
94 COMMUNICATIONS OF THE ACM | MARCH 2020 | VOL. 63 | NO. 3

research highlights

DOI:10.1145/3378933

Pivot Tracing: Dynamic
Causal Monitoring for
Distributed Systems
By Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca

Abstract
Monitoring and troubleshooting distributed systems are
notoriously difficult; potential problems are complex, var-
ied, and unpredictable. The monitoring and diagnosis tools
commonly used today—logs, counters, and metrics—have
two important limitations: what gets recorded is defined a
priori, and the information is recorded in a component- or
machine-centric way, making it extremely hard to correlate
events that cross these boundaries. This paper presents
Pivot Tracing, a monitoring framework for distributed sys-
tems that addresses both limitations by combining dynamic
instrumentation with a novel relational operator: the
 happened-before join. Pivot Tracing gives users, at runtime,
the ability to define arbitrary metrics at one point of the sys-
tem, while being able to select, filter, and group by events
meaningful at other parts of the system, even when crossing
component or machine boundaries. Pivot Tracing does not
correlate cross-component events using expensive global
aggregations, nor does it perform offline analysis. Instead,
Pivot Tracing directly correlates events as they happen by
piggybacking metadata alongside requests as they execute.
This gives Pivot Tracing low runtime overhead—less than 1%
for many cross-component monitoring queries.

1. INTRODUCTION
Monitoring and troubleshooting distributed systems are
hard. The potential problems are myriad: hardware and soft-
ware failures, misconfigurations, hot spots, aggressive ten-
ants, or even simply unrealistic user expectations. Despite the
complex and unpredictable nature of these problems, most of
the monitoring and diagnosis tools commonly used today—
logs, counters, and metrics—have at least two fundamental
limitations: what gets recorded is defined a priori, at develop-
ment or deployment time, and the information is captured in
a component- or machine-centric way, making it extremely
difficult to correlate events that cross these boundaries.

While there has been great progress in using machine
learning techniques and static analysis to improve the qual-
ity of logs and their use in troubleshooting,16 logs carry an
inherent tradeoff between recall and overhead, as what gets
logged must be defined a priori.

Addressing this limitation, dynamic instrumentation sys-
tems such as Fay7 and DTrace4 enable the diagnosis of unan-
ticipated performance problems in production systems3 by
providing the ability to select, at runtime, which of a large
number of tracepoints to activate. Dynamic instrumenta-
tion, however, is still limited when it comes to correlating

events that cross address-space or OS-instance boundaries.
This limitation is fundamental, as neither Fay nor DTrace
can affect the monitored system to propagate the monitor-
ing context across these boundaries.

In this paper, we present Pivot Tracing, a monitoring
framework that combines dynamic instrumentation with
causal tracing techniques8, 23 to fundamentally increase the
power and applicability of either technique. Pivot Tracing
gives operators and users, at runtime, the ability to obtain
an almost arbitrary metric at one point of the system, while
selecting, filtering, and grouping by causally preceding events
from other parts of the system, even when crossing compo-
nent or machine boundaries. Pivot Tracing exposes these
features by modeling system events as the tuples of a stream-
ing, distributed data set. Users can write relational queries
about system events using Pivot Tracing’s LINQ-like query
language. Pivot Tracing compiles queries into efficient instru-
mentation code and dynamically installs the code at the
sources of events specified in the query, returning a stream-
ing data set of results to the user.

The key contribution of Pivot Tracing is the “happened-
before join” operator, →, that enables queries to be con-
textualized by Lamport’s happened-before relation, →.15
Using →, queries can group and filter events based on proper-
ties of any events that causally precede them in an execution.

To track the happened-before relation between events,
Pivot Tracing borrows from causal tracing techniques,
and utilizes a generic metadata propagation mechanism
for passing partial query execution state along the execu-
tion path of each request. This enables inline evaluation
of joins during request execution, drastically mitigating
query overhead and avoiding the scalability issues of global
evaluation.

We have implemented and open-sourced a prototype of
Pivot Tracing for Java-based systems, and instrumented
a variety of distributed systems including HDFS, HBase,
MapReduce, Tez, YARN, and Spark. In our full evaluation,16
we show that Pivot Tracing can effectively identify a diverse
range of root causes such as software bugs, misconfigura-
tion, and limping hardware. We show that Pivot Tracing is
dynamic, extensible to new kinds of analysis, and enables
cross-tier analysis between inter-operating applications
with low execution overhead.

The original version of this paper was published in
Proceedings of the 25th Symposium on Operating Systems
Principles (2015), ACM. New York, NY, 378–393.

http://dx.doi.org/10.1145/3378933

MARCH 2020 | VOL. 63 | NO. 3 | COMMUNICATIONS OF THE ACM 95

2. MOTIVATION
2.1. Pivot Tracing in action
In this section, we motivate Pivot Tracing with a monitoring
task on the Hadoop stack. Our goal here is to demonstrate some
of what Pivot Tracing can do, and we leave details of its design
and implementation to Sections 3 and 4, respectively.

Suppose we are managing a cluster of eight machines and
want to know how disk bandwidth is being used across the
cluster. On these machines, we are simultaneously running
clients with workloads in HBase, HDFS, and MapReduce.
It suffices to know that HBase is a distributed database
that accesses data through HDFS, a distributed file system.
MapReduce, in addition to accessing data through HDFS,
also accesses the disk directly to perform external sorts and
to shuffle data between tasks. Figure 1 depicts this scenario
along with the following client applications:

FSread4m Random closed-loop 4MB HDFS reads
FSread64m Random closed-loop 64MB HDFS reads
Hget 10kB row lookups in a large HBase table
Hscan 4MB table scans of a large HBase table
MRsort10g MapReduce sort job on 10GB of input data
MRsort100g MapReduce sort job on 100GB of input data

By default, the systems expose a few metrics for disk
consumption, such as disk read throughput aggregated by

each HDFS DataNode. To reproduce this metric with Pivot
Tracing, we define a tracepoint for the DataNodeMetrics class,
in HDFS, to intercept the incrBytesRead(int delta) method.
A tracepoint is a location in the application source code where
instrumentation can run, cf. Section 3. We then run the fol-
lowing query, in Pivot Tracing’s LINQ-like query language17:

Q1 : From incr In DataNodeMetrics.incrBytesRead
GroupBy incr.host
Select incr.host, SUM(incr.delta)

This query causes each machine to aggregate the delta argu-
ment each time incrBytesRead is invoked, grouping by the host
name. Each machine reports its local aggregate every second,
from which we produce the time series in Figure 2a.

Things get more interesting, though, if we wish to mea-
sure the HDFS usage of each of our client applications. HDFS
only has visibility of its direct clients, and thus an aggre-
gate view of all HBase and all MapReduce clients. At best,
applications must estimate throughput client side. With
Pivot Tracing, we define tracepoints for the client protocols
of HDFS (DataTransferProtocol), HBase (ClientService), and
MapReduce (ApplicationClientProtocol), and use the name of
the client process as the group by key for the query. Figure 2b
shows the global HDFS read throughput of each client appli-
cation, produced by the following query:

Q2 : From incr In DataNodeMetrics.incrBytesRead
Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName, SUM(incr.delta)

The -> symbol indicates a happened-before join. Pivot Tracing’s
implementation will record the process name the first time
the request passes through any client protocol method and
propagate it along the execution. Then, whenever the exe-
cution reaches incrBytesRead on a DataNode, Pivot Tracing
will emit the bytes read or written, grouped by the recorded
name. This query exposes information about client disk
throughput that cannot currently be exposed by HDFS.

Figure 2c demonstrates the ability for Pivot Tracing to
group metrics along arbitrary dimensions. It is generated

Disk

HBase MapReduce

HDFS

HGET

HSCAN

FSREAD4M

FSREAD64M

MRSORT10G

MRSORT100G

M
achines

Figure 1. Six client workloads access the disks on eight cluster
machines indirectly via HBase, a distributed database; HDFS, a
distributed file system; and MapReduce, a data processing framework.

Time (min)

0

50

100

150

200

0 5 10 15

H
D

FS
 t

hr
ou

gh
pu

t
(M

B
/s

)

Host A Host E
Host B Host F
Host C Host G
Host D Host H

Time (min)

H
D

FS
 t

hr
ou

gh
pu

t
(M

B
/s

)

0

50

100

150

200

0 5 10 15

MRSORT100G HSCAN
MRSORT10G HGET

FSREAD4M
FSREAD64M

(a) (b) (c)
Disk write throughputDisk read throughput

Host A
Host B
Host C
Host D
Host E
Host F
Host G
Host H

Σcluster

HDFS Map Shuffle Reduce Σmachine

Figure 2. In this example, Pivot Tracing exposes a low-level HDFS metric grouped by client identifiers from other applications. Pivot Tracing can
expose arbitrary metrics at one point of the system, while being able to select, filter, and group by events meaningful at other parts of the system,
even when crossing component or machine boundaries. (a) HDFS DataNode throughput per machine from instrumented DataNodeMetrics. (b)
HDFS DataNode throughput grouped by high-level client application. (c) Pivot table showing disk read and write sparklines for MRsort10g. Rows
group by host machine; columns group by source process. Bottom row and right column show totals, and bottom-right corner shows grand total.

research highlights

96 COMMUNICATIONS OF THE ACM | MARCH 2020 | VOL. 63 | NO. 3

by two queries similar to Q2 that instrument Java’s FileInput-
Stream and FileOutputStream, still joining with the client pro-
cess name. We show the per-machine, per-application disk
read and write throughput of MRSORT10G from the same
experiment. This figure resembles a pivot table, where
summing across rows yields per-machine totals, summing
across columns yields per-system totals, and the bottom
right corner shows the global totals. In this example, the cli-
ent application presents a further dimension along which
we could present statistics.

Query Q1 above is processed locally, while query Q2
requires the propagation of information from client pro-
cesses to the data access points. Pivot Tracing’s query opti-
mizer installs dynamic instrumentation where needed, and
determines when such propagation must occur to pro-
cess a query. The out-of-the box metrics provided by HDFS,
HBase, and MapReduce cannot provide analyses like those pre-
sented here. Simple correlations—such as determining which
HDFS datanodes were read from by a high-level client applica-
tion—are not typically possible. Metrics are ad hoc between
systems; HDFS sums IO bytes, while HBase exposes opera-
tions per second. There is very limited support for cross-tier
analysis: MapReduce simply counts global HDFS input and
output bytes; HBase does not explicitly relate HDFS metrics
to HBase operations.

2.2. Pivot Tracing overview
Figure 3 presents a high-level overview of how Pivot Tracing
enables queries such as Q2. We refer to the numbers in the fig-
ure (e.g., ①) in our description. Full support for Pivot Tracing
in a system requires two basic mechanisms: dynamic code
injection and causal metadata propagation.

Queries in Pivot Tracing refer to variables exposed by
one or more tracepoints—places in the system where Pivot
Tracing can insert instrumentation. Tracepoint defini-
tions are not part of the system code, but are rather instruc-
tions on where and how to change the system to obtain the
exported identifiers. Tracepoints in Pivot Tracing are similar
to pointcuts from aspect-oriented programming,14 and can
refer to arbitrary interface/method signature combinations.
Tracepoints are defined by someone with knowledge of the
system, maybe a developer or expert operator, and define the
vocabulary for queries (①). They can be defined and installed
at any point in time, and can be shared and disseminated.

Pivot Tracing models system events as tuples of a stream-
ing, distributed dataset. Users submit relational queries over
this dataset (②), which get compiled to an intermediate repre-
sentation called advice (③). Advice uses a small instruction set
to process queries, and maps directly to code that local Pivot
Tracing agents install dynamically at relevant tracepoints (④).
Later, requests executing in the system invoke the installed
advice each time their execution reaches the tracepoint.

We distinguish Pivot Tracing from prior work by support-
ing joins between events that occur within and across pro-
cess, machine, and application boundaries. The efficient
implementation of the happened before join requires advice
in one tracepoint to send information along the execu-
tion path to advice in subsequent tracepoints. This is done
through a new baggage abstraction, which uses causal meta-
data propagation (⑤). In query Q2, for example, cl.procName
is packed in the first invocation of the ClientProtocols tra-
cepoint, to be accessed when processing the incrBytesRead
tracepoint.

Advice in some tracepoints also emit tuples (⑥), which
get aggregated locally and then finally streamed to the client
over a message bus (⑦ and ⑥).

2.3. Monitoring and troubleshooting challenges
Pivot Tracing addresses two main challenges in monitor-
ing and troubleshooting. First, when the choice of what to
record about an execution is made a priori, there is an inher-
ent tradeoff between recall and overhead. Second, to diag-
nose many important problems one needs to correlate and
integrate data that crosses component, system, and machine
boundaries.

One size does not fit all. Problems in distributed systems
are complex, varied, and unpredictable. By default, the infor-
mation required to diagnose an issue may not be reported by
the system or contained in system logs. Current approaches
tie logging and statistics mechanisms into the development
path of products, where there is a mismatch between the
expectations and incentives of the developer and the needs
of operators and users. Panelists at SLAML2 discussed the
important need to “close the loop of operations back to de-
velopers.” According to Yuan et al.,25 regarding diagnosing
failures, “(. . .) existing log messages contain too little infor-
mation. Despite their widespread use in failure diagnosis, it
is still rare that log messages are systematically designed to
support this function.”

This mismatch can be observed in the many issues raised
by users on Apache’s issue trackers16 requesting new met-
rics, changes to aggregation methods, or new breakdowns
of existing metrics. Many issues remain unresolved due to
developer pushback or inertia.

Eventually, applications may be updated to record more
information, but this has effects both in performance and
information overload. Users must pay the performance over-
heads of any systems that are enabled by default, regard-
less of their utility. For example, HBase SchemaMetrics
were introduced to aid developers, but all users of HBase
pay the 10% performance overhead they incur.10 The HBase
user guide carries the following warning for users wishing
to integrate with Ganglia: “By default, HBase emits a large

Tracepoint Tracepoint w/ advice

Execution path Baggage propagation

PT Agent

PT Agent

Pivot Tracing
Frontend

Instrumented System

Query {

Message busAdvice Tuples

1

2

3

4
5

4 6

7

8

Figure 3. Pivot Tracing overview (Section 2.2).

MARCH 2020 | VOL. 63 | NO. 3 | COMMUNICATIONS OF THE ACM 97

level, it aims to enable flexible runtime monitoring by corre-
lating metrics and events from arbitrary points in the system.
The challenges outlined in Section 2 motivate the following
high-level design goals:

1. Dynamically configure and install monitoring at
runtime.

2. Low system overhead to enable “always on” monitoring.
3. Capture causality between events from multiple pro-

cesses and applications.

Tracepoints. Tracepoints provide the system-level entry
point for Pivot Tracing queries. A tracepoint typically corre-
sponds to some event: a user submits a request, a low-level
IO operation completes, an external RPC is invoked, etc.
A tracepoint identifies one or more locations in the system
code where Pivot Tracing can install and run instrumenta-
tion, such as the name of a method. Since Pivot Tracing uses
dynamic instrumentation to install queries, tracepoints do
not need to be defined a priori, nor do they require a priori
modification of system code; they are simply references to
locations in the source code. A tracepoint is only material-
ized once a query is installed that references it. Tracepoints
export named variables that can be accessed by instrumen-
tation, such as method arguments or local variables, as well
as several default variables: host, timestamp, process id,
process name, and the tracepoint definition.

Whenever execution of the system reaches a tracepoint,
any instrumentation configured for that tracepoint will be
invoked, generating a tuple with its exported variables. These
are then accessible to any instrumentation code installed at
the tracepoint.

Query language. Pivot Tracing enables users to express
high-level queries about the variables exported by one or more
tracepoints. We abstract tracepoint invocations as streaming
datasets of tuples; Pivot Tracing queries are therefore rela-
tional queries across the tuples of several such datasets.

To express queries, Pivot Tracing provides a parser for LINQ-
like text queries such as those outlined in Section 2. Table 1
outlines the query operations supported by Pivot Tracing.
Pivot Tracing supports several typical operations including
projection (Π), selection (σ), grouping (G), and aggregation
(A). Pivot Tracing aggregators include Count, Sum, Max, Min,
and Average. Pivot Tracing also defines the temporal filters
MostRecent, MostRecentN, First, and FirstN, to take the 1 or N
most or least recent events. Finally, Pivot Tracing introduces
the happened-before join query operator (→).

Happened-before joins. A key contribution of Pivot Tracing
is the happened-before join query operator. Happened- before
join enables the tuples from two Pivot Tracing queries to be
joined based on Lamport’s happened before relation, →.15
For events a and b occurring anywhere in the system, we say
that a happened before b and write a → b if the occurrence of
event a causally preceded the occurrence of event b and they
occurred as part of the execution of the same request.a If a

number of metrics per region server. Ganglia may have dif-
ficulty processing all these metrics. Consider increasing the
capacity of the Ganglia server or reducing the number of
metrics emitted by HBase.”

The glut of recorded information presents a “needle-in-a-
haystack” problem to users21; while a system may expose infor-
mation relevant to a problem, for example, in a log, extracting
this information requires system familiarity developed over a
long period of time. For example, Mesos cluster state is exposed
via a single JSON endpoint and can become massive, even if a
client only wants information for a subset of the state.16

Dynamic instrumentation frameworks such as Fay,7
DTrace,4 and SystemTap20 address these limitations, by allow-
ing almost arbitrary instrumentation to be installed dynam-
ically at runtime, and have proven extremely useful in the
diagnosis of complex and subtle system problems.3 Because
of their side-effect-free nature, however, they are limited in
the extent to which probes may share information with each
other. In Fay, only probes in the same address space can
share information, while in DTrace the scope is limited to a
single operating system instance.

Crossing boundaries. This brings us to the second challenge
Pivot Tracing addresses. In multi-tenant, multi-application
stacks, the root cause and symptoms of an issue may appear
in different processes, machines, and application tiers, and
may be visible to different users. A user of one application
may need to relate information from some other dependent
application in order to diagnose problems that span multiple
systems. For example, HBASE-41459 outlines how MapRe-
duce lacks the ability to access HBase metrics on a per-task
basis, and that the framework only returns aggregates across
all tasks. MESOS-194918 outlines how the executors for a task
do not propagate failure information, so diagnosis can be dif-
ficult if an executor fails. In discussion the developers note:
“The actually interesting/useful information is hidden in
one of four or five different places, potentially spread across
as many different machines. This leads to unpleasant and
repetitive searching through logs looking for a clue to what
went wrong. (. . .) There’s a lot of information, that is, hidden
in log files and is very hard to correlate.”

Prior research has presented mechanisms to observe or
infer the relationship between events and studies of logging
practices conclude that end-to-end tracing would be helpful
in navigating the logging issues they outline.16

A variety of these mechanisms have also materialized in
production systems, for example, Google’s Dapper,23 Apache’s
HTrace,1 and Twitter’s Zipkin.24 These approaches can
obtain richer information about particular executions than
component- centric logs or metrics alone, and have found uses
in troubleshooting, debugging, performance analysis and
anomaly detection, for example. However, most of these
systems record or reconstruct traces of execution for offline
analysis, and thus share the problems above with the first
challenge, concerning what to record.

3. DESIGN
We now detail the fundamental concepts and mechanisms
behind Pivot Tracing. Pivot Tracing is a dynamic monitoring
and tracing framework for distributed systems. At a high

a This definition does not capture all possible causality, including when
events in the processing of one request could influence another, but could
be extended if necessary.

research highlights

98 COMMUNICATIONS OF THE ACM | MARCH 2020 | VOL. 63 | NO. 3

and b are not part of the same execution, then a b if the
occurrence of a did not lead to the occurrence of b, then
a b (e.g., they occur in two parallel threads of execution
that do not communicate); and if a → b then b a.

For any two queries Q1 and Q2, the happened-before join
Q1
→ Q2 produces tuples t1t2 for all t1 ∈ Q1 and t2 ∈ Q2 such

that t1 → t2. That is, Q1 produced t1 before Q2 produced tuple
t2 in the execution of the same request. Figure 4 shows an
example execution triggering tracepoints A, B, and C several
times, and outlines the tuples that would be produced for
this execution by different queries.

Query Q2 in Section 2 demonstrates the use of happened-
before join. In the query, tuples generated by the disk IO tra-
cepoint DataNodeMetrics.incrBytesRead are joined to the first
tuple generated by the ClientProtocols tracepoint.

Happened-before join substantially improves our abil-
ity to perform root cause analysis by giving us visibility
into the relationships between events in the system. The
happened-before relationship is fundamental to a num-
ber of prior approaches in root cause analysis.16 Pivot
Tracing is designed to efficiently support happened-
before joins, but does not optimize more general joins
such as equijoins ().

Advice. Pivot Tracing queries compile to an intermediate
representation called advice. Advice specifies the operations
to perform at each tracepoint used in a query, and eventually
materializes as monitoring code installed at those trace-
points (Section 4). Advice has several operations for manipu-
lating tuples through the tracepoint-exported variables, and
evaluating → on tuples produced by other advice at prior tra-
cepoints in the execution.

Table 2 outlines the advice API. Observe creates a tuple
from exported tracepoint variables. Unpack retrieves tuples
generated by other advice at other tracepoints prior in the
execution. Unpacked tuples can be joined to the observed
tuple, that is, if to is observed and tu1 and tu2 are unpacked,
then the resulting tuples are totu1 and totu2. Tuples created
by this advice can be discarded (Filter), made available to
advice at other tracepoints later in the execution (Pack), or
output for global aggregation (Emit). Both Pack and Emit
can group tuples based on matching fields, and perform
simple aggregations such as SUM and COUNT. Pack also
has the following special cases: FIRST packs the first tuple
encountered and ignores subsequent tuples; RECENT packs
only the most recent tuple, overwriting existing tuples. FIRSTN
and RECENTN generalize this to N tuples. The advice API

is expressive but restricted enough to provide some safety
guarantees. In particular, advice code has no jumps or recur-
sion, and is guaranteed to terminate.

Query Q2 in Section 2 compiles to advice A1 and A2 for
ClientProtocols and DataNodeMetrics, respectively:

A1 : OBSERVE procName A2 : OBSERVE delta
PACK-FIRST procName UNPACK procName

EMIT procName, SUM(delta)

Figure 5 shows how this advice and the tracepoints interact
with the execution of requests in the system. First, when a
request’s execution reaches ClientProtocols, A1 is invoked,
which observes and packs a single valued tuple containing the
process name. Then, when execution reaches DataNodeMetrics,
A2 is invoked, which unpacks the process name, observes the
value of delta, then emits a joined tuple.

To compile a query to advice, we instantiate one advice
specification for a From clause and add an Observe opera-
tion for the tracepoint variables used in the query. For each
Join clause, we add an Unpack operation for the variables
that originate from the joined query. We recursively generate

Operation Description Example

From Use input tuples from a set of tracepoints From e In RPCs
Union (∪) Union events from multiple tracepoints From e In DataRPCs, ControlRPCs
Selection (σ) Filter only tuples that match a predicate Where e.Size < 10
Projection (Π) Restrict tuples to a subset of fields Select e.User, e.Host
Aggregation (A) Aggregate tuples Select SUM(e.Cost)
GroupBy (G) Group tuples based on one or more fields GroupBy e.User
GroupBy aggregation (GA) Aggregate tuples of a group Select e.User, SUM(e.Cost)
Happened-before join (→) Happened-before join tuples from another query Join d In Disk On d -> e

Happened-before join a subset of tuples Join d In MostRecent(Disk) On d -> e

Table 1. Operations supported by the Pivot Tracing query language.

Operation Description

Observe Construct a tuple from variables exported by a tracepoint
Unpack Retrieve one or more tuples from prior advice
Filter Evaluate a predicate on all tuples
Pack Make tuples available for use by later advice
Emit Output a tuple for global aggregation

Table 2. Primitive operations supported by Pivot Tracing advice for
generating and aggregating tuples as defined in Section 3.

Execution Graph

a1

c2

b2

a2

b1

a3

c1

Query Query Results

A

B C
→

(A B) C
→ →

A B
→

a2

a2

c2

c2

a2 b2b2

c1

c2

c2

b2

b2 b2

a3a2a1

a1

a1

b1

Figure 4. An example execution that triggers tracepoints A, B, and C
several times. We show several Pivot Tracing queries and the tuples
that would result for each.

MARCH 2020 | VOL. 63 | NO. 3 | COMMUNICATIONS OF THE ACM 99

their source query. Agents publish partial query results back
to the user at a configurable interval—by default, 1 s.

Dynamic instrumentation. Our prototype weaves advice at
runtime, providing dynamic instrumentation similar to that of
DTrace4 and Fay.7 Java version 1.5 onwards supports dynamic
method body rewriting via the java.lang.instrument package. The
Pivot Tracing agent pro-grammatically rewrites and reloads class
bytecode from within the process using Javassist.5 To weave ad-
vice, we rewrite method bodies to add advice invocations at the
locations defined by the tracepoint. Our prototype supports tra-
cepoints at the entry, exit, or exceptional return of any method.
Tracepoints can also be inserted at specific line numbers.

To define a tracepoint, users specify a class name, method
name, method signature, and weave location. Pivot Tracing
also supports pattern matching, for example, all methods of
an interface on a class. This feature is modeled after pointcuts
from AspectJ.13 Pivot Tracing supports instrumenting privi-
leged classes (e.g., FileInputStream in Section 2) by providing
an optional agent that can be placed on Java’s boot classpath.

Pivot Tracing only makes system modifications when
advice is woven into a tracepoint, so inactive tracepoints incur
no overhead. Executions that do not trigger the tracepoint are
unaffected by Pivot Tracing. Pivot Tracing has a zero-probe
effect: methods are unmodified by default, so trace-points
impose truly zero overhead until advice is woven into them.

Baggage. Our implementation of baggage uses thread-
local variables for storing per-request baggage instances.
At the beginning of a request, we instantiate empty baggage
in the thread-local variable; at the end of the request, we clear
the baggage from the thread-local variable. The baggage API
can get or set tuples for a query and at any point in time bag-
gage can be retrieved for propagation to another thread or
serialization onto the network. To support multiple queries
simultaneously, queries are assigned unique IDs and tuples
are packed and unpacked based on this ID.

Hadoop instrumentation. Pivot Tracing relies on devel-
opers to implement Baggage propagation when a request
crosses thread, process, or asynchronous execution bound-
aries. We have implemented this propagation in several
open-source systems that are widely used in production
today: HDFS, HBase, MapReduce, Tez, YARN, and Spark.
To propagate baggage across remote procedure calls, we
manually extended the protocol definitions of the systems.
To propagate baggage across execution boundaries within
individual processes we implemented AspectJ13 instrumen-
tation to automatically modify common interfaces (Thread,
Runnable, Callable, and Queue). Each system required between
50 and 200 lines of manual code modification. Once modi-
fied, these systems could support arbitrary Pivot Tracing
queries without further modification.

5. EVALUATION
In this section, we evaluate Pivot Tracing with a case study in
the context of the Hadoop Distributed FileSystem22 (HDFS).c
HDFS is a distributed file system comprising a central
NameNode process that manages filesystem metadata, and

advice for the joined query, and append a Pack operation
at the end of its advice for the variables that we unpacked.
Where directly translates to a Filter operation. We add
an Emit operation for the output variables of the query,
restricted according to any Select clause. Aggregate, GroupBy,
and GroupByAggregate are all handled by Emit and Pack.

Baggage. Pivot Tracing enables inexpensive happened-
 before joins by providing the baggage abstraction. Baggage
is a per-request container for tuples, that is, propagated
alongside a request as it traverses thread, application, and
machine boundaries. Pack and Unpack store and retrieve
tuples from the current request’s baggage. Tuples follow the
request’s execution path and therefore explicitly capture the
happened-before relationship.

Baggage is a generalization of end-to-end metadata prop-
agation techniques outlined in prior work such as X-Trace8
and Dapper.23 Using baggage, Pivot Tracing efficiently evalu-
ates happened-before joins in situ during the execution of a
request.

Tuple aggregation and query optimization. To reduce the
volume of emitted tuples, Pivot Tracing performs intermedi-
ate aggregation for queries containing Aggregate or GroupBy-
Aggregate. Pivot Tracing aggregates the emitted tuples within
each process and reports results globally at a regular interval,
for example, once per second. Process-level aggregation sub-
stantially reduces traffic for emitted tuples; Q2 from Section 2
is reduced from approximately 600 to 6 tuples per second from
each DataNode. Pivot Tracing also rewrites queries to minimize
the number of tuples that are packed during a request’s execu-
tion, using the same query rewriting rules described by Fay7 that
push projection, selection, and aggregation terms as close as
possible to source tracepoints. We extend these query rewriting
rules16 to add further optimizations for happened-before joins.

4. IMPLEMENTATION
We have implemented a Pivot Tracing prototype in Java and
applied Pivot Tracing to several open-source systems from
the Hadoop ecosystem. Pivot Tracing source code and the
instrumented systems are publicly available from the Pivot
Tracing project website.b

Agent. A Pivot Tracing agent thread runs in every Pivot
Tracing-enabled process and awaits instruction via central
pub/sub server to weave advice to tracepoints. Tuples emitted
by advice are accumulated by the local Pivot Tracing agent,
which performs partial aggregation of tuples according to

ClientProtocols
Tracepoint

DataNodeMetrics
Tracepoint

Request Execution

Client Processes HDFS DataNode

A1
OBSERVE PACK

UNPACK OBSERVE

A2 EMIT

Figure 5. Advice generated for Q2 from Section 2: A1 observes and
packs procName; A2 unpacks procName, observes delta, and emits
(procName, SUM(delta)).

b http://pivottracing.io.

c We refer the reader to the full evaluation16 for other case studies and evaluation
of Pivot Tracing overheads.

research highlights

100 COMMUNICATIONS OF THE ACM | MARCH 2020 | VOL. 63 | NO. 3

multiple DataNode processes running across a cluster that
store replicated file blocks. We describe our discovery of a
replica selection bug in HDFS that resulted in uneven dis-
tribution of load to replicas. After identifying the bug, we
found that it had been recently reported and subsequently
fixed in an upcoming HDFS version.11

HDFS provides file redundancy by decomposing files into
blocks and replicating each block onto several machines
(typically 3). A client can read any replica of a block and does
so by first contacting the NameNode to find replica hosts
(invoking GetBlockLocations), then selecting the closest rep-
lica as follows: (1) read a local replica, (2) read a rack-local
replica, and (3) select a replica at random. We discovered
a bug whereby rack-local replica selection always follows a
global static ordering due to two conflicting behaviors: the
HDFS client does not randomly select between replicas; and
the HDFS NameNode does not randomize rack-local repli-
cas returned to the client. The bug results in heavy load on
some hosts and near zero load on others.

In this scenario, we ran 96 stress test clients on an HDFS
cluster of eight DataNodes and one NameNode. Each machine
has identical hardware specifications; 8 cores, 16GB RAM,
and a 1Gbit network interface. On each host, we ran a pro-
cess called StressTest that used an HDFS client to perform
closed-loop random 8kB reads from a dataset of 10,000
128MB files with a replication factor of 3. Our queries use
tracepoints from both client and server RPC protocol imple-
mentations of the HDFS DataNode DataTransferProtocol and
NameNode GetBlockLocations client protocol.

Our investigation of the bug began when we noticed that
the stress test clients on hosts A and D had consistently lower
request throughput than clients on other hosts, shown in
Figure 6a, despite identical machine specifications and setup.
We first checked machine level resource utilization on each
host, which indicated substantial variation in the network
throughput (Figure 6b). We began our diagnosis with Pivot
Tracing by first checking to see whether an imbalance in
HDFS load was causing the variation in network throughput.
The following query installs advice at a DataNode tracepoint,
that is, invoked by each incoming RPC:

Q3 : From dnop In DN.DataTransferProtocol
GroupBy dnop.host
Select dnop.host, COUNT

Figure 6c plots the results of this query, showing the HDFS
request throughput on each DataNode. It shows that
DataNodes on hosts A and D in particular have substantially
higher request throughput than others—host A has on aver-
age 150 ops/s, while host H has only 25 ops/s. This behavior
was unexpected given that our stress test clients are sup-
posedly reading files uniformly at random. Our next query
installs advice in the stress test clients and on the HDFS
NameNode, to correlate each read request with the client
that issued it:

Q4 : From getloc In NN.GetBlockLocations
Join st In StressTest.DoNextOp On st -> getloc
GroupBy st.host, getloc.src
Select st.host, getloc.src, COUNT

(a)

(d) (e) (f) (g)

(b) (c)

0

20

40

60

80

0 1 2 3 4 5

C
lie

nt
 th

ro
ug

hp
ut

 (r
eq

/s
)

Time (min)

Client A
Client B
Client C
Client D

Client E
Client F
Client G
Client H

Host G Host H
Host E Host F

Time (min)

D
at

aN
od

e
th

ro
ug

hp
ut

 (o
ps

/s
) 200

150

100

50

0
0 1 2 3 4 5

Client A
Client B
Client C
Client D
Client E
Client F
Client G
Client H

H
os

t A
H

os
t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E
H

os
t F

H
os

t A
H

os
t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E
H

os
t F

Host A
Host B
Host C
Host D

Host G
Host H

Host E
Host F

H
os

t A
H

os
t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E
H

os
t F

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

Host A Host B
Host C Host D

N
et

w
or

k
tr

an
sf

er
 (M

B
/s

)

Time (min)

Figure 6. Pivot Tracing query results leading to our discovery of HDFS-6268.11 Faulty replica selection logic led clients to prioritize the replicas
hosted by particular DataNodes: host A was always preferred over other hosts if it held a replica; host D was always preferred, except if host A
held a replica; etc. The increased load to host A DataNode reduced the throughput of co-located client A. (a) Clients on Hosts A and D experience
reduced workload throughput. (b) Network transfer is skewed across machines. (c) HDFS DataNode throughput is skewed across machines.
(d) Observed HDFS file read distribution (row) per client (col). (e) Frequency each client (row) sees each DataNode (col) as a replica location. (f)
Frequency each client (row) subsequently selects each DataNode (col). (g) Observed frequency of choosing one replica host (row) over another (col).

MARCH 2020 | VOL. 63 | NO. 3 | COMMUNICATIONS OF THE ACM 101

At this point in our analysis, we concluded that this
behavior was quite likely to be a bug in HDFS. HDFS clients
did not randomly select between replicas, and the HDFS
NameNode did not randomize the rack-local replicas. We
checked Apache’s issue tracker and found that the bug had
been recently reported and fixed in an upcoming version
of HDFS.11

Application-level overhead. To estimate the impact of Piv-
ot Tracing on application-level throughput and latency, we
ran benchmarks from HiBench,12 YCSB,6 and HDFS DFSIO
and NNBench benchmarks. Many of these benchmarks
bottleneck on network or disk and we noticed no significant
performance change with Pivot Tracing enabled.

To measure the effect of Pivot Tracing on CPU bound
requests, we stress tested HDFS using requests derived from
the HDFS NNBench benchmark: Read8k reads 8kB from
a file; Open opens a file for reading; Create creates a file
for writing; Rename renames an existing file. Read8kB is a
DataNode operation and the others are NameNode opera-
tions. We compared the end-to-end latency of requests in
unmodified HDFS to HDFS modified in the following ways:
(1) with Pivot Tracing enabled, (2) propagating baggage con-
taining one tuple but no advice installed, (3) propagating
baggage containing 60 tuples (≈1kB) but no advice installed,
and (4) with queries Q3—Q7 installed.

Table 3 shows that the application-level overhead with
Pivot Tracing enabled is at most 0.3%. This overhead includes
the costs of empty baggage propagation within HDFS, bag-
gage serialization in RPC calls, and to run Java in debug-
ging mode. The most noticeable overheads are incurred
when propagating 60 tuples in the baggage, incurring 15.9%
overhead for Open. Since this is a short CPU-bound request
(involving a single read-only lookup), 16% is within reason-
able expectations. RENAME does not trigger any advice for
queries Q3–Q7, reflected by an overhead of just 0.3%.

6. DISCUSSION
Despite the advantages over logs and metrics for trouble-
shooting (Section 2), Pivot Tracing is not meant to replace
all functions of logs, such as security auditing, forensics, or
debugging.19

Pivot Tracing is designed to have similar per-query over-
heads to the metrics currently exposed by systems today. It is
feasible for a system to have several Pivot Tracing queries on by
default; these could be sensible defaults provided by develop-
ers, or custom queries installed by users to address their spe-
cific needs. We leave it to future work to explore the use of Pivot
Tracing for automatic problem detection and exploration.

This query counts the number of times each client reads
each file. In Figure 6d, we plot the distribution of counts
over a 5-min period for clients from each host. The distribu-
tions all fit a normal distribution and indicate that all of the
clients are reading files uniformly at random. The distribu-
tion of reads from clients on A and D are skewed left, consis-
tent with their overall lower read throughput.

Having confirmed the expected behavior of our stress test
clients, we next checked to see whether the skewed datanode
throughput was simply a result of skewed block placement
across datanodes:

Q5 : From getloc In NN.GetBlockLocations
Join st In StressTest.DoNextOp On st -> getloc
GroupBy st.host, getloc.replicas
Select st.host, getloc.replicas, COUNT

This query measures the frequency that each DataNode is
hosting a replica for files being read. Figure 6e shows that,
for each client, replicas are near-uniformly distributed across
DataNodes in the cluster. These results indicate that clients have
an equal opportunity to read replicas from each DataNode,
yet, our measurements in Figure 6c clearly show that they do not.
To gain more insight into this inconsistency, our next query
relates the results from Figure 6e to those from Figure 6c:

Q6 : From DNop In DN.DataTransferProtocol
Join st In StressTest.DoNextOp On st -> DNop
GroupBy st.host, DNop.host
Select st.host, DNop.host, COUNT

This query measures the frequency that each client selects
each DataNode for reading a replica. We plot the results in
Figure 6f and see that the clients are clearly favoring particular
DataNodes. The strong diagonal is consistent with HDFS cli-
ent preference for locally hosted replicas (39% of the time in
this case). However, the expected behavior when there is not
a local replica is to select a rack-local replica uniformly at ran-
dom; clearly these results suggest that this was not happening.

Our final diagnosis steps were as follows. First, we checked
to see which replica was selected by HDFS clients from the
locations returned by the NameNode. We found that clients
always selected the first location returned by the NameNode.
Second, we measured the conditional probabilities that
DataNodes precede each other in the locations returned by
the NameNode. We issued the following query for the latter:

Q7 : From DNop In DN.DataTransferProtocol
Join getloc In NN.GetBlockLocations

On getloc -> DNop
Join st In StressTest.DoNextOp On st -> getloc
Where st.host != DNop.host
GroupBy DNop.host, getloc.replicas
Select DNop.host, getloc.replicas, COUNT

This query correlates the DataNode, that is, selected with
the other DataNodes also hosting a replica. We remove the
interference from locally hosted replicas by filtering only the
requests that do a non-local read. Figure 6g shows that host A
was always selected when it hosted a replica; host D was always
selected except if host A was also a replica, and so on. This
should not have been the case; due to random replica selec-
tion, no host should have been preferred over any other host.

Read8k (%) Open (%) Create (%) Rename (%)

Unmodified 0 0 0 0
PivotTracing Enabled 0.3 0.3 <0.1 0.2
Baggage—1 Tuple 0.8 0.4 0.6 0.8
Baggage—60 Tuples 0.82 15.9 8.6 4.1
Queries Q3–Q7 1.5 4.0 6.0 0.3

Table 3. Latency overheads for HDFS stress test with Pivot Tracing
enabled, baggage propagation enabled, and queries enabled.

research highlights

102 COMMUNICATIONS OF THE ACM | MARCH 2020 | VOL. 63 | NO. 3

While users are restricted to advice comprised of Pivot
Tracing primitives, Pivot Tracing does not guarantee that its
queries will be side-effect free, due to the way exported vari-
ables from tracepoints are currently defined. We can enforce
that only trusted administrators define tracepoints and
require that advice be signed for installation, but a compre-
hensive security analysis, including complete sanitization of
tracepoint code is beyond the scope of this paper.

Even though we evaluated Pivot Tracing on an 8-node clus-
ter in this paper, initial runs of the instrumented systems on
a 200-node cluster with constant-size baggage being propa-
gated showed negligible performance impact. It is ongoing
work to evaluate the scalability of Pivot Tracing to larger
clusters and more complex queries. Sampling at the advice
level is a further method of reducing overhead that we plan
to investigate.

We opted to implement Pivot Tracing in Java in order
to easily instrument several popular open-source distrib-
uted systems written in this language. However, the compo-
nents of Pivot Tracing generalize and are not restricted to
Java—a query can span multiple systems written in different
programming languages due to Pivot Tracing’s platform-
independent baggage format and restricted set of advice
operations. In particular, it would be an interesting exercise
to integrate the happened-before join with Fay or DTrace.

7. CONCLUSION
Pivot Tracing is the first monitoring system to combine
dynamic instrumentation and causal tracing. Its novel
happened-before join operator fundamentally increases the
expressive power of dynamic instrumentation and the appli-
cability of causal tracing. Pivot Tracing enables cross-tier
analysis between any interoperating applications, with low
execution overhead. Ultimately, its power lies in the uniform
and ubiquitous way in which it integrates monitoring of a
heterogeneous distributed system.

Copyright held by authors/owners.

Jonathan Mace, Ryan Roelke, and
Rodrigo Fonseca, Brown University
Department of Computer Science,
Providence, RI, USA.

 12. Huang, S., Huang, J., Dai, J., Xie, T.,
Huang, B. The hibench benchmark
suite: Characterization of the
mapreduce-based data analysis.
In New Frontiers in Information and
Software as Services (2010). IEEE,
pp. 41–51. (Section 5).

 13. Kiczales, G., Hilsdale, E., Hugunin, J.,
Kersten, M., Palm, J., Griswold, W.G.
An Overview of AspectJ. In European
Conference on Object-Oriented
Programming (London, UK, 2001).
Springer-Verlag, pp. 327–353.
(Section 4).

 14. Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Lopes, C.V., Loingtier, J.-M.,
Irwin, J. Aspect-oriented
programming. In European
Conference on Object-Oriented
Programming, LNCS 1241
(June 1997), Springer-Verlag.
(Section 2.2).

 15. Lamport, L. Time, clocks, and the
ordering of events in a distributed
system. Commun. ACM 21, 7 (1978),
558–565. (Sections 1 and 3).

 16. Mace, J., Roelke, R., Fonseca, R.
Pivot tracing: Dynamic causal
monitoring for distributed systems. In
Proceedings of the 25th Symposium
on Operating Systems Principles
(2015). ACM, pp. 378–393. (Sections
1, 2.5, and 3).

 17. Meijer, E., Beckman, B., Bierman, G.
Linq: Reconciling object, relations
and xml in the.net framework.
In Proceedings of the 2006 ACM
SIGMOD International Conference
on Management of Data, SIGMOD’06
(New York, NY, USA, 2006). ACM,
pp. 706–706. (Section 2.1).

 18. MESOS-1949 All log messages from
master, slave, executor, etc. should
be collected on a per-task basis.
https://issues.apache.org/jira/browse/
MESOS-1949. [Online; accessed 25
February 2015]. (Section 2.3).

 19. Oliner, A., Ganapathi, A., Xu, W.
Advances and challenges in log
analysis. Commun. ACM 55, 2 (2012),
55–61. (Section 6).

 20. Prasad, V., Cohen, W., Eigler, F.C.,
Hunt, M., Keniston, J., Chen, B.
Locating system problems using
dynamic instrumentation. In 2005
Ottawa Linux Symposium (2005).
(Section 2.3).

 21. Rabkin, A., Katz, R.H. How hadoop
clusters break. IEEE Softw. 30, 4
(2013), 88–94. (Section 2.3).

 22. Shvachko, K., Kuang, H., Radia, S.,
Chansler, R. The Hadoop distributed
file system. In 2010 IEEE 26th
Symposium on Mass Storage Systems
and Technologies (MSST) (2010).
IEEE, pp. 1–10. (Section 5).

 23. Sigelman, B.H., Barroso, L.A.,
Burrows, M., Stephenson, P.,
Plakal, M., Beaver, D., Jaspan, S.,
Shanbhag, C. Dapper, a large-
scale distributed systems tracing
infrastructure. Google Technical
Report (2010). (Sections 1, 2.3,
and 3).

 24. Twitter Zipkin. http://twitter.github.
io/zipkin/. [Online; accessed March
2015]. (Section 2.3).

 25. Yuan, D., Zheng, J., Park, S., Zhou, Y.,
Savage, S. Improving software
diagnosability via log enhancement.
ACM Trans Comput Syst 30, 1 (2012),
4. (Section 2.3).

 1. Apache HTrace. http://htrace.
incubator.apache.org/. [Online;
accessed March 2015].
(Section 2.3).

 2. Bodik, P. Overview of the workshop
of managing large-scale systems
via the analysis of system logs and
the application of machine learning
techniques (SLAML’11). SIGOPS
Oper. Syst. Rev. 45, 3 (2011), 20–22.
(Section 2.3).

 3. Cantrill, B. Hidden in plain sight.
ACM Queue 4, 1 (Feb. 2006), 26–36.
(Sections 1 and 2.3).

 4. Cantrill, B., Shapiro, M.W.,
Leventhal, A.H. Dynamic
instrumentation of production
systems. In USENIX Annual
Technical Conference, General Track
(2004), pp. 15–28. (Sections 1, 2.3,
and 4).

 5. Chiba, S. Javassist: Java bytecode
engineering made simple. Java
Developer’s Journal 9, 1 (2004).
(Section 4).

 6. Cooper, B.F., Silberstein, A., Tam, E.,
Ramakrishnan, R., Sears, R.
Benchmarking cloud serving
systems with ycsb. In Proceedings
of the 1st ACM Symposium on
Cloud Computing (2010). ACM,
pp. 143–154. (Section 5).

 7. Erlingsson, Ú., Peinado, M., Peter, S.,
Budiu, M., Mainar-Ruiz, G. Fay:
Extensible distributed tracing from
kernels to clusters. ACM Trans.
Comput. Syst. (TOCS) 30, 4 (2012),
13. (Sections 1, 2.3, 3, and 4).

 8. Fonseca, R., Porter, G., Katz, R.H.,
Shenker, S., Stoica, I. X-trace: A
pervasive network tracing framework.
In Proceedings of the 4th USENIX
Conference on Networked Systems
Design & Implementation (Berkeley,
CA, USA, 2007), NSDI’07, USENIX
Association. (Sections 1 and 3).

 9. HBASE-4145 Provide metrics for
HBASE client. https://issues.apache.
org/jira/browse/HBASE-4145.
[Online; accessed 25 February 2015].
(Section 2.3).

 10. HBASE-8370 Report data block
cache hit rates apart from aggregate
cache hit rates. https://issues.apache.
org/jira/browse/HBASE-8370.
[Online; accessed 25 February 2015].
(Section 2.3).

 11. HDFS-6268 Better sorting
in NetworkTopology.
pseudoSortByDistance when no
local node is found. https://issues.
apache.org/jira/browse/HDFS-6268.
[Online; accessed 25 February 2015].
(Sections 1 and 3).

References

