Outline

- Introduction
- Background
- Distributed DBMS Architecture
- Distributed Database Design
- Distributed Query Processing
- Distributed Transaction Management
- Building Distributed Database Systems (RAID)
- Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems
Useful References

- B. Bhargava, Y. Zhong, and Y. Lu, *Fraud Formalization and Detection*, in Proc. of 5th Intl. Conf. on Data Warehousing and Knowledge Discovery (DaWaK), Prague, Czech Republic, September 2003.
Motivation

- **Sensitivity of personal data**
 - 82% willing to reveal their favorite TV show
 - Only 1% willing to reveal their SSN

- **Business losses due to privacy violations**
 - Online consumers worry about revealing personal data
 - This fear held back $15 billion in online revenue in 2001

- **Federal Privacy Acts to protect privacy**
 - E.g., Privacy Act of 1974 for federal agencies
 - Still many examples of privacy violations even by federal agencies
 - JetBlue Airways revealed travellers’ data to federal gov’t
 - E.g., Health Insurance Portability and Accountability Act of 1996 (HIPAA)
Privacy and Trust

Privacy Problem

- Consider computer-based interactions
 - From a simple transaction to a complex collaboration
- Interactions involve *dissemination of private data*
 - It is voluntary, “pseudo-voluntary,” or required by law
- Threats of privacy violations result in lower trust
- Lower trust leads to isolation and lack of collaboration

Trust must be established

- Data – provide quality and integrity
- End-to-end communication – sender authentication, message integrity
- Network routing algorithms – deal with malicious peers, intruders, security attacks
Fundamental Contributions

- Provide measures of privacy and trust
- Empower users (peers, nodes) to control privacy in ad hoc environments
 - Privacy of user identification
 - Privacy of user movement
- Provide privacy in data dissemination
 - Collaboration
 - Data warehousing
 - Location-based services
- Tradeoff between privacy and trust
 - Minimal privacy disclosures
 - Disclose private data absolutely necessary to gain a level of trust required by the partner system
Outline

1. Assuring privacy in data dissemination
2. Privacy-trust tradeoff
3. Privacy metrics
1. Privacy in Data Dissemination

- **“Guardian:”**
 - Entity entrusted by private data owners with collection, storage, or transfer of their data
 - owner can be a guardian for its own private data
 - owner can be an institution or a system

- **Guardians allowed or required by law to share private data**
 - With owner’s explicit consent
 - Without the consent as required by law
 - research, court order, etc.
Problem of Privacy Preservation

- Guardian passes private data to another guardian in a data dissemination chain
 - Chain within a graph (possibly cyclic)
- Owner privacy preferences *not* transmitted due to neglect or failure
 - Risk grows with chain length and milieu fallibility and hostility
- If preferences lost, receiving guardian unable to honor them
Challenges

- Ensuring that owner’s metadata are never decoupled from his data
 - Metadata include owner’s privacy preferences
- Efficient protection in a hostile milieu
 - Threats - examples
 - Uncontrolled data dissemination
 - Intentional or accidental data corruption, substitution, or disclosure
 - Detection of data or metadata loss
 - Efficient data and metadata recovery
 - Recovery by retransmission from the original guardian is most trustworthy
Proposed Approach

A. Design self-descriptive private objects
B. Construct a mechanism for apoptosis of private objects
 apoptosis = clean self-destruction
C. Develop proximity-based evaporation of private objects
A. Self-descriptive Private Objects

- Comprehensive metadata include:
 - owner’s privacy preferences
 - guardian privacy policies
 - metadata access conditions
 - enforcement specifications
 - data provenance
 - context-dependent and other components

- How to read and write private data
- For the original and/or subsequent data guardians
- How to verify and modify metadata
- How to enforce preferences and policies
- Who created, read, modified, or destroyed any portion of data
- Application-dependent elements
- Customer trust levels for different contexts
- Other metadata elements
Notification in Self-descriptive Objects

- Self-descriptive objects simplify notifying owners or requesting their permissions
 - Contact information available in the data provenance component
- Notifications and requests sent to owners immediately, periodically, or on demand
 - Via pagers, SMSs, email, mail, etc.
Optimization of Object Transmission

- Transmitting *complete* objects between guardians is inefficient
 - They describe all foreseeable aspects of data privacy
 - For any application and environment
- Solution: prune transmitted metadata
 - Use application and environment semantics along the data dissemination chain
B. Apoptosis of Private Objects

- Assuring privacy in data dissemination
 - In benevolent settings:
 use *atomic* self-descriptive object with retransmission recovery
 - In malevolent settings:
 when attacked object threatened with disclosure, use *apoptosis* (clean self-destruction)

- Implementation
 - Detectors, triggers, code
 - False positive
 - Dealt with by retransmission recovery
 - Limit repetitions to prevent denial-of-service attacks
 - False negatives
C. Proximity-based Evaporation of Private Data

- Perfect data dissemination not always desirable
 - Example: Confidential business data shared within an office but not outside

- Idea: Private data *evaporate* in proportion to their “distance” from their owner
 - “Closer” guardians trusted more than “distant” ones
 - Illegitimate disclosures more probable at less trusted “distant” guardians
 - Different distance metrics
 - Context-dependent
Examples of Metrics

- Examples of one-dimensional distance metrics
 - Distance ~ business type

- Security/reliability as one of dimensions

If a bank is the original guardian, then:
- any other bank is “closer” than any insurance company
- any insurance company is “closer” than any used car dealer

Examples of Metrics

Insurance Company C

Bank I - Original Guardian

Used Car Dealer 1

Insurance Company A

Used Car Dealer 2

Insurance Company B

Bank III

Bank II

Used Car Dealer 3

Insurance Company B
Evaporation Implemented as Controlled Data Distortion

- Distorted data reveal less, protecting privacy
- Examples:
 - accurate
 - more and more distorted

250 N. Salisbury Street
West Lafayette, IN

Salisbury Street
West Lafayette, IN

somewhere in
West Lafayette, IN

250 N. Salisbury Street
West Lafayette, IN
[home address]

250 N. University Street
West Lafayette, IN
[office address]

P.O. Box 1234
West Lafayette, IN
[P.O. box]

765-987-6543
[office phone]

765-987-4321
[office fax]

765-123-4567
[home phone]
Context-dependent apoptosis for implementing evaporation
 - Apoptosis detectors, triggers, and code enable context exploitation

Conventional apoptosis as a simple case of data evaporation
 - Evaporation follows a step function
 - Data self-destructs when proximity metric exceeds predefined threshold value
Outline

1. Assuring privacy in data dissemination
2. Privacy-trust tradeoff
3. Privacy metrics
2. Privacy-trust Tradeoff

- **Problem**
 - To build trust in open environments, users provide digital credentials that contain private information.
 - How to gain a certain *level of trust* with the least *loss of privacy*?

- **Challenges**
 - Privacy and trust are fuzzy and multi-faceted concepts.
 - The amount of privacy lost by disclosing a piece of information is affected by:
 - Who will get this information
 - Possible uses of this information
 - Information disclosed in the past
Proposed Approach

A. Formulate the privacy-trust tradeoff problem
B. Estimate privacy loss due to disclosing a set of credentials
C. Estimate trust gain due to disclosing a set of credentials
D. Develop algorithms that minimize privacy loss for required trust gain
A. Formulate Tradeoff Problem

- Set of private attributes that user wants to conceal
- Set of credentials
 - Subset of revealed credentials R
 - Subset of unrevealed credentials U
- Choose a subset of credentials NC from U such that:
 - NC satisfies the requirements for trust building
 - $\text{PrivacyLoss}(NC+R) – \text{PrivacyLoss}(R)$ is minimized
If multiple private attributes are considered:

- Weight vector \(\{w_1, w_2, \ldots, w_m\} \) for private attributes
- Privacy loss can be evaluated using:
 - The weighted sum of privacy loss for all attributes
 - The privacy loss for the attribute with the highest weight
B. Estimate Privacy Loss

- **Query-independent privacy loss**
 - Provided credentials reveal the value of a private attribute
 - User determines her private attributes

- **Query-dependent privacy loss**
 - Provided credentials help in answering a specific query
 - User determines a set of potential queries that she is reluctant to answer
Privacy Loss Estimation Methods

- **Probability method**
 - Query-independent privacy loss
 - Privacy loss is measured as the difference between entropy values
 - Query-dependent privacy loss
 - Privacy loss for a query is measured as difference between entropy values
 - Total privacy loss is determined by the weighted average
 - Conditional probability is needed for entropy evaluation
 - Bayes networks and kernel density estimation will be adopted

- **Lattice method**
 - Estimate query-independent loss
 - Each credential is associated with a tag indicating its privacy level with respect to an attribute a_j
 - Tag set is organized as a lattice
 - Privacy loss measured as the least upper bound of the privacy levels for candidate credentials
C. Estimate Trust Gain

- Increasing trust level
 - Adopt research on trust establishment and management

- Benefit function $B(\text{trust_level})$
 - Provided by service provider or derived from user’s utility function

- Trust gain
 - $B(\text{trust_level}_{\text{new}}) - B(\text{trust_level}_{\text{prev}})$
D. Minimize Privacy Loss for Required Trust Gain

- Can measure privacy loss (B) and can estimate trust gain (C)

- Develop algorithms that minimize privacy loss for required trust gain
 - User releases more private information
 - System’s trust in user increases
 - How much to disclose to achieve a target trust level?