Outline

- Introduction
- Background
- Distributed DBMS Architecture
 - Introduction to Database Concepts
 - Alternatives in Distributed Database Systems
 - Datalogical Architecture
 - Implementation Alternatives
 - Component Architecture
- Distributed Database Design (Briefly)
- Distributed Query Processing (Briefly)
- Distributed Transaction Management (Extensive)
- Building Distributed Database Systems (RAID)
- Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems
Useful References

- Textbook *Principles of Distributed Database Systems*,
 Chapter 1.7
Alternatives in Distributed Database Systems

- Distribution
- Heterogeneity
- Autonomy

- Client/server
- Peer-to-peer
- Distributed DBMS
- Federated DBMS
- Distributed multi-DBMS
- Multi-DBMS
Dimensions of the Problem

- **Distribution**
 - Whether the components of the system are located on the same machine or not

- **Heterogeneity**
 - Various levels (hardware, communications, operating system)
 - DBMS important one
 - data model, query language, transaction management algorithms

- **Autonomy**
 - Not well understood and most troublesome
 - Various versions
 - **Design autonomy**: Ability of a component DBMS to decide on issues related to its own design.
 - **Communication autonomy**: Ability of a component DBMS to decide whether and how to communicate with other DBMSs.
 - **Execution autonomy**: Ability of a component DBMS to execute local operations in any manner it wants to.
Datalogical Distributed DBMS Architecture

ES\(_1\)
\(\cdots\)
ES\(_n\)

GCS

LCS\(_1\)
\(\cdots\)
LCS\(_n\)

LIS\(_1\)
\(\cdots\)
LIS\(_n\)

ES: External Schema
GCS: Global Conceptual Schema
LCS: Local Conceptual Schema
LIS: Local Internal Schema
Datalogical Multi-DBMS Architecture

GES_1 \quad GES_2 \quad \ldots \quad GES_n

LES_1_1 \quad \ldots \quad LES_1_n \quad \ldots \quad \ldots \quad \ldots \quad LES_n_m

LCS_1 \quad LCS_2 \quad \ldots \quad LCS_n

LIS_1 \quad LIS_2 \quad \ldots \quad LIS_n

GES: Global External Schema
LES: Local External Schema
LCS: Local Conceptual Schema
LIS: Local Internal Schema
Timesharing Access to a Central Database

- No data storage
- Host running all software

Terminals or PC terminal emulators

Batch requests Response

Network

Database

Communications

Application Software

DBMS Services
Multiple Clients/Single Server
Task Distribution

<table>
<thead>
<tr>
<th>Application</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QL Interface</td>
<td>Programmatic Interface</td>
</tr>
<tr>
<td>Communications Manager</td>
<td></td>
</tr>
</tbody>
</table>

- SQL query
- result table

Communications Manager

- Query Optimizer
- Lock Manager
- Storage Manager
- Page & Cache Manager

Database
Advantages of Client-Server Architectures

- More efficient division of labor
- Horizontal and vertical scaling of resources
- Better price/performance on client machines
- Ability to use familiar tools on client machines
- Client access to remote data (via standards)
- Full DBMS functionality provided to client workstations
- Overall better system price/performance
Problems With Multiple-Client/Single Server

- Server forms bottleneck
- Server forms single point of failure
- Database scaling difficult
Multiple Clients/Multiple Servers

- directory
- caching
- query decomposition
- commit protocols

Diagram:
- Applications
- Client Services
- Communications
- LAN
- Communications
- DBMS Services
- Database
- Communications
- DBMS Services
- Database
Server-to-Server

- SQL interface
- programmatic interface
- other application support environments

LAN

Database

Communications

DBMS Services

Applications

Client Services

Communications

Database
Components of a Multi-DBMS

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez
Directory Issues

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global & central</td>
<td>Local & central</td>
</tr>
<tr>
<td>& non-replicated</td>
<td>& non-replicated</td>
</tr>
<tr>
<td>(?</td>
<td>(?</td>
</tr>
<tr>
<td>Local & central</td>
<td>Global & central</td>
</tr>
<tr>
<td>& replicated (</td>
<td>& non-replicated (?</td>
</tr>
<tr>
<td>Global & distributed</td>
<td>Local & distributed</td>
</tr>
<tr>
<td>& non-replicated (</td>
<td>& non-replicated</td>
</tr>
<tr>
<td>Local & central</td>
<td>Global & distributed</td>
</tr>
<tr>
<td>& replicated (</td>
<td>& non-replicated (?)</td>
</tr>
<tr>
<td>Global & central</td>
<td>Local & distributed</td>
</tr>
<tr>
<td>& replicated (</td>
<td>& replicated</td>
</tr>
<tr>
<td>Local & central</td>
<td>Global & distributed</td>
</tr>
<tr>
<td>& replicated (?)</td>
<td>& replicated (?)</td>
</tr>
<tr>
<td>Global & central</td>
<td>Local & distributed</td>
</tr>
<tr>
<td>& replicated (?)</td>
<td>& replicated</td>
</tr>
<tr>
<td>Local & central</td>
<td>Global & distributed</td>
</tr>
<tr>
<td>& replicated (</td>
<td>& replicated (?)</td>
</tr>
<tr>
<td>Global & central</td>
<td>Local & distributed</td>
</tr>
<tr>
<td>& replicated (?)</td>
<td>& replicated</td>
</tr>
</tbody>
</table>

Distributed DBMS

© 1998 M. Tamer Özsu & Patrick Valduriez