vector in every site
component for which they each have entries. A set of vectors
conflict when they are not compatible.
For example, the version vector <A: 1, B: 2, C:4, D:3>

dominates <A: 0, B: 2, C: 2, D:3> so the two are compatible;
and <A: 1, B:2, C:4, D:3> and<A: 1, B:2, C:3,D:4>con-
flict, but <A: 1, B:2, C:4, D:3>, <A: 1, B:2, C:3, D:4>,
and <A: 1, B: 2, C: 4, D:4> do not conflict, since the third
vector dominates the other two. In Fig. 2 version vectors are
given for f in every partition of Fig. 1. The vector <A: 2, B: 0,
C: 1, D :0> associated with the node labeled BCD, indicates
that f was modified twice at site A, once at site C, and nowhere
else. Note in particular that during the {A, B} partition, the
file is modified twice at site A. The final merge results in a
conflict.
We adopt the following usage of version vectors.
1) Each time an update to f originates at site Si, we incre-

ment the Sith component of f's version vector by one. The
vector is committed with the updated file.
2) File deletion and renaming are treated as file updates.

Deletion results in a version of the file of length zero, for
example; when all versions of a file are of length zero, infor-
mation on the file may be removed from the system.
3) When version conflicts are reconciled within a partition,

the Sith entry of the version vector for the reconciled file is
set to be the maximum of the Sith entries of all of its prede-
cessors, and in addition the site initiating the reconciliation
increments its entry. This ensures future compatibility with
any old versions of the file still remaining on the network.
4) When copies of a file are subsequently stored at new

sites, the version vector is augmented to include the new site
information. The definition of compatibility above still
applies in this case.
Point 4) states that the vectors are not required to be of

fixed length, but may grow (or shrink, actually) as long as the
relevant site information is maintained. If a copy off is added
at a site E during some partition, the vector in the partition
where the copy was obtained is simply augmented to reflect
the existence of the E copy. Thereafter, sites merging with
this partition will be required to augment their vectors accord-
ingly. Also, note that the version counts should be of variable
length, so running out of space will not be a problem.
Version vectors serve basically to encode the partial order
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<A:OQ B:O, C:O, D:O>

<A:-, B-0, C.0, D:O>

<A:2, B:O, C: 1, D:O>

+

- -- CONFLICT!
vector becomes
<A:3, B: I, C: 1, D:O>
after reconciliation
at site B

Fig. 2. Partition graph G(f) for f with version vectors effective at the
end of each partition.

defined by the partition graph: if one node in the graph
"precedes" another, i.e., there is a path from the graph source
through the former to the latter, then the version vectors of
the two nodes will not conflict. This observation leads us to
the following result, which shows us that version vectors are
all we basically need to detect version conflicts.
Theorem: A version conflict must be reconciled at a node

in G(f) if and only iff's version vectors conflict at that point.
Proof: It is clear that if there is a conflict reconciliation

at some node P in G(f), then the version vectors will conflict
at P. (Version vectors detect real conflicts just as well as the
simple timestamp algorithm: what must be shown is that they
detect only real conflicts.) Conversely, suppose that f's ver-
sion vectors conflict at some node P. Then two of the vectors
must conflict and not be dominated by any third vector.
These two vectors were generated in two earlier partitions P1
and P2-both having paths to P-where f was modified inde-
pendently. All that must be shown is that there is no ancestor
P' of P which also has backward paths to P1 and P2. (Note P'
could be either P1 or P2.) Suppose P' exists. We know that
in this case the P1 and P2 version conflict will be reconciled at
P', giving a version vector whose components are the maxima
of the components from the vectors in P1 and P2. But this
vector will dominate both the P1 and P2 vectors at P, remov-
ing their conflict. This contradicts our original assumption.
Hence, P' cannot exist, so the partition graph conditions are
satisfied and there is a conflict reconciliation at P. U

D. Conclusions on File Conflict Detection
The theorem above shows us that version vectors may be

used to detect version conflicts and request user reconciliation
of the conflicts. Version vectors will detect only "real" con-
flicts, i.e., situations in which versions of a file were modified
independently in separate partitions. Thus, our work differs

from previous research in that, where many people have
developed mechanisms (e.g., timestamps) which detect suffi-
cient conditions for a conflict to exist, we have striven to
provide a mechanism detecting necessary and sufficient condi-
tions for conflict.

It should be noted that if an identical update is made in two
separate partitions, version vectors will indicate a file conflict
even though there may be none. In some applications, then, it
may be desirable to actually check a file for differences when
several copies are found to have conflicting vectors. Indeed,
this cross-checking of copies may have to be done eventually if
the user is to resolve the file conflict.

It is also important to recognize that what has been presented
here is applicable only when single files are being processed.
Consider the following example (of Mark Brown) where two
"transactions" Tl and T2 execute in different network parti-
tions. Let

readset(Tl) = readset(T2) = {f, g}

writeset(Tl) = {f}

writeset(T2) = {g}

and assume that both TI and T2 complete prior to reconnec-
tion of the network. Then a conflict (serialization error)
should occur after reconnection, but it is easily seen that in
this case version vectors will not detect anything amiss. Many
appropriate extensions immediately suggest themselves; one is
presented in [111]. Note, interestingly, that many of the
"solutions" for providing mutual consistency mentioned in
Section II also do not solve this problem. In particular, such
conflicts can still occur with the Token and Primary Site
approaches, unless all updates are constrained to occur within
a single partition.
We have shown in this section that file conflicts, whether
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they are name conflicts or version conflicts, can be accurately
detected by maintaining just two pieces of information with
each filef:

1) an origin point
2) aversion vector.
In the following section we take up the question of how to

resolve file conflicts, now that the problem of detection has
been clarified.

IV. RESOLUTION OF MUTUAL INCONSISTENCY
A conflict detection mechanism, while valuable, has increased

effect if there is also a method for reconciling conflicts auto-
matically. From several conflicting versions of a file, this
method should produce a subsequent version that dominates
these versions, while preserving the operations which were
done to them. Although this is certainly not possible in general,
there are many cases which admit automated reconciliation.

Clearly, conflict reconciliation must take into account the
semantics of the operations which were done to the data
objects in conflict. This has been noted by many researchers
(e.g., [1, p. 568], [5, p. 65], [13, p. 57]). In those cases
where the nature of the semantics is sufficiently constrained,
straightforward reconciliation algorithms can be given. For
example, consider two important types of files in LOCUS,
directories and user mailboxes. In both of these cases, there
are just two available operations:

* insert an item (e.g., create a file, or receive a message)
* remove an item (e.g., delete a file, or process a message).
Such files have the characteristic that version conflicts can

be reconciled simply by taking the union of the entries in the
component files, then removing any entries which had been
deleted. Reconciliation for both of these file types is handled
automatically in LOCUS.'
Automatic reconciliation applies in much more far-reaching

contexts that on the systems level. An instructive example can
be found in electronic funds transfer. Consider a checking
account, as proposed earlier in Section III-A. Credits and
debits can be made to different copies of the account. Resolu-
tion is straightforward so long as the ith copy is represented as

x +6A)
where x was the original account balance before partition and
6&(x) is the change in that partition. Then the new balance is

x + E6i(x).

This approach may be improper if we require the balance to
remain positive. However, there are many ways to deal with
this problem. When x is the balance of a large corporation,
presumably the problem will not occur. More generally, one
may operate the system in a more constrained fashion when it
is partitioned, either by limiting withdrawals in those cases

1Most directory systems, and some mail systems, permit additional
operations. Therefore the automatic recovery software in LOCUS for
these file types is more involved than indicated here.

where the customer is not trusted, or by imposing quota-like
limits on withdrawals within each partition.
A number of existing applications permit automated recon-

ciliation while still allowing robust operation during partition.
Two cases which have been studied carefully are banking and
airline reservation systems [3]. Extensive, although not full,
operation of these systems is quite feasible while partitioned.
A desirable characteristic of system operation semantics, or

of the reduced partition semantics, is that reconciliation of a
data item not necessitate the alteration of many other data
items. In order to keep automatic reconciliation cost low in a
database, for example, one might insist that most transactions
executed during partitions not require undoing and redoing
when their read sets are subsequently altered during a recon-
ciliation. This is the case today for portions ofbanking systems
such as automated tellers.
In general, it is often possible to break the semantics of

operations into classes, and for each class give rules by which
the reconciliation algorithms can be constructed. Simple
semantic classes permit reconciliation in a straightforward way
without keeping much history. As the semantics become more
complex, more history and work is required.
Of course, even when the semantics of operations are clear,

automatic reconciliation can be very difficult, expensive, and
in some cases impossible. Reconciliation cannot be performed
in those cases where, as part of the system's activity, an ex-
ternal action has been taken that cannot be undone nor can a
compensating action be taken. These cases are the same ones
for which general purpose data management recovery is
impossible too.
One suspects that in many systems, automatic reconciliation

will be feasible for the large majority of data items. However,
there will remain cases that require human intervention.
Independent of the degree of automatic reconciliation, a

consistent system policy must be defined for each of the
following questions.

* When and how are data conflicts detected?
* Is pennission to access a data item altered by the fact that

the item is in conflict? No alteration of permission raises the
question of which version to make available, and leads to the
possibility of propagating inappropriate values.

* How are users informed of conflicts?
* What support does the system provide the user for recon-

ciling conflicts?
These questions raise a number of architectural issues, some

of which are addressed in [12], [14], [18].

V. CONCLUSIONS

We have developed an effective method for detecting mutual
inconsistency in distributed systems. Here inconsistency has
been assumed to be caused by multiple users modifying differ-
ent copies of a common file without mutually excluding one
another. Such a situation would arise, for example, when
network failures isolate these users in different partitions of
the network. The technique also applies when partitions are
artificially introduced; for example, when stations in a con-
nected network delay their transmissions to take advantage of
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batching or lower communications rates at various times of
day. The method used is simple, relying only on two newly
introduced constructs, version vectors and origin points, for
its operation. Although the method was discussed specifically
in the context of ifie systems, it applies equally well to any
class of resources for which occasional mutual inconsistency is
tolerable for the sake of availability, or where the semantics of
the allowed operations permit automated recovery.
The general problem of how to resolve mutual inconsistency

of copies of a resource, once it is detected, is a complex ques-
tion. We have only given it a summary treatment here, since it
raises many design issues and can be answered thoroughly only
when the semantics regarding the use of the resource are
explicitly known. We have noted, however, that for some
resources automatic reconciliation is straightforward to
implement.
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Input-Output Tools: A Language Facility for
Interactive and Real-Time Systems

JAN VAN DEN BOS, MARINUS J. PLASMEIJER, AND PIETER H. HARTEL

Abstract-A conceptual model is discussed which allows the hierarchic
definition of high-level input driven objects, called input-output tools,
from any set of basic input primitives. An input-output tool is defined
as a named object. Its most important elements are the input rule, out-
put rule, internal tool definitions, and a tool body consisting of ex-
ecutable statements. The input rule contains an expression with tool
designators as operands and with operators allowing for sequencing,
selection, interleaving, and repetition. Input rules are similar in appear-
ance to production rules in grammars. The input expression specifies
one or more input sequences, or input patterns, in terms of tool desig-
nators. An input parser tries, at run-time, to match (physical) input
tokens against active input sequences. If a match between an input
token and a tool designator is found, the corresponding tool body is
executed, and the output is generated according to specifications in the
tool body. The control structures in the input expression allow a vari-
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ety of input patterns from any number of sources. Tool definitions
may occur in-line or be stored in a library. All tools are ultimately
encompassed in one tool representing the program.
The input-output tool model offers a nonprocedural input specifica-

tion language with a parser provided by the run-time system. It forces
clean and structured programs and allows for easy definition of ab-
stract input devices and simulation of physical devices on other devices.
Implementations have been completed and are being evaluated.

Index Terms-Computer graphics, dialogue, input functions, input
tools, interaction language, process control, programming language, real
time, specification language.

I. INTRODUCTION

INTERACTIVE computing, in which we include real-time
systems and process control, forms a sizable, perhaps more

than 50 percent, share of all computing. Most interactive sys-
tems have been programmed using regular (or slight derivatives
of) batch programming languages. Unfortunately, these lan-
guages are badly lacking in provisions for handling input and
output on an advanced level. Few, if any of these languages,
have, for example, provisions to read one input source out of
several specified. Facilities to define named abstract input
devices in terms of (a collection of) existing physical devices

0098-5589/83/0500-0247$01.00 © 1983 IEEE

247


