To increase concurrency
Commit soon

To protect against failures
Commit as late as possible

Analogy
Real life actions | system transactions

Goal is to:

• Maximize commitment of actions/transactions
• Minimize rollback
• Maximize concurrency
• Minimize blocking
Obstacles

- Transmission delays
- Communication failure (network partition)
- Site failures
- Long and short transactions
- Nested transactions

Possible solution:

- Assign a degree of {commitment, importance, success} to a transaction

Many ideas were originally mentioned by:

- C.T. Davies - ACM Conf., 1972
- L.A. Bjor - ACM Conf., 1972
Degree of commitment (for a single transaction in the system)

= 0 when transaction arrives in the system
= 1 when
 (a) transaction has left the system permanently
 (b) transaction can no longer be rolled back
 - resources necessary to back out are lost
 - some undoable action has been performed

(for other transactions are involved)

= 1 (a) when transaction has given results to other transactions who have a degree of comm = 1
 (b) dependency information among transactions has been lost
Dependency Graph

\[GD = (V, E) \]

\(V \): set of nodes representing transactions (T)
\(E \): set of edges representing the dependency relation among T

Types of dependency relations:

(a) Concurrency control dependency
\(T_i \rightarrow T_j \) if R-W or W-W conflict
\(T_i \) should commit before \(T_j \)

(b) User defined dependencies
(i) \(T_i \rightarrow T_j \) if \(T_i \) should commit before \(T_j \)
(ii) \(T_i \leftrightarrow T_j \) if \(T_j \) should commit simultaneously
(iii) \(T_i \leftrightarrow T_j \) if either \(T_i \) or \(T_j \) should commit, but not both
Sphere of Dependency

Ancestor: \(A(T) \)

Successor: \(S(T) \)
(supporter)

Competitor: \(C(T) \)

\[
\begin{align*}
A(T) &= \{ T' / T' \rightarrow T \text{ in } G_D \} \\
S(T) &= \{ T'' / T' \rightarrow T'' \text{ in } G_D \} \\
C(T) &= \{ T''' / T \leftrightarrow T''' \text{ in } G_D \}
\end{align*}
\]

Degree of commitment: \(D(T_i) \)

\[
D(T_i) > D(T_j) \text{ if } W(S(T_i)) > W(S(T_j))
\]

weight function
If T is aborted

then $S(T)$ is aborted

$\text{Loss} = W(S(T))$

$S_{\text{cycle}}(T_1) = \{T' / T' \in S(T_1) \text{ and } T' \in A(T_1) \}$

If $W(S_{\text{cycle}}(T_1)) > W(T_1)$

then abort T_1