
Distributed DBMS Optimistic CC. 1

Distributed Optimistic Algorithm

Assumptions

1. Synchronized clocks

2. MTD (max, trans, delay) can be defined

Step 1: Read

Step 2: Compute

Step 3: Transaction is broadcasted to all nodes at time
(Vi) (time when computation finishes and Ti is ready for
validation)

Step 4: At time (Vi) + MTD, all nodes start validation of
Ti. (Note (Vi) is attached to Ti) and if Ti reaches before
(Vi) + MTD, it must wait

Distributed DBMS Optimistic CC. 2

Distributed Optimistic Algorithm

Step 5:

IF validation succeeds, all nodes write S(wi)

ELSE all nodes except “X” ignore Ti

At node X, Ti is restarted and repeated until Ti validates

THEOREM:

The dist. opt. algorithm produces only correct histories at
each node and all histories are identical.

PROOF:

ONLY correct histories are produced. Because of Theorem 1

ELSE UPDATE S(Ri) and repeat from step 2

Distributed DBMS Optimistic CC. 3

Centralized Optimistic Algorithm

A node(C) is chosen as central node

1. Read S(Ri)

2. Execute (compute) and get S(wi)

Note S(wi) is semantic write set (actual)

Locking may require syntactic (potential) write set

S'(wi) S(wi) leq S'(wi)

Ti goes to node C (if X  C)

If Ti succeeds, send write set to all nodes

CASE 1: Validation takes place only at central node
When Ti arrives at a node “X”

Distributed DBMS Optimistic CC. 4

Centralized Optimistic Algorithm

1. Same

2. Same

3. Ti validates at X

4. IF successful, Ti commits at X and is sent to C

5. ELSE UPDATE S(Ri) and repeat from step 2

6. If successful at C, send write set to all nodes

ELSE UPDATE S(Ri) at C and execute at C and
repeat validation until successful.

CASE 2: Validation takes place at local node and
then at central node

Distributed DBMS Optimistic CC. 5

Centralized Optimistic

CASE 1: Validation takes place only at central node
only

CASE 2: Validation takes place at local node and then
central node

Distributed Optimistic
Validation takes place at all nodes after a delay of
MTD (Max. transmission Delay)

Distributed DBMS Optimistic CC. 6

When to synchronize (assert
concurrency control)

First access to an entity

(locking, pessimistic validation)

At each access

(granularity level)

After all accesses and before commitment

(optimistic validation)

Distributed DBMS Optimistic CC. 7

Information needed for
synchronization

Locks on database entities

(system R, INGRES, Rosenkrantz,…)

Time stamps on database entities

(Thomas, Reed,…)

Time stamps on transactions

(Kung, SDD-1, Schlageter,…)

OBSERVATIONS

• Time stamps more fundamental than locking

• Time stamps carry more information

• Time stamp checking costs more than checking locks

Distributed DBMS Optimistic CC. 8

T1 T2

T11: X ← X + 1 T21: X ← X + 1

T12: X ← 2 * X

History

Serial T1 T2 or T2 T1



f12(f11(f21(x))) 

f21(f12(f11(x)))f: Herbrand fn.

non serializable T11, T21, T12

f12(f21(f11(x)))

So given interpretation of fij’s allows us to include histories

which are not allowed by SERIALIZABILITY and hence

allows us higher concurrency

Distributed DBMS Optimistic CC. 9

Figure 2

Obtain

S(Ri)

I/O

Local

Validation

Successful?

Send

transaction to

other sites

Trans-

action

(Ti)

arrives

From TM'

I/O Q (Lo)
Read S(Ri)

Write S(Wi)

Transaction (Ti)

Finishes

I/O Q (Hi)

Execute

Obtain

S(Wi) and

Validate

CPU

No

Yes

Yes

No

Global

Validation

Successful?

CPUQ

Distributed DBMS Optimistic CC. 10

C.P.U.

Obtain

S(Ri)

S(Wi)
Locks

granted

Obtain locks

from lock table

for S(Ri) and

S(Wi)

Execute

Release locks

CPUQ (med)

CPUQ (Hi)

CPUQ (low)

No

YesArrive

IOQ (Hi)

IOQ (Hi)

Write S(Wi)

Read S(Ri)

I/O

Done

Locking Mechanism (Pessimistic)

Distributed DBMS Optimistic CC. 11

Steps of a Transaction (Ti) Non-
Locking Algorithm

1. The transaction (Ti) arrives in the system

2. The read S'(Ri) and write S’(Wi) set of the transaction is
obtained. These sets are syntactic

3. The transaction goes to an I/O queue to obtain item values for
read set S‘(Ri)

4. The transaction goes to CPU queue and completes execution to
obtain write set values. Also actual read set S(Ri) and write set
S(wi) are determined. These sets represent semantic
information

5. The transaction’s read sets are validated against other active
transactions according consistency constraints (such as
serializability)

Distributed DBMS Optimistic CC. 12

Steps of a Transaction (Ti) … (cont)

6. If validation fails due to conflict among transaction Ti and some
other transaction Tj, then one of the transaction is required to
repeat its execution. For example, if consistency constraint is
“strongly serializable”, then the transaction that arrived later
(let us say Ti) is selected for re-execution. Moreover the conflict
among Ti and Tj is resolved and the values of S'(Ri) are updated
with values from S(Wj) at the time of validation. This is useful
because Ti does not have to go and do its I/O once again.

7. The transaction is sent to CPU queue to do its computation.

8. The transaction Ti’s write set is validated against write set of
some transaction Tj (that has not completed but arrived before
Ti). If conflict occurs, then Ti is delayed and writes after Tj

writes in the database.

Distributed DBMS Optimistic CC. 13

Steps of a Transaction (Ti) … (cont)

9. The transaction goes to an I/O queue and update its write set
S(Wi).

10. The transaction Ti waits in memory for validation against
transactions that arrived in the interval between its arrival
time and validation time.

Distributed DBMS Optimistic CC. 14

Performance Techniques

Complexity

Analytical

Simulation

Empirical

Distributed DBMS Optimistic CC. 15

Performance model at each node

CPO

server

From Users

From

Network

To users

To

network
I/O

server

Parameters

1. Arrival rate

2. Base set (size of write

set/read

4. Size of database

5. Number of sets

6. Transmission delay

7. CPU time

8. I/O time

9. Retry delay

10. Read only trans/write & read

trans ratio

11. Multiprogramming level

12. Degree of conflict

