
Distributed DBMS Page 10-12. 1© 1998 M. Tamer Özsu & Patrick Valduriez

Outline

Introduction

Background

Distributed DBMS Architecture

Distributed Database Design

Distributed Query Processing

Distributed Transaction Management

Transaction Concepts and Models

Distributed Concurrency Control

Distributed Reliability

Building Distributed Database Systems (RAID)

Mobile Database Systems

Privacy, Trust, and Authentication

Peer to Peer Systems

Distributed DBMS Page 10-12. 2© 1998 M. Tamer Özsu & Patrick Valduriez

Useful References

D. Skeen and M Stonebraker, A Formal Model
of Crash Recovery in a Distributed System,
IEEE Trans. Software Eng. 9(3): 219-228,
1983.

D. Skeen, A Decentralized Termination
Protocol, IEEE Symposium on Reliability in
Distributed Software and Database Systems,
July 1981.

D. Skeen, Nonblocking commit protocols, ACM
SIGMOD, 1981.

http://www.cs.purdue.edu/homes/bb/cs542-16Spr/TSE83_SS.pdf
http://www.cs.purdue.edu/homes/bb/cs542-16Spr/skeen.pdf
http://www.cs.purdue.edu/homes/bb/cs542-16Spr/Nonblock-Skeen-81.pdf

Distributed DBMS Page 10-12. 3© 1998 M. Tamer Özsu & Patrick Valduriez

Termination Protocols

Message sent by an operational site

abort – If trans. state is abort
(If in abort)

committable – If trans. state is committable
(If in p or c)

non-committable – If trans. state is neither
committable nor abort

(If in initial or wait)

 If at least one committable message is

received, then commit the transaction,

else abort it.

Distributed DBMS Page 10-12. 4© 1998 M. Tamer Özsu & Patrick Valduriez

Problem with Simple Termination
Protocol

Issue 1 Operational site fails immediately after making a
commit decision

Issue 2 Site does not know the current operational status
(i.e., up or down) of other sites.

Site 1 Site 2 Site 3

Crashes before

sending message

to Site 3

Site 3 does not know if

Site 1 was up at

beginning. Does not

know it got inconsistent

messages

Resilient protocols require at least two rounds unless no site fails

during the execution of the protocol.

Simple termination protocol is not robust:

Commits and fails

before sending

message to Site 3

Distributed DBMS Page 10-12. 5© 1998 M. Tamer Özsu & Patrick Valduriez

Resilient Termination
Protocols

First message round:

Type of transaction state Message sent

Final abort state abort

Committable state committable

All other states non-committable

Distributed DBMS Page 10-12. 6© 1998 M. Tamer Özsu & Patrick Valduriez

Resilient Termination
Protocols

Second and subsequent rounds:

Message received from previous
round

Message sent

One or more abort messages abort

One or more committable messages committable

All non-committable messages non-committable

Summary of rules for sending messages.

Distributed DBMS Page 10-12. 7© 1998 M. Tamer Özsu & Patrick Valduriez

Resilient Termination
Protocols

The transactions is terminated if:

Condition Final state

Receipt of a single abort message abort

Receipt of all committable messages commit

2 successive rounds of messages where all messages
are non-committable (and no site failure)

abort

Summary of commit and termination rules.

Distributed DBMS Page 10-12. 8© 1998 M. Tamer Özsu & Patrick Valduriez

Rules for Commit and Termination

Commit Rule:

A transaction is committed at a site only after the receipt

of a round consisting entirely of committable messages

Termination Rule:

If a site ever receives two successive rounds of non-

committable messages and it detects no site failures

between rounds, it can safely abort the transaction.

Lemma: Ni(r+1)  Ni(r)

Set of sites sending non-committables to

site i during round r.

Lemma: If Ni(r+1) = Ni(r), then all messages received by

site i during r and r + 1 were non-committable messages.

Distributed DBMS Page 10-12. 9© 1998 M. Tamer Özsu & Patrick Valduriez

Worst Case Execution of the
Resilient Transition Protocol

MESSAGES RECEIVED

SITE 1 SITE 2 SITE 3 SITE 4 SITE5

initial

state

Commit-

able

Non-
Committable

Non-
Committable

Non-
Committable

Non-
Committable

Round 1 (1) CNNNN -NNNN -NNNN -NNNN

Round 2 FAILED (1) -CNNN --NNN --NNN

Round 3 FAILED FAILED (1) --CNN ---NN

Round 4 FAILED FAILED FAILED (1) ---CN

Round 5 FAILED FAILED FAILED FAILED ----C

NOTE: (1) site fails after sending a single message.

Distributed DBMS Page 10-12. 10© 1998 M. Tamer Özsu & Patrick Valduriez

Worst Case Execution of the
Resilient Transition Protocol

The second issue can lead to very subtle problems.
Again, consider the scenario where Site 1 sends a
committable message to Site 2 and then crashes.

Site 2 sends out non-committable messages, receives
the committable message from Site 1, commits, and
then promptly fails.

Now, Site 3 receives a single non-committable message
(from Site 2). Let us assume that Site 3 was not aware
that Site 1 was up at the beginning of the protocol (a
reasonable assumption).

Then, Site 3 would not suspect that messages it
received were inconsistent with those received by Site 2,
and it would make an inconsistent commit decision.

Distributed DBMS Page 10-12. 11© 1998 M. Tamer Özsu & Patrick Valduriez

Recovery Protocols

Recovery Protocols:

Protocols at failed site to complete all transactions
outstanding at the time of failure

Classes of failures:

Site failure

Lost messages

Network partitioning

Byzantine failures

Effects of failures:

Inconsistent database

Transaction processing is blocked

Failed component unavailable

Distributed DBMS Page 10-12. 12© 1998 M. Tamer Özsu & Patrick Valduriez

Independent Recovery
A recovering site makes a transition directly to a final

state without communicating with other sites.

Lemma:

For a protocol, if a local state’s concurrency set contains

both an abort and commit, it is not resilient to an arbitrary

failure of a single site.

Rule 1: s: Intermediate state

If C(s) contains a commit

 failure transition from s to commit

otherwise failure transition from s to abort

si → commit because other site may be in abort

si → abort because other site may be in commit

cannot

cannot

Distributed DBMS Page 10-12. 13© 1998 M. Tamer Özsu & Patrick Valduriez

Theorem for Single Site Failure

Rule 2: For each intermediate state si:

if tj in s(si) & tj has a failure transition to a commit (abort),

then assign a timeout transition from si to a commit (abort).

Theorem: Rules 1 and 2 are sufficient for designing protocols

resilient to a single site failure.

p: consistent

p’: p + Failure + Timeout Transition

s2 = f2  f2  C(si)

si in s(s2)

f2 ← inconsistent

s1

f1

site 1 fails

Distributed DBMS Page 10-12. 14© 1998 M. Tamer Özsu & Patrick Valduriez

Independent Recovery when Two
Sites Fail?

Theorem: There exists no protocol using independent

recovery that is resilient to arbitrary failures by two sites.

Same state

exists

for other sites

First global

state

G0 → abort

G1

Gk-1→ site j recovers to abort

(only j makes a transition)

other sites recover to abort

Gk→ site j recovers to commit

Gm → commit

Failure of j  recover to commit

Failure of any other site  recover to abort

Note: G0, G1, G2, … Gk-1, Gk, …

Gm are global state vectors.

Distributed DBMS Page 10-12. 15© 1998 M. Tamer Özsu & Patrick Valduriez

Resilient Protocol when Messages
are Lost

Theorem: There exists no protocol resilient to a network

partitioning when messages are lost.

Rule 3:

Rule 4:
Isomorphic to

Rule 1:

Rule 2:

undelivered message ↔ timeout

timeout ↔ failure

Theorem: Rules 3 & 4 are necessary and sufficient for

making protocols resilient to a partition in a two-site protocol.

Theorem: There exists no protocol resilient to a multiple

partition.

Distributed DBMS Page 10-12. 16© 1998 M. Tamer Özsu & Patrick Valduriez

Timeout in INITIAL

Who cares

Timeout in WAIT

Unilaterally abort

Timeout in PRECOMMIT

Participants may not be in
PRE-COMMIT, but at least in
READY

Move all the participants to
PRECOMMIT state

Terminate by globally
committing

Site Failures – 3PC Termination
(see book)

INITIAL

WAIT

Commit command
Prepare

Vote-commit

Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-

COMMIT

Ready-to-commit

Global commit

Distributed DBMS Page 10-12. 17© 1998 M. Tamer Özsu & Patrick Valduriez

Timeout in ABORT or
COMMIT

Just ignore and treat the
transaction as completed

participants are either in
PRECOMMIT or READY
state and can follow their
termination protocols

Site Failures – 3PC Termination
(see book)

INITIAL

WAIT

Commit command
Prepare

Vote-commit

Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-

COMMIT

Ready-to-commit

Global commit

Distributed DBMS Page 10-12. 18© 1998 M. Tamer Özsu & Patrick Valduriez

Timeout in INITIAL

Coordinator must have
failed in INITIAL state

Unilaterally abort

Timeout in READY

Voted to commit, but does
not know the coordinator's
decision

Elect a new coordinator
and terminate using a
special protocol

Timeout in PRECOMMIT

Handle it the same as
timeout in READY state

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit

Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT
PRE-

COMMIT

Global commit

Ack

Site Failures – 3PC Termination
(see book)

Distributed DBMS Page 10-12. 19© 1998 M. Tamer Özsu & Patrick Valduriez

New coordinator can be in one of four states: WAIT,
PRECOMMIT, COMMIT, ABORT

Coordinator sends its state to all of the participants asking
them to assume its state.

Participants “back-up” and reply with appriate messages,
except those in ABORT and COMMIT states. Those in these
states respond with “Ack” but stay in their states.

Coordinator guides the participants towards termination:

If the new coordinator is in the WAIT state, participants can be in
INITIAL, READY, ABORT or PRECOMMIT states. New
coordinator globally aborts the transaction.

If the new coordinator is in the PRECOMMIT state, the
participants can be in READY, PRECOMMIT or COMMIT states.
The new coordinator will globally commit the transaction.

If the new coordinator is in the ABORT or COMMIT states, at the
end of the first phase, the participants will have moved to that
state as well.

Termination Protocol Upon
Coordinator Election (see book)

Distributed DBMS Page 10-12. 20© 1998 M. Tamer Özsu & Patrick Valduriez

Failure in INITIAL

start commit process upon
recovery

Failure in WAIT

the participants may have
elected a new coordinator and
terminated the transaction

the new coordinator could be
in WAIT or ABORT states
transaction aborted

ask around for the fate of the
transaction

Failure in PRECOMMIT

ask around for the fate of the
transaction

INITIAL

WAIT

Commit command
Prepare

Vote-commit

Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-

COMMIT

Ready-to-commit

Global commit

Site Failures – 3PC Recovery (see
book)

Distributed DBMS Page 10-12. 21© 1998 M. Tamer Özsu & Patrick Valduriez

Failure in COMMIT or
ABORT

Nothing special if all the
acknowledgements have been
received; otherwise the
termination protocol is
involved

INITIAL

WAIT

Commit command
Prepare

Vote-commit

Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-

COMMIT

Ready-to-commit

Global commit

Site Failures – 3PC Recovery (see
book)

Distributed DBMS Page 10-12. 22© 1998 M. Tamer Özsu & Patrick Valduriez

Failure in INITIAL
unilaterally abort upon
recovery

Failure in READY
the coordinator has been
informed about the local
decision

upon recovery, ask around

Failure in PRECOMMIT
ask around to determine how
the other participants have
terminated the transaction

Failure in COMMIT or
ABORT

no need to do anything

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit

Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT
PRE-

COMMIT

Global commit

Ack

Site Failures – 3PC Recovery (see
book)

