
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

An Experimental Analysis of Replicated Copy Control During Site An Experimental Analysis of Replicated Copy Control During Site

Failure and Recovery Failure and Recovery

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Paul Noll

Donna Sabo

Report Number:
87-692

Bhargava, Bharat; Noll, Paul; and Sabo, Donna, "An Experimental Analysis of Replicated Copy Control
During Site Failure and Recovery" (1987). Department of Computer Science Technical Reports. Paper 599.
https://docs.lib.purdue.edu/cstech/599

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN EXPERIMENTAL ANALYSIS OF
REPLICATED COPY CONTROL DURING

SITE FAll-URE AND RECOVERY

Bharat Bhargava
Paul Noll

Donna Sabo

CSD-TR-692
June 1987

An Experimental Analysis of
Replicated Copy Control

During Site Failure and Recovery *

Bharat Bharga1Ja
Paul Noll

Donna Saba

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Abstract

This research is an attempt to understand the effects of failures in replicated copy
control on distributed database systems. The function of replicated copy control is
to maintain the consistency of copies during periods of site failure and recovery. The
objectives of our research are to examine the effect o(failures on the consistency of
replicated copies, to measure the rate at which inconsistency can be removed, and
to measure the overheads associated with replicated copy control. To conclud our
research we have extended the prototype system RAID to utilize the ideas of session
numbers, nominal session vectors, fail-locks, and control transactions for replicated copy
control. A protocol based on these ideas and the read-one/write-all-available strategy
was implemented in a shipped down version of the RAID system which factored out the
costs of network communications, concurrency control, and data input/output. This
system allowed us to perform experiments which did real transaction processing on real
sites with real message passing. In this paper we discuss the results oftbree experiments.
In experiment 1 we measured the overhead for fail-locks maintenance, the overhead for
control transactions, and the overhead for copier transactions. In experiment 2 we
observed the effects of site failure on data availability. In experiment 3 we examined
the maintenance of consistency of replicated copies during site failure and recovery.

~This work was parLia.lly supported by grants from UNISYS Corp., NASA, and AIRMICS.

1

1 Introduction

A distributed database system consists of logical data items which are replicated at different
sites to increase availability and fault tolerance. Maintaining the consistency of replicated
copies during site failllIe and recovery is an ongoing area of research [Bern84] [EIAb85].

The ideas of session numbers, nominal session vectors, fail~locks, and control transac­
tions have been proposed as a design of the read-one/write-all-available copies protocol as
a solution to the replicated copy control problem [Bhar86a] [Dhar87]. To investigate these
ideas, we implemented a stripped down version of the prototype system RAID (Bhar86b]
and conducted experiments to obtain results on the impact of site failure on data availabil­
ity and the consistency of replicated copies. We also measured the overhead of maintaining
consistent copies through periods of site failure and recovery.

The next two subsections discuss a specific replicated copy control algorithm and how
it was implemented. Three experiments are detailed in sections 2, 3, and 4 of this paper.
Appendix A contains the transaction commit processing.

1.1 Background

To maintain consistency of copies during site failure, each transaction employs the read­
one/write-all-available copies (ROWAA) strategy. A protocol using the ROWAA strategy
allows transaction processing as long as a single copy is available. H a transaction on an
operational site knows that a particular site k is down, the transaction does not attempt to
read a copy from site k or to send an update to site k. This saves the time that would be
wasted in waiting for responses from an unavailable site -and also reduces the possibility of
aborting or blocking transactions.

Our protocol design is based on the ideas of session numbers and nominal session vectors
in conjunction with the ROWAA strategy. The proof of correctness of this protocol is given
in [Bhar86aJ. A session number identifies a time period in which a site is up (operational).
A si te which has failed such that it is no longer processing transactions is said to be down.
A session number is also useful in determining if the status of a site has changed during
the execution of a transaction. A nominal session vector for a site consists of the site's own
session number and the perceived session numbers of the other sites in the system. A site
uses its nominal session vector to determine which sites are operational (only operational
sites can participate in a protocol based on the ROWAA strategy).

A control transaction is used to signal a change in a nominal session vector. A control
transaction of type 1 is issued by a recovering site to announce that it is preparing to become
operational. It causes the nominal session vectors of the operational sites to be updated
with the recovering site's new session number and also obtains a copy of the session vector
and fail-locks from an operational site for the recovering site. A control transaction of type
2 is issued by a site to announce that it has determined that one or more sites which were

2

operational have failed. It causes the nominal session vectors of the remaining operational
sites to be updated to indicate the transition of the failed sites from an operational state
to a nonoperational state.

To identify out-oi-date data items on recovering sites, the concept of fail-locks is used
[Bhar87]. This idea is adopted from the concept of a lock in concurrency control algorithms
where a lock on a data item represents the fact to all other transactions that the locked
item is being used by a transaction. A teplicated copy control algorithm uses a fail-lock to
represent the fact that a copy of a data item is being updated while some other copies are
unavailable due to site failure or network partitioning.

In our replicated copy control algorithm, each copy for a data item has a fail-lock bit
for each site. Fail-lock bits are set by an operational site on behalf of a failed site which
has missed an update. A recovering site collects its fail-locks from the operational sites to
detennlne which data items missed updates. A recovering site can distinguish out-of-date
data items from up-to-date data items so the up-to-date data items are made available for
transaction processing. A recoverjng site clears a fail·lock bit for a data item after it has
become refreshed by a write on such an out-of-date data item. A recovering site can use a
copier transaction to refresh an out-of-date copy. A copier transaction causes a read from a
good data item on another operational site and a write to the data item on the recovering
site. Fail-locks should be fully replicated to increase fault tolerance. The replication of
fail-locks is discussed in [Bhar87].

1.2 Implementation Choices for Our Experiments

RAID is an experimental system being developed on VAXes and SUNs under the UNIX op­
erating system [Bhar86b]. Database sites in RAID communicate over an Ethernet network.
We stripped down the processing of the RAID system in order to obtain results which were
relevant to replicated copy control. Factored out were the effects of network communica­
tions, concurrency control, and data input/output. In the resulting system, which we call
mini-RAID, database sites were implemented as Unix processes (on one processor with one
process per site). Due to this, the influence of communication delays on the Ethernet is not
considered. Each site kept a copy of the database, nominal session vector, and fail-locks
and executed the same protocol to maintain the consistency of these objects.

Since our effort was focused on obtaining clear measurements of data availability and
overhead costs the following assumptions were made:

1. We assumed that the distributed database system was equipped with a reliable mes­
sage passing facility: no messages were lost; messages arrived and were processed in
the order that they were senti and no errors in transmission altered the messages.
Our system did not attempt to check for communication errors or correct them.

2. Our system did not include concurrency control and transactions were processed serl-

3

ally. Due to this assumption, our measurements were independent of the interference
and scheduling delays from concurrency control processing.

3. We assumed that each site performed data I/O as necessary. Our system kept data
copies within the virtual memory of each process which represented a site. Due to
this assumption, our measurements were independent of I/O overheads.

4. We assumed that the database was fully replicated. We also assumed, without loss of
generality, that the data items used in OUI experiments represented only the portion
of the database consisting of very frequently referenced data items.

We implemented a nominal session vector as an array of records, with each record
representing a site. The information maintained for a site included its perceived session
number and its state. The possible states of a site included the status information: site is
up, site is down, site is waiting to recover, and site is terminating.

We implemented fail-locks with a bit map for each data item. The size of each bit map
was less than or equal to the number of possible sites. Each bit represented a site with a
value of 1 in the nth bit indicating that a fail-lock was set for the nth site for the data item.
This implementation allowed the fail-lock operations to be performed very quickly.

We implemented a managing site to provide interactive control of system actions.
It was used to cause sites to fail and recover and to initiate a database transaction to a
site. Site failure was simulated by sending a message to a site to indicate that the site
should not participate in any further system actions. A failed site would remain inactive
until recovery was initiated from the managing site. The following system parameters were
defined through the managing site:

• the database size in terms of the number of data items

• the number of database sites for the transaction processing (not including the man­
aging site)

• the maximum number of operations per transaction, where an operation was defined
to be a read or write of a database data item.

A database transaction was generated by the managing site and consisted of a random
number of operations (from 1 to the maximum specified for the system). There was an equal
probability of an operation being a read or a write and each operation was for a randomly
chosen data item from the database. This corresponds to our assumption of considering
only the set of most frequently referenced data items in the database. All of these data items
have approximately equal probabilities of being referenced. In the near future, we hope to
repeat our experiments with the well-known benchmarks ETI from Tandem Corporation
[Anon85J and the Wisconsin benchmark from the University of WisconsIn [Bitt83].

4

Databalie transactions were processed by a two-phase commit protocol. The site which
received a transaction from the managing site acted as the coordinator for the protocol. It
will be referred to in this paper as the coordinating site. The remaining database sites which
were operational at the time the transaction started wHl be referred to as participating sites.
The precise actions of a coordinating site and a participating site are described more fully
in Appendix A of this paper.

Fail-locks were maintained during the commitment of data copies. As a transaction
committed a particular copy on a site, the nominal session vector was examined and the
~.~k~~~~~~h~~~ilie~tb~~d~t~s~~each

failed site. Note that this resulted in some fail-Iod bits being re-cleared for an operational
site. However, for our system this implementation was. more efficient than conditionally
performing fail-lock maintenance based on a site's state.

A copier transaction was issued on demand by a coordinating site during its recovery
period and was completed before phase one of the commit protocol began. H a coordinating
site was unable to complete all necessary copier transactions the database transaction was
aborted. A special type of transaction was implemented to allow a coordinating site to
inform other sites of the fail-lock bits cleared by copier transactions. Thls special transaction
was initiated by a coordinating site after all necessary copier transactions had been issued
and the correct values for the data items in the copier transactions had been written at the
coordinating site.

5

2 Experiment 1: Overhead Measurements

An experiment was conducted to measure the performance of the ROWAA protocol. The
overhead associated with keeping consistent replicated copies was studied by three factors:

• the processing necessary for fail-lock maintenance -

• the time required by control transactions

• the time required by copier transactions.

2.1 Design of Experiment

This experiment used the mini-RAID system described in the previous section of this paper.
Sets of transactions were run through the system repeatedly over a two month period and
the execution times of processing events were recorded after a stable state of transaction
processing was achieved. The times presented here are the averages of the recorded times.
Execution times were measured in the software by referencing the processor clock.

It should be stressed that the average times are not intended to represent the absolute
performance of the system but rather the performance of the system for a particular con­
figuration of system parameters. Thus the comparison of average times is of more interest
than the numerical value of each average time.

Intersite communications were an important component of execution times. Since sites
were abstracted as Unix processes on a single processor, these communication costs reduced
to the cost of interprocess communications. The average time for a single communication
from one site to another site was measured as nine milliseconds.

2.2 Measured Data

The following system parameters were used:

• Size of the frequently referenced portion of the database = 50 items

• Number of sites = 4

• Maximum transaction size = 10

2.2.1 Overhead for Fail-locks Maintenance

The overhead for fail-locks maintenance is the cost of clearing and setting fail-locks during
the commitment of data copies. This commitment is part of the two phase commit protocol
used for database transaction processing. Measurements were made by running a Bet of

6

transactions with the fail-locks maintenance code removed from the software and then re­
running the same set of transactions with the fail-locks maintenance code included in the
software. The transaction time on a coordinating site was taken as the elapsed time between
the initial reception of the database transaction and the completion of the two phase commit
protocol. The transaction time on a participating site was taken as the elapsed time between
the start of the site's participation in phase one of the protocol and the completion of the
site's participation in phase two. The transactions did not generate any copier transactions.

Coordinating site
Participating site

Transaction
time without

fail-locks code

176 ms
90 ms

Transaction
time with

fail-locks code

186 ms
97 ms

2.2.2 Overhead for Control Transactions

Times were measured for the processing of control transactions. The time for a type 1
control transaction to complete at a recovering site was 190 milliseconds. This includes the
recovery announcement which goes from the recovering site to each operational site and the
installation of a new session vector and fail-locks. The time for a type 1 control transaction
is dependent on the number of sites in the system because an intersite communication is
needed for each recovery announcement.

The time for a type 1 control transaction to complete at an operational site was 50
milliseconds. It consists of the formatting and sending of a message with session vector
and fail-locks. Since only one intersite communication is required (between the operational
site and the recovering site), this time is independent of the number of sites in the system.
However, it is dependent on the size of the database because a large increase in the number of
data items (and thus fail-locks) would require more storage for fail-locks and could increase
the amount of time to transmit the message contaiILing the fail-locks.

The time for a type 2 control transaction to complete was 68 milliseconds. This includes
the sending of the failure announcement to a particular site and the updating of the session
vector at that site. This time is independent of the number of sites in the system.

2.2.3 Overhead for Copier Transactions

Measurements were made for a database transaction which included the generation of one
copier transaction. The scenario was that a coordinating site received a database transaction
which included a read operation for a fail-locked copy. A copier transaction was then run

7

to get an up-to--date copy. The transaction time was taken as the elapsed time between the
initial reception of the database transaction, the completion of the copier transaction, and
the completion of the two phase commit protocol. The transaction time was an average of
270 milliseconds.

The overhead for a site which received a copy request was 25 milliseconds. This includes
the time to format a response with the specified copies and the sending of the response to
the coordinating site.

The time for a transaction to clear fail-locks includes the sending of the message to a
particular site and the clearing of the appropriate fail-locks on that site. This time was
mea.sured to be 20 milliseconds.

The transaction time of 270 milliseconds wa.s an increase of 45% over the time for
a database transaction which generated no copier transactions. However, approximately
30% of this cost was made up of the cost of transactions needed to clear fail-locks after
a copier transaction. Therefore, an implementation which eliminated these transactions
by embedding the necessary fail-locks information in the two phase commit protocol could
significantly reduce this overhead.

2.3 Conclusions of Experiment 1

The overhead in fail·locks maintenance caused a slight Increase in transaction processing
times. The potential impact of this overhead wa.s lessened by the incorporation of fail-locks
processing into the commit protocol.

The overhead for a control transaction was comparable to the cost of a small database
transaction. However, the relative infrequency of the control transactions would greatly
reduce the average cost of this overhead.

The overhead for copier transactions had an impact on a recovering site. There was a
significant increase in time for a database transaction which generated a copier transaction.
Therefore, this overhead may require the most consideration when making design choices.
We discuss this point further in experiment 2. In any case, the increased overhead for a
recovering site must be weighed against the increased data availability achieved for the site.

8

3 Experiment 2: Data Availability on a Recovering Site

The ROWAA protocol provides high data availability on a recovering site since a down
site may become operational and quickly begin transaction processing using the up·tcr-date
portion of its database. To further increMe data availability and fault tolerance we must
ensure that a site with an out-or-date copy refreshes the copy before all other sites with an
up-to-date copy go down. In this experiment we studied the rate at which the fail-locks for
out-of-date copies are cleared during the recovery period.

3.1 Design of Experiment

The mini-RAID system described earlier was used for this experiment. For a simple two site
case, we failed one site and processed transactions until most of the copIes on the down site
were fail-locked by the operational site. We then brouglit the failed site up and processed
transactions until the recovering site had completely recovered (Le., all out-of-date copies
were refreshed). Transactions were sequentially numbered from 1 for identification.

3.1.1 Measured Data

The parameters below were chosen to enable us to observe the recovery period for a simple
system. If the ratio of the maximum transaction size to the number of data items being
considered is large then most of the data items would be fail locked for the down site after
processing only a few transactions.

• Size of the frequently referenced portion of the database = 50 items

• Number of sites = 2 (sites 0 and 1)

• Maximum transaction size = 5

To study a complete recovery period we used the following scenario for the experiment:

• Inltially both sites were up with consistent and up-tO-date copies.

• Before transaction 1, we caused site 0 to fail.

• For transactions 1-100 we kept site 0 down and processed transactions on site 1.

• Before transaction 101, site 0 was brought up.

• Transactions were processed on both sites until site 0 was completely recovered with
all fail-locks cleared.

9

We observed that processing 100 transactions on site 1 while site 0 was down resulted in
setting fail-locks for over 90% of the copies on site O. After bringing site 0 up, 160 additional
transactions were needed in order to completely recover site O.

For each transaction we recorded the number of fail-locks set, the number of fail-locks
cleared, and the number of copier transactions requested. The graph in Figure 1 illustrates
the measured data in terms of the number of fail-locked copies after the processing of a
certain number of transactions. The peak in the graph corresponds to the point at which
site a was brought up and began its recovery. To the left of the peak site 0 was down and
fail-locks were being set on site 1 for the copies that were being updated on site 1 but not
on site o. To the right of the peak fail-locks were cleared for the out-of-date copies being
refreshed on site 0 by write operations in transactions and by copier transactions requested
by the recovering site. Only two copier transactions were requested by site a during its
recovery period.

Database size = 50 Transaction size = 5

50

Number of
Fail-Locks

Set

40

30

20

10

o
o 20 40 60 80 100 120 140 160 180 200 220 240 260

Number of Transactions

Figure 1: Data availabHity during failure and recovery

10

3.1.2 Analysis of Data

The graph shows that while a high percentage of the database is fail-locked, fail-locks
are cleared very rapidly. ~ the percentage of the data items fail-locked decreases, more
transactions are required to clear fail-locks. The first 10 fail·locks were cleared in only 6
transactions and the last 10 fail· locks were cleared in 106 transactions!

3.2 Conclusions of Experiment 2

We conclude that the rate at which fail~locks are cleared is directly related to the percentage
of data items fail-locked. Future implementations could take advantage of this fact to
decreaBe the length of the recovery period.

One idea is to divide the recovery period into two steps. Before beginning the first step,
a recovering site computes the percentage of the frequently referenced copies that are fail­
locked. If this percentage is greater than some threshold value, the recovering site enters
step one. Otherwise the recovering site omits the first step and enters step two. In the
first step copies are refreshed in the same manner as in our implementation, (Le., by normal
transaction processing and by the recovering site requesting copier transactions on demand).
Once the percentage of copies fail-locked drops below the threshold the site enters step two
of its recovery. In the second step the recovering site begins to issue copier transactions
in a "batch" mode. Copier transactions are generated even though no transactions have
arrived on the recovering site with a read request for any of the remaining out-of-date copies.
This causes the out-of-date copies to be refreshed and hastens the completion of recovery.
This two step method would increase fault tolerance by decreasing the possibility of a site's
recovery being blocked by the failure of other sites.

In a partially replicated database system using the ROWAA protocol, data availability
could be increased by creating a control transaction of type 3. Using this control transaction,
a. site having the last up-to-date copy of a data item would create a copy on a back-up site
that has no copy of that data item (assume a back-up site exists or we have a partially
replicated database). This increased data availability would have the cost of the type 3
control transaction plus the cost of removing copies of data items from sites once these
addltional caples were not needed any more.

11

4 Experiment 3: Consistency of Replicated Copies

In this experiment we observed how site failures affect the consistency of replicated copies.
Note that since each set fail-lock represents an inconsistent copy, the number of fail-locks
set is a measure of inconsistency.

4.1 Design of Experiment

The mini-RAID system that we implemented was used for this experiment. We observed
two simple scenarios with multiple sites recovering concurrently.

4.2 Measured Data

4.2.1 Scenario 1

The following parameters were chosen for the first scenario.

• Size of the frequently referenced portion of the database = 50 items.

• Maximum transaction size = 5

• Number of sites = 2

Transactions were processed and sites were failed in the following order.

• Initially both sites were up with consistent and up-to-date copies.

• Before transaction 1, site 0 failed.

• For transactions 1-25 we kept site 0 down and processed transactions on site 1.

• Before transaction 26, we brought site 0 up and failed site 1.

• For transactions 26-50 we kept site 1 down and processed transactions on site O.

• Before transaction 51, we brought site 1 up.

• Transactions 51-120 were processed on both sites.

The graph in Figure 2 illustrates the measured data for both sites. The basic shape of
the graph for each site is similar to the graph of a single site recovering shown in Figure 1.
In this scenario the fact that site 1 went down for part of site D's recovery period caused
some of the data items fail locked on site 0 to be totally unavailable. During this time
fail-locks were cleared on site 0 only by transaction writes because site 1 was not available
to receive copier transactions. The inability to get up-to-date copies via copier transactions
forced site 0 to abort 13 transactions.

12

Database size = 50 Transaction size = 5

30

25

20

Number of
Fail-Locks IS

Set

10

5

0
,..

-- site 0

...... Rite 1

o 10 20 30 40 50 60 70 80 90 100 110 120 130

Number of Transactions

Figure 2: Database Inconsistency (scenario 1)

4.2.2 Scenario 2

The parameters below were used for the second scenario.

• Size of the frequently referenced portion of the database = 50 items.

• Maximum transaction size = 5

• Number of sites = 4

Transactions were processed and sites were failed in the order listed below.

• Initially all sites were up with consistent and up-to-date copies.

• Before transaction 1, we failed site O.

• For transactions 1-25 we kept site adown and processed transactions on the remaining
sites.

13

• Before transaction 26, we brought site 0 up and failed site 1.

• For transactions 26-50 we kept site 1 down and processed transactions on the remain­
ing sites.

• Before transaction 51, we brought site 1 up and failed site 2.

• For transactions 51-75 we kept site 2 down and processed transactions on the remain­
ing sites.

• Before transaction 76, we brought site 2 up and failed site 3.

• For transactions 76-100 we kept site 3 down and processed transactions on the re­
maining sites.

• Before transaction 101, we brought site 3 up.

• Transactions 101-160 were processed on all sites.

The graph in Figure 3 illustrates the measured data for each site. Again, the basic
shape of the graph for each site is similar to that for the single site recovery. Since the sites
went down singly in succession and only once, an up-to-date copy of a data item was always
available on some site. Thus the sites were able to recover without any aborted transactions
due to data being unavailable.

14

Database size = 50 Transaction size = 5

- sile a

---sitel

..... Rite 2

. . . sile 3

: .-,- -,

,- ...
,

"

"

r"'!..., -,, ,,,,-,
I:'

L'I
:1.. I,

r,
r,
"I , ..

_____ J• : ..

30

25

20

Number of
Fail-Locks 15

Set

10

5

0

Number of Transactions

Figure 3: Database Inconsistency (scenario 2)

4.3 Conclusion of Experiment 3

During site failure the copy of the database on the failed site quickly becomes inconsistent
with the other copIes of the database on operational sites. Write operations in database
transactions and copier transactions .requested by the recovering site are able to bring the
database back to a consistent state relatively fast.

15

5 Conclusions

A distributed database system that employs the ROWAA protocol has a hlgher degree
of data availability at the operational sites (since failed sites can he ignored) and at the
recovering sites (due to fa.il~locks). In experiment 1 we.determined the overheads present
in QUI implementation of the protocol. The cost of the overhead for copier transactions
may he the most important consideration for implementors. We found that the response
time for database transactions on a recovering site which required copier transactions was
significantly higher than database transactions not requiring copier transactions.

In experiment 2 we observed that the rate at which fail-locks were cleared during site
recovery was dependent on the percentage of copies fail-locked. Based on our analysis, we
suggested a two step recovery period to increase the fault tolerance of a system. We also
suggested the creation of control transaction 3 to increase data availability.

In experiment 3 we examined consistency control dudng site failure and recovery. We
found that fail-locks can properly track the location of the correct values for data items even
when these values are spread out over multiple sites. This allowed transaction processing
to continue after the occurrence of successive site failures.

The fact that transactions were randomly generated in our implementation may be of
concern to some who say that in reality transactions are not random and actually all data
items are accessed with different probabilities. We made the assumption that in a database
there is a subset of data items that is frequently referenced. We also assumed that the data
items in this set have approximately equal probabilities of being accessed. The remaining
part of the database is accessed less frequently. Including these rarely accessed data items
in our experiments would not significantly alter our results.

Another issue that we must address is the fact that studies have shown that typically
reads are far more common than wdtes. We have implemented the number of reads to be
approximately equal to the number of writes. This assumption may be to our disadvantage
during the time that fail-locks are being set. A fail lock is set for each down site every
time a write operation is performed on a data item. Tills reduces our data availability
more quickly than if we had assumed that writes occur less often than reads. However, this
assumption also has the effect of increasing data availability more quickly during recovery
with fewer copier transactions. In our implementation many of the fail-locks were cleared
by writes instead of by copier transactions requested by a recovering site. If reads occur
more commonly than writes then more copier transactions would probably be requested by
a recovering site during recovery. Since the probabilities remained constant throughout the
experiments, valid comparisons can be made between the scenarios.

We implemented our mini-RAID system in the C programming language under the Unix
operating system. Interested researchers may contact us for a copy of the source code to
repeat these expedments or to conduct their own.

In the near future, we hope to repeat our experiments using benchmark sets of transac-

16

tions. We also plan to run this protocol in the complete RAID system and take into account
other fadors such as concurrency control and communication delays across machines.

17

A Transaction Commit Protocol

This appendix contains a pseudo-code description of the two phase commlt protocol used
by our system. Although it is not explicitly stated in this description, multiple copier
transactions can be generated for a database transaction.

A.I Actions at the coordinating site

receive database transaction from managing site;

if transaction contains read operation for a fail-locked copy then
/* run copier transaction :1</
issue copy request to an operational site which has up-to-date COPYi

if copy update sent back by operational site then
update database and clear fail-lock(s);
run special transaction to clear fail-locks at other sitesj

else /* site to which copy request sent is now down *.J
abort database transaction;
Iun control type 2 transaction to announce failure;

end if
end if

if database transaction not aborted then
/* begin phase one of protocol */
issue copy update for written items to every operational site;

if ack received from all participating sites then
/* begin phase two of protocol */
send commit indication to participating sites;

if commit ack not received from all participating sites then
run control type 2 transaction to announce failure;

end if

commit database data items;
update fail-locks for data items;

else /* a participating site has failed */

18

abort database transaction;
run control type 2 transaction to announce failure;

end if
end if

A.2 Actions at a participating site

/* phase one of protocol */
receive copy update from coordinating site;
send ack to coordinating site;

if commit indication received then
commit database data items;
update fail-locks for data items;

else if abort indication received then
discard the copy updates;

else /* coordinating si te has failed */
run control type 2 transaction to announce failure;

end if

19

References

[Anon85} Anon, ct. aI., IIA measure of transaction processing power", Datamation, vol. 31,
no. 7, 112-118, April!, 1985.

[Dern84J P. A. Bernstein, and N. Goodman, "An algorithm for concurrency control and
recovery in replicated distributed databases", ACM Trans. Database Syst., vol. 9, no.
4, 596-615, De<:. 1984.

[Bhar86a] B. Bhargava, and Z. Ruan, "Site recovery in replicated distributed database
systems", Sixth IEEE International Conference on Distributed Computing Systems,
621-627, May 1986.

[Bhar86b] B. Bhargava, and J. Riedl, "The design of an adaptable distributed system"
IEEE COMPSAC Conference, 114-122, Oct. 1986.

[Bhar87J B. Bhargava, "Transaction processing and consistency control of replicated copies
during failures," Journal of Management Information Systems, Oct. 1987 (to appear).

[Bitt83] D. Bitton, D.J. DeWitt, and C. Turbyfil, "Benchmarking database systems: a
systematic approach", Proceedings VLDB Conference, Oct. 1983.

[ElAb85] A. EI Abbadi, D. Skeen, and F. Christian, IIAn efficient fault tolerant protocol for
replicated data management", Proc. 4th ACM Symp. on Princ. of Database Systems,
Portland, Oregon, 215-229, March, 1985.

20

	An Experimental Analysis of Replicated Copy Control During Site Failure and Recovery
	Report Number:
	

	tmp.1307986960.pdf.jgHec

