Outline

- Introduction
- Background
- Distributed DBMS Architecture
- Distributed Database Design
- Distributed Query Processing
- Distributed Transaction Management
 - Transaction Concepts
- Building Distributed Database Systems (RAID)
- Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems
Useful References

- Textbook *Principles of Distributed Database Systems*, Chapter 10.1, 11.1
A transaction is a collection of actions that make consistent transformations of system states while preserving system consistency.

- concurrency transparency
- failure transparency

![Diagram showing the lifecycle of a transaction from begin to end, with states in a consistent state and a database in a temporary inconsistent state during execution.]
Definition 1: A history is a quadruple $h = (n, \Pi, M, S)$ where

- n is a positive integer,
- Π is a permutation of the set
 $\Sigma_n = \{R_1, W_1, R_2, W_2, \ldots, R_n, W_n\}$
equivalently a one-to-one function
- $\Pi: \Sigma_n \rightarrow \{1, 2, \ldots, 2n\}$
 that $\Pi(R_i) < \Pi(W_i)$ for $i = 1, 2, \ldots, n$
- M is a finite set of variables representing physical data items,
- S is a function mapping Σ_n to 2^M

Set of all histories is denoted by M.

Definition 2: A transaction T_i is a pair (R_i, W_i). A transaction is a single execution of a program. This program may be a simple query statement expressed in a query language.

Definition 3: Read set of T_i is denoted by $S(R_i)$ and Write set of T_i is denoted by $S(W_i)$.
Definition 4: A history \(h = (n, \Pi, M, S) \) is serial if \(\Pi(W_i) = \Pi(R_i) + 1 \) for all \(i = 1, 2, \ldots, n \). In other words, a history is serial if \(R_i \) immediately precedes \(W_i \) for \(i = 1, 2, \ldots, n \).

Definition 5: A history is serializable if there is some serial history \(h_s \) such that the effect of the execution of \(h \) is equivalent to \(h_s \). Note serializability requires only that there exists some serial order equivalent to the actual interleaved execution history. There may in fact be several such equivalent serial orderings.

Definition 6: A history \(h \) is strongly serializable if in \(h_s \) the following conditions hold true:

a) \(\Pi(W_i) = \Pi(R_i) + 1 \)
b) \(\Pi(R(i + 1)) = \Pi(W_i) + 1 \)

If \(t(i + 1) \) is the next transaction that arrived and obtained the next time-stamp after \(T_i \). In strongly serializable history, the following constraint must hold: “If a transaction \(T_i \) is issued before a transaction \(T_j \), then the total effect on the database should be equivalent to the effect that \(T_i \) was executed before \(T_j \).

Note if \(T_i \) and \(T_j \) are independent, e.g., \(\{S(Ri) \cup S(Wi)\} \cap \{S(Rj) \cup S(Wj)\} = \emptyset \) then the effect of execution \(TiTj \) or \(TjTi \) will be the same.
Formal Definitions and Models

history \(h = (n, \pi, V_1S) \)
\[\bar{h} = (n + 2, \pi, V_1S) \]
\(h = T_{n+1} \cdot h \cdot T_{n+2} \)

Live transaction (set can be found in \(O(n \cdot |V|) \)).
Two histories are equivalent (\(\equiv \)) if they have the same set of live transactions.
Equivalence can be determined \(O(n \cdot |V|) \).

Theorem: Testing whether a history \(h \) is serializable is NP-complete even if \(h \) has no dead transactions.
- Polygraph: Pair of arcs between nodes
- Satisfiability: Problem of Boolean formulas in conjunctive normal forms with two-/three literals
 (SAT)
 (Non-circular)
Concatenation of histories:

\[h_1 = (n_1, \pi_1, V_1, S_1) \]
\[h_2 = (n_2, \pi_2, V_2, S_2) \]
\[h, \circ - n_2, \tau, V_1, P \]
\[\tau(w_i) = \pi_1(w_i) \quad i \leq n \]
\[\tau(w_i) = \pi_2(w_{i-n}) + 2n \quad \text{for} \quad i > n \]

same true for Ri

\[h_1 = R_1W_1 \]
\[h_2 = R_1W_1 \]
\[h_1 \circ - R_2W_2 \]
Two-phase locking:

\[h = (n, \pi, V, S) \] is 2PL

If \(\exists \) distinct non-integer real numbers \(l_1, \ldots, l_n \) such that

(a) \(\pi(R_i) < l_i < \pi(W_i) \) for \(i = 1, \ldots, n \)

(b) If \(S(R_i) \cap S(W_j) \neq \emptyset, i \neq j, \) and \(\pi(R_i) < \pi(W_j) \), then \(l_i < l_j \)

(c) If \(S(W_i) \cap S(W_j) \neq \emptyset \) and \(\pi(W_i) < \pi(W_j) \), then \(\pi(W_i) < l_j \)
The Class DSR

\[h_1 = (n, \pi, V, S) \text{ and } h_2 = (n, \pi', V, S) \text{ are histories.} \]

\[h_1 \sim h_2 \text{ whenever } \pi(\sigma) = \pi'(\sigma) \text{ for all } \Sigma_n \text{ except for two elements } \sigma_1, \sigma_2 \in \Sigma_n \text{ with} \]

\[\pi(\sigma_1) = \pi'(\sigma_2) = j, \]

\[\pi(\sigma_2) = \pi'(\sigma_1) = j + 1 \]

for some \(1 \leq j \leq n - 1 \), and

(a) \(\sigma_1 = R_i, \sigma_2 = R_j \) for some \(i, j \leq n \), or

(b) \(\sigma_1 = R_i, \sigma_2 = W_j, i \neq j, i, j \leq n \), and \(S(R_i) \cap S(W_j) = \emptyset \), or

(c) \(\sigma_1 = W_i, \sigma_2 = W_j, i, j \leq n \), and \(S(W_i) \cap S(W_j) = \emptyset \).

Let \(\sim^* \) be reflexive-transitive closure of \(\sim \).

The history \(h \) is D-serializable (DSR) if there is a serial history \(h_s \) such that \(h \sim^* h_s \).

If a history is DSR, it is certainly SR.
Transaction Example – A Simple SQL Query

Transaction BUDGET_UPDATE
begin
 EXEC SQL UPDATE PROJ
 SET BUDGET = BUDGET*1.1
 WHERE PNAME = “CAD/CAM”
end.
Example Database

Consider an airline reservation example with the relations:

\[
\text{FLIGHT(} \text{FNO, DATE, SRC, DEST, STSOLD, CAP)} \\
\text{CUST(} \text{CNAME, ADDR, BAL)} \\
\text{FC(} \text{FNO, DATE, CNAME, SPECIAL)}
\]
Example Transaction – SQL Version

```
Begin_transaction Reservation
begin
    input(flight_no, date, customer_name);
    EXEC SQL UPDATE FLIGHT
        SET STSOLD = STSOLD + 1
        WHERE FNO = flight_no AND DATE = date;
    EXEC SQL INSERT INTO FC(FNO, DATE, CNAME, SPECIAL);
        VALUES (flight_no, date, customer_name, null);
    output("reservation completed")
end. {Reservation}
```
Termination of Transactions

Begin_transaction Reservation
begin
input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD, CAP
 INTO temp1, temp2
 FROM FLIGHT
 WHERE FNO = flight_no AND DATE = date;
if temp1 = temp2 then
 output("no free seats");
 Abort
else
 EXEC SQL UPDATE FLIGHT
 SET STSOLD = STSOLD + 1
 WHERE FNO = flight_no AND DATE = date;
 EXEC SQL INSERT
 INTO FC(FNO, DATE, CNAME, SPECIAL)
 VALUES (flight_no, date, customer_name, null);
 Commit
 output("reservation completed")
endif
end . {Reservation}
Example Transaction – Reads & Writes

Begin_transaction Reservation
begin
 input(flight_no, date, customer_name);
 temp ← Read(flight_no(date).stsold);
 if temp = flight(date).cap then
 begin
 output(“no free seats”);
 Abort
 end
 else begin
 Write(flight(date).stsold, temp + 1);
 Write(flight(date).cname, customer_name);
 Write(flight(date).special, null);
 Commit;
 output(“reservation completed”)
 end
end. {Reservation}
Characterization

- Ti
 - Transaction i
- Read set (RS)
 - The set of data items that are read by a transaction
- Write set (WS)
 - The set of data items whose values are changed by this transaction
- Base set (BS)
 - RS \cup WS
Let

- $O_{ij}(x)$ be some operation O_j of transaction T_i operating on entity x, where $O_j \in \{\text{read, write}\}$ and O_j is atomic

- $OS_i = \bigcup_j O_{ij}$

- $N_i \in \{\text{abort, commit}\}$

Transaction T_i is a partial order $T_i = \{\Sigma_i, <_i\}$ where

- $\Sigma_i = OS_i \cup \{N_i\}$

- For any two operations $O_{ij}, O_{ik} \in OS_i$, if $O_{ij} = R(x)$ and $O_{ik} = W(x)$ for any data item x, then either $O_{ij} <_i O_{ik}$ or $O_{ik} <_i O_{ij}$

- $\forall O_{ij} \in OS_i, O_{ij} <_i N_i$
Example

Consider a transaction T:

- Read(x)
- Read(y)
- $x \leftarrow x + y$
- Write(x)
- Commit

Then

$$\Sigma = \{R(x), R(y), W(x), C\}$$

$$\leq \{(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)\}$$
Assume

\[\leq \{(R(x), W(x)), (R(y), W(x)), (R(x), C), (R(y), C), (W(x), C)\} \]

DAG Representation