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Abstract

To test distributed software in the Internet we need many experimental sites in di�erent physical
locations� To ease the experimental setup� we have developed a facility for a study of distributed
transaction processing in the Internet� The facility emulates remote sites by local machines� and
emulates a true Internet communication environment in a local area network� by routing the inter�site
communication through actual Internet hosts� This provides a mechanism to conduct experiments
without any designated experimental sites except for the local ones� yet the results are as genuine as
in the real experiments� It also supports a trace�driven emulation method that measures the inter�site
communication of the Internet and uses the measurement data to generate empirical values for delay
and message loss between two local sites� We have studied these approaches and observed that they
are feasible and reliable� We have realized these two approaches in a communication package called
the WANCE tool� which can be used to test distributed software� without changing the application
programs� We have evaluated the emulation approach by comparing it with real experiments� The
results are statistically acceptable�
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� Introduction

The rapid growth of the Internet has generated a lot of interest in distributed systems connecting infor�

mation and computing resources of individual computers at di�erent geographical locations� Information

that was accessible to only a small group of people till now� will be available to a much broader community

of computer users� Software systems running in a local and isolated network environment will move to

the Internet environment� Thus� the importance of developing and studying the techniques for providing

access to remote computer resources in a controlled� predictable and manageable way� is evident�

To assist in the transition of distributed applications from their current working environment� such as a

local area network �LAN�� with a small number of sites� to a global environment such as the Internet� with

possibly a larger number of sites� we need to study the scalability and performance of these applications in

the new networking environment� Although the transition to these wide area network �WAN� environment

for some existing software is relatively straight forward� most practical systems will have di�culties in

scaling up� This is because most of the research e�orts for these application domains have been focused

for the LAN environment� We need to study the behavior of Internet with respect to these distributed

applications� We can achieve this objective by extensive experimentation and performance analysis of

these applications in the Internet environment�

Motivation for experiments One application of the large scale distributed system software that in�

terests us� is the transaction processing in WAN environment� The scalability of transaction processing

systems in a WAN environment is an important problem� We believe that it will have a signi	cant impact

in the design of the next generation database applications also 
��� A lot of e�ort has been expended by the

database research community in the development of protocols and algorithms for transaction processing in

the past two decades 

�� These algorithms have been implemented� analyzed and found to be adequate for

the LAN environment� However� not enough studies have been conducted for evaluating the applicability

of these protocols in the WAN environment� We want to study the performance implications of various

concurrency control� replication control� and commitment algorithms in the Internet environment� Based

on these studies we want to tailor these protocols for the WAN environment� The main theme of our

research is to understand the above implications through experimental studies and use them to develop
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new protocols or modify existed ones for the design of a high performance and high availability transac�

tion processing system� This will also provide us with guidelines on how to extend various distributed

applications to the Internet�

Problems in experimental setup The Internet is one convenient wide area network testbed available

to the research community� We have observed that the availability of large number of sites for experi�

mentation is a problem faced by a researcher� This is because obtaining accounts on various remote sites

requires administrative intervention� Furthermore� incompatibility of the computing environments �such

as the operating system� makes porting the distributed application software di�cult� These factors imply

lower �exibility in choosing the sites for the experimentation with distributed software� But repeating the

same experiments with di�erent sites is necessary for conclusive evidence and carries a statistical perfor�

mance signi	cance� We also believe that having experimental sites wide spread makes it more di�cult to

monitor and control the experiments� as compared to their execution in the LAN environment� The goal

of this research is to overcome these problems and develop convenient facilities for experimenting with the

distributed software in the Internet environment�

In the rest of this paper we 	rst discuss a number of experimentation procedures that are in use for

studying distributed system software in the Internet� We introduce a novel experimental approach� called

Internet emulation experimentation� which will solve the resource scarcity problem and provide validated

results� We also introduce another similar approach called trace�driven emulation experimentation� which

is an extension of our Internet emulation experimentation approach� We then present the design and

implementation of a software tool that supports both of these experimentation methods� We have used

our tool to conduct the experiments for distributed transaction processing in the Internet� The validation

result is also discussed�

� Experimental Methods

There have been many attempts for conducting distributed processing system experiments in the Internet

Most of the e�orts have either been in conducting real experimentation using the actual sites on the

Internet� or been in simulation modeling to imitate the behavior of a distributed system in a WAN�
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��� Real Experiments

A real experiment runs the distributed software on a set of actual Internet sites� In the literature� many

experimental studies have followed this approach� For example� research groups in Vrije University have

conducted wide�area experiment using Amoeba system with Cornell in the United States and Amsterdam

in the Netherlands as two Internet sites� to study the transparent computing 
�� �� ��� A team at Columbia

University has investigated the performance of distributed processing in the Internet through experimental

studies 
��� Two experiments were performed� one to run a distributed processing facility called Camelot

between Carnegie�Mellon University �CMU� and Columbia University� and the other to do Webster dic�

tionary lookup between Columbia and University of Washington� Researchers in University of California

at Santa Cruz have also studied the performance of distributed processing in the Internet environment 
���

Parameterized results such as mean time to failure and availability of the Internet sites were obtained and

used to develop better distributed processing software�

As is evident from the previous studies� real experiments and testing with the actual sites in the Internet

works well for systems involving a small number of sites� The geographical distance between experimental

sites� the possible administrative barriers� and the need for remote control account for the high overhead

in setting up a real experiment� For example� the two Columbia experiments mentioned above involved a

professor in Washington and CMU to coordinate for setting up the experiments� Moreover� limitations on

the resources available to the individual researchers or research groups implies that the experiment has to

be conducted on some designated sites� It cannot be scaled arbitrarily nor can it be easily repeated on some

other sites� Therefore� when the number of sites becomes large� more autonomous units are involved� and

when the experimentation requires a wider selection of sites� real experiments simply become unrealistic�

��� Simulation

When the resource needed for real experiments are not available or too expensive� researchers use sim�

ulation to model real experiments� Simulation study can provide good scalability with minimum re�

sources requirement� There have been much simulation study on the behavior of the interconnection

networks 
�� ��� ��� ����






Simulation is a good tool to determine the behavior model and the worst�case performance for a

distributed system� To study large scale distributed systems under the Internet environment� the simulation

heavily depends on the communication model� It is important to adopt a realistic model� to justify the

input parameters on Internet performance� and to validate the results� As a successful example� Yang

et al developed a fairly accurate interconnection network model using measured delay values for di�erent

network elements and used it to study the performance of 	le transfer in a satellite wide�area network 
����

Danzig et al of University of Southern California developed an empirical workload model to drive simulation

experiments� It was based on the analysis of TCP tra�c collected at University of Southern California�

University of California at Berkeley� and Bellcore 
��� There are also many studies that analyze the Internet

preformance and model it� 
�
� ��� ��� ���� Better simulation techniques are being developed �e�g� the

Flowsim project in University of Southern California��

As stated above� a simulation model must be able to simulate the real world as closely as possible�

With over two million hosts in the Internet generating tra�c independently� designing a simulation model

to approximate the behavior of the real Internet is not an easy problem 
���� Further� we often want to test

the distributed software under the realistic and nonstationary conditions� not just under simulated ones�

Thus if possible� there will be more interest in real experiments as opposed to the simulation studies�

��� Emulation

Emulation is a new way of testing software in the �real�life� Internet without the need for designated

remote sites� It overcomes the problem of lacking experimental sites in many real experiments� The basic

idea is to emulate a remote site using one local computer� and to emulate a true Internet communication

environment in a local area network by routing the inter�site communication through the actual Internet

hosts� The software only runs on local computers but the communication goes remote� Since the user�

speci	ed routing is supported by most part of the Internet� this kind of experiments can be set up in many

sites that have connection to the Internet�

We now illustrate how it works using an example� Assume that we have a two�site distributed system�

To carry a task� one site will send messages to the other site � the second site will send reply messages to the

	rst site� Suppose we want to set up an experiment with the following two sites� raid���cs�purdue�edu
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�denoted as computer A� in Purdue University �West Lafayette� Indiana� and cs�helsinki�fi �denoted

as computer X� in Helsinki University �Helsinki� Finland�� Usually� we need to login to the both computers

using telnet or rlogin�� run the software� and set up the experiment� In the emulation model� we run

the system �site�� on the Purdue site as usual� However� we don�t run the other peer �site�� in the Helsinki

site� Instead� we can simply pick another machine at Purdue� say raid���cs�purdue�edu �denoted as

computer B�� which is in the same LAN as computer A� A specially designed communication software for

the distributed system is used so that all the communication packets from site� to site� are routed through

computer X �see Figure ��� Therefore� even though both sites are close to each other and are directly

connected by a LAN� the packets travel across the Atlantic Ocean to northern Europe and back� This

setup makes the processing of the A�X system nearly identical to that of the A�B system�

Although we use a two�site system as an example� it can be applied to a multi�site system� Figure �

gives such an example that local computer B emulates remote computer X� local computer C emulates

remote computer Y� and so on�

If we use this emulation approach� we can conduct distributed system experiments without having

control over remote hosts� The rationale behind this approach is based on the observations about the

isomorphic behaviors of the two con	gurations� a distributed system that spans over the Internet and the

same system that runs in a LAN� The di�erence between them is not due to the individual computers of

the distributed system �as long as they are comparable models�� nor on where these testbed computers

are located� It is the communication performance such as the delays between the testbed computers that

matters� Since they both have the same communication path over the Internet� we can project conclusions

from one system that runs in a LAN �the emulation result�� to the other that runs over the Internet �the

target con	guration��

����� Two�phase emulation technique

Using the above con	guration alone is not always su�cient� In many cases request�reply messages might

not have the same size� or sometimes a request message may not result in a reply message� Therefore� we

need to repeat the above emulation experiment in a �mirrored � con	guration� that is� with the pathes of

�Both are network utility programs that establish interactive terminal sessions with a remote computer in the Internet�
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Figure �� Emulating the real experiment

request and reply messages swapped� We called this a two�phase emulation technique� �See Figure � for

an example��

In a two�phase emulation experimentation� we repeat the same experiments under two con	gurations�

In the 	rst con	guration� all messages from site� to site� will be routed through computer X� all messages

from site� to site� will go directly �as described above�� This is the 	rst phase� In the second con	guration�

all messages from site� to site� will travel directly in the LAN� while all messages from site� to site� will

be routed through computer X� This is the second phase� We should make measurements in both phases
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of experiments and take the averages of the results�

����� Applicability and limitations

The advantage of the emulation method over real experiments is that emulation experiments are easy

to control and easy to implement� The processing of the distributed systems can be controlled inside a

laboratory environment� It requires no designated site� the only requirement for the emulated site is that

it can bounce back the messages� No software is required to set up or run on that site� Therefore we

can do experiment with virtually any hosts in the Internet� This enables us to obtain a large amount of

data points under di�erent con	gurations for statistical purposes� or to carry thorough testing using many

di�erent sites� Both would be otherwise impractical in real experiments�

This approach has several limitations� First� it is not suitable for distributed system that are based

on asymmetric processing or decentralized control� Take the experiments in Figure � for example� if site�

communicates with site� in a real experiment� it cannot be easily implemented in an emulation experiment�

However� many distributed systems are based on a symmetric client�server model and has a centralized

control site �server�� All processing involves only communication between the centralized site �server� and

the other participating site �client�� Usually there is no direct communications among clients� For such

systems� emulation experiments is suitable as long as you place the server in computer A�

Secondly� the communication time for a message from one site to another in emulation con	guration

does not �equal� to that in the real experiment� From Figure � we can see that there is overhead of a local

message from site� to site�� However� compared with the message round trip time through the Internet

�about hundreds to thousands milliseconds�� the delivery time between two local sites �in terms of hundred

microseconds to a few milliseconds� is negligible� In fact� we will see in Section � that the overhead is

really insigni	cant�

Furthermore� this scheme works only when the distributed system is not based on the clock synchroniza�

tion among di�erent sites� because of the asymmetric communication time �the time to deliver the reply

message was actually taken to return the request message�� Since there has not been a practical solution

to the clocks drift problem in the Internet� many distributed systems are indeed based on asynchronous

coordination among sites�
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Compared with simulation� one limitation about the emulation approach is the limited scale� Since the

computational part of the distributed system is not emulated� the number of sites that can participate in

the experiment is bounded by the number of computers available in the LAN� Although it is possible to

have a computer emulating multiple sites� the parameters will be far more complicated�

��� Trace�Driven Emulation Method

The emulation approach provides us with an inexpensive alternative to the real experimentation to test the

distributed software� but with some limitation as mentioned above� This limitation can be eliminated if

we combine the real�time traces of the Internet communication with emulation� We call this a trace�driven

emulation method�

Experiments using this method are similar to the emulation experiments� We use a local computer to

emulate a remote computer in the Internet and run the distributed software on the local computers� Instead

of having the inter�site communication packets routed through the remote sites� we make the local sites

communicate directly via the LAN� but impose a delay for each such communication packet �Figure ���

This delay is computed from the concurrent traces of packet delivery between the actual remote sites� and

this emulates the actual delay for distributed processing� Since this delay is based on the traces on the

Internet� it changes continuously and can be used to approximate the �real�life� situation in the Internet�

If the delays are found to be in	nite� the local sites simply drop the packet to emulate network congestion

or network partition�

The values for the delays are based on the real�time sampling of the Internet� For example in Figure ��

local machines A� B� C emulate remote machines X� Y� Z� A sampler program� which constantly measure the

communication behaviors among X� Y� and Z �including the communication delay and packet loss�� collects

the measurement data and exports them to the empirical delay generator� It delays the communication

among A� B� C according to the current delay measured at X� Y� Z�

The communication delay between X and Y� in the normal conditions� can be measured by routing a

probe packet from A to X to Y then back to A� echoing another probe packet from A to X then back to

A� and a third packet from A to Y then back to A� By putting a timestamp in each packet we can record
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Figure �� Emulation with real�time communication trace

the delay of the trips and calculate the delay from X to Y�

delay�X � Y � � delay�A� X � Y � A�� delay�A� X � A���� delay�A� Y � A���

Thus� we can obtain delays between any pair of sites�

The probability of packet loss between X and Y can be calculated as follows� We repeat the above

measurement for delays for a large number of times and count how many packets of the type A � X �

Y � A� A � X � A� and A � Y � A come back to A� Divide the numbers by the amount of probe
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packets sent and we have the probabilities of loss in the trip A to X to Y to A� the trip A to X to A� and

the trip A to Y to A� Then the probability of loss in the path of X to Y can be calculated by solving the

following equation set�

Pl�A� X � Y � A� � �� ��� Pl�A� X����� Pl�X � Y ����� Pl�Y � A��

Pl�A� X � A� � �� ��� Pl�A� X����� Pl�X � A��

Pl�A� Y � A� � �� ��� Pl�A� Y ����� Pl�Y � A��

where Pl denotes the probability of loss in the path� Assuming Pl�A � X� � Pl�X � A� and Pl�A �

Y � � Pl�Y � A�� we have

Pl�X � Y � � ��
�� Pl�A� X � Y � A�q

�� Pl�A� X � A�
q
�� Pl�A� Y � A�

Since most of the Internet supports the routing and echoing� we can emulate virtually any Internet site

without having the control over it� The measurement for delays and packet losses and the experimentation

with the distributed software are simultaneous� This approach uses the real processing of the experimental

software system� Further combining this with the �communication trace� collected in the real�time� we

can reasonably conclude that the experiments conduced under such a setup will re�ect the behavior of real

experiments�

Compared with the arti	cial workload approach developed at University of Southern California 
��� our

trace�driven approach is not based on the analysis of previous collected traces� It generates delays and

losses directly from the traces collected at the time of the experiment�

The real�time trace�driven approach eliminates many of the limitations of the emulation approach

discussed in the previous subsection� The requirement of symmetric processing and centralized control

is no longer necessary� because now each site communicates with any other site in the same way� Also�

systems that rely on synchronous coordination can now be supported�

� Implementation of WANCE Tools

We have implemented a special communication software system that supports the emulation experiments

in the Internet� It is called the WANCE �Wide Area Network Communication Emulation� tool� It is a
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general�purpose communication package for testing distributed software� We wrote the 	rst version of

WANCE tool �WANCE��� in ���� to support emulation experiments� We recently developed the second

version� WANCE��� to support both emulation method and trace�driven method� In this section we will

describe the architecture and some implementation issues�

For emulation experiments� the WANCE tool will capture the communication messages and route them

through a pre�de	ned remote site� according to the message�s source and destination addresses� and the

user�supplied con	guration� It will also ensure that each message arrives at the appropriate destination

after reaching the intermediate echo site� For trace�driven experiments� the WANCE tool will spawn an

Internet sampler after start up� and then capture the communication messages� and delay it for a period

of time suggested by the sampler�

There are many ways to implement a WANCE tool for the Internet� such as the echo service at

the protocol level or the packet source routing� depending on the strategy used� A criterion for a good

implementation is that it should make the emulation experiment as close to the real experiment as possible�

��� Routing Communication Packets

In the emulation model� for each message originated from computer A �site�� and destinated to computer

B �site��� the WANCE tool has to send it to a remote computer X over the Internet and it must be bounced

back to computer B� Although there is no generally available high�level message forwarding service in the

Internet� we can use two kinds of standard Internet services to solve the problem� They are the loose

source routing option of IP �Internet Protocol� datagram delivery� and the echo services in each protocol

layer 
����

IP source routing Internet is a packet delivery network� The path of an IP datagram traveling from

the sender host to the receiver host in the Internet is usually determined by the gateways� according to

network topology and the current connectivity condition� The loose source routing option of the IP packet

also provides a way for the sender to dictate a path of the packet through the Internet� It is a sequence of

Internet addresses specifying that the packet must follow the sequence of Internet addresses before reaching

the destination� This feature of Internet delivery can be used to redirect messages in the WANCE tool�

��



For example� if we want to route a message from source computer A through computer X to destination

computer B� we can specify the loose source route option �A� X� B� in every packet of the message before

sending it out from computer A�

One limitation of the IP source routing technique is its availability� Although source routing is a stan�

dard option of IP delivery that every gateway in the Internet is supposed to conform� some implementations

of Internet gateways choose to ignore it for the sake of performance� Some even drop those packet that

carries the source routing option� Many others� although doing source routing� put packets that carry the

source routing option into queues with lower priorities� Such packets may travel slower than others�

Echo services We can also use the echo services in each layer of the Internet protocol� IP �Internet

Protocol� the fundamental layer�� UDP �User Datagram Protocol�� and TCP �Transmission Control Pro�

tocol�� IP includes ICMP �Internet Control Message Protocol� as an integral part that handles error and

control messages� The echo service of IP level is implemented by the ICMP echo request�reply messages�

Any gateway or host that receives an echo request addressed to it will formulate an echo reply and return

it to whichever machine sent the request� UDP adds a port number to the IP layer to distinguish multiple

applications running in a same machine� Port number � is reserved for the UDP echo services� Whenever

a packet arrives at that port� the receiving host sends the identical packet back to the sender� The same

service is also implemented in the TCP layer� A program can get back what it writes to a remote host

using TCP as long as it connects to the port � of the remote host� These echo services returns a message

that is identical to what one sends�� only with a delay of the round�trip communication time across the

Internet� from the sender to the echo host�

All these echo services in the three layers can be used in the emulation system to redirect messages� For

example� to route a message from source A to destination B through remote computer X� the WANCE tool

in A can 	lter the outgoing communication from A to B� If the protocol is UDP� the WANCE tool sends

the messages to X���UDP instead� If the protocol is TCP� the WANCE tool rather connects to X���TCP�

Usually the echoed message will get back to the sender �A�� To make it reach the destination �B�� the

WANCE tool in computer A simply picks up this returned message and directly passes it to computer B

�Some implementations of UDP echo service restrict the size of the packet� For example� the maximum size of an UDP

echo packet allowed in SunOS is ���� bytes�
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�which is in the same LAN�� Although extra overhead is involved here� the time for the message to travel

over the Internet dominates in the total time from A� to X� back to A� and then to B� The overhead for the

last leg is a small constant and negligible� An alternative implementation is to set up a special forwarding

program running in the gateway of the LAN� All messages are sent to the gateway 	rst� The gateway

does the redirection by sending them to Site� and upon receiving the echo messages� passes them to the

receiver�

��� Emulating the Communication with Real�Time Trace

In the trace�driven model� each message from A to B is delayed by a certain amount of time TA�B�t� �where

t is the real�time clock value when A sends the message�� At the same time� an Internet sampler collects the

delay between host EA and EB continuously �where Ex is the remote site emulated by the local computer

x�� It generates an elapse time delayEA�EB�ti�� where ti is the real�time clock when the data is collected�

Unlike emulation where messages are packaged and traveled through the real Internet� the trace�driven

method depends on the measurement data� Very often at the time a message needs to be sent� the current

measurement data is not ready� We have to rely on the previous measured data and generate the delay

value randomly and according to some distribution� Bying using such simulation technique� we can also

save the bandwidth by probing the Internet less frequently� The frequency depends on the distance and

normal latency between EA and EB� We found that a measurement of every 	ve seconds is a moderate

sample rate between two sites in the United States�

We now show how we generate the delay from the measurement data� The delay TA�B�t� is estimated

from the latest delayEA�EB�ti�� When t � ti� we simply take the elapse time delayEA�EB�ti� to be TA�B�t��

When t �� ti� we have a few choices� An easy way is to take the latest delayEA�EB�ti� to be TA�B�t�� This

assumes that Internet communication behavior won�t change signi	cantly in 	ve seconds�

A more precise way is to use the recursive prediction error or stochastic gradient method� an important

technique in estimation and control theory� It has been successfully used in computer communication�

e�g� to determine timeout in TCP implementation 
���� and to predict the latency 
���� According to this

method� the delay expectation ED�ti� at time ti can be calculated by

ED�ti� � ��� w�ED�ti��� � w � delayEA�EB�ti�
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i�e� a moving average of the recent samples� Here parameter w is a factor �� � w � �� that one can choose

to weigh more on the recent samples or on the old ones� A typical value for w would be �������� but we

pick ����� as suggested by 
����

We then compute the expected variation of communication delay as

var�ti� � var�ti��� � j ED�ti�� delayEA�EB�ti� j
�

To generate random delay for TA�B�t�� we assume normal distribution for the communication delay

between two sampling time� and use ED�ti� as the mean and mdev�ti� as the mean deviation�

With the frequent sampling of the Internet communication between EA and EB �using the method sug�

gested in section ���� and with the random delay generation� we can accurately emulate the communication

delay and enforce the same delay on communication between A and B�

��� WANCE Tools
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We implemented WANCE�� using echo services instead of source routing since the latter was not always

available in the gateway of our Purdue network to the Internet� The new WANCE�� provides both echo

and source routing as alternative ways to redirect messages� We developed the WANCE tools under SunOS

���� It is based on BSD Unix interprocess communication primitives �the socket interface� and consists

of a library of C routines and a set of data collection and analysis programs� For emulation experiments�

each module or server of the distributed software must be linked against the WANCE library 	rst� The

library functions as a communication subsystem that sits between the distributed software modules and

the communication primitives provided by Unix� It provides the same interface for the upper layers but

replaces the original communication primitives with special message redirection semantics� A variety of

distributed system may be linked to the library with little or no change to the code�

The technique used is �proxy�� that is� to replace some of the Unix communication system calls with

equivalent versions that change the message delivery semantics� The proxy versions later invoke the original

system calls to complete the delivery� Figure 
 shows the structure of the WANCE tools with an application

program�

The Unix system calls that are replaced include connect��� accept��� sendto��� sendmsg��� send���

and also write�� if used with a socket� For most programs whose communication is mainly handled by

these routines� the proxy works satisfactorily�

For more detail on how WANCE tool changes the semantics of these routines� please see the Appendix�

It discusses how the WANCE tool is initialized� and how it proxies system calls under di�erent emulation

models�

With the WANCE tool� we can easily set up experiments for our experimental distributed software� We

have linked the Raid system� with WANCE and have been able to conduct experiments on the Internet�

The integration was smooth�

�Raid is a distributed database system developed in Purdue ���
� We have been using it as an experimental infrastructure

for our researches in communication� adaptability� reliability� transaction processing over several years� The interactions

between Raid servers are in form of request�reply messages following the �client�server� paradigm� handled by the Raid

communication subsystem ���
�

��



� Validation of the Emulation Model

Emulation is an experimental method that provides a communication environment comparable to that in

a real experiment� Before any observations and conclusions are drawn from emulation experiments� we

would like to identify the relative error involved in the emulation model� We will answer the question�

�how close is the emulation experiment to the real experiment �

In this section we only discuss the validation of emulation method and omit the study on the trace�

driven method� The trace�driven method is based on a distribution model and an estimation method that

are well�established in statistics� Comparatively we need a thorough validation study on the emulation

method� The overhead of the WANCE tool in the emulation method also applies to the trace�driven

method�

��� Procedure

Error estimation The relative errors of the emulation method can be estimated by doing a real

experiment and an emulation experiment side�by�side and comparing the measured data� These two

experiments are actually the same except using di�erent experimental methods� Since there are large

intrinsic variations in Internet experiments� they have to be repeated a large number of times� To ensure

that both experiments are under the comparable Internet communication conditions� we interleaved the

processing in two experiments�

Application We have been conducting studies in distributed transaction processing� so we the Raid

distributed database system as the application in our validation experiments� We use the DebitCredit

benchmark �also known as TP� or ET�� 
�
�� It is a realistic transaction processing benchmark and is

well�accepted� This benchmark uses a small banking database� which consists of three relations� the teller

relation� the branch relation� and the account relation� The tuples are ��� byte long and contain an integer

key and a 	xed�point dollar value� In addition� there is a sequential history relation� which records one

tuple per transaction� Its tuples are �� bytes long and contain a teller identi	er� a branch identi	er� an

account number� and the relative dollar value speci	ed in the transaction� A transaction updates one tuple

from each of the three relations and appends a logging tuple to the sequential history relation� Hot�spot
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access is ��!� i�e� ��! of the access focuses on ��! of the data items� ��! of the transactions are read�only

transaction� The average number of read�write operations per transaction is six with variance ���� A run

of the benchmark is a stream of �� such transactions �total ��� read�write actions�� It is su�cient to

make observation in an unreliable Internet environment� More details about the benchmark can be found

in 
��� �
��

The database is fully replicated at both sites� We use ROWA �Read One Write All� protocol in the

replication control� two�phase locking protocol in the concurrency control� and two�phase commit protocol

in the atomicity control� We set the concurrency level to be one� i�e� one transaction at a time� since we

like to distinguish the cause of transaction aborts due to the con�ict access to the database items or due

to the unreliability of the Internet�

Con�guration We used three Sun workstations in the experiments� Two of them are located in

our laboratory� We refer them as raid� and raid�� here� Raid� is a SPARC IPC and raid�� is a

SPARCstation��� The third workstation we used is physically located in Hong Kong�� We refer this

machine as ust� It is also a SPARC IPC�

All of the three machines are properly equipped for distributed transaction processing� Both raid�

and ust have the same con	guration and run the same version of SunOS ������ for the purpose of fair

comparison between emulation experiments and real experiments�

As a side note� the geographical distance between the two sites in our laboratory and the one in

Hong Kong is about � thousand miles� The Internet connection between them are through Chicago� San

Francisco� and then across Paci	c Ocean to Hong Kong�

Figure � shows the con	gurations of the real experiment and the emulation experiment� In the real

experiments� site � of the two�site database system runs in raid�� and site � runs in ust� In the emulation

experiments� site � runs in raid� instead� In phase I of the emulation experiment� messages from site �

to site � are redirected to ust� while in phase II� messages from site � to site � are redirected� This is to

study how much bias will be introduced if request and reply messages are not of the same length�

�It is the courtesy of Department of Computer Science� the Hong Kong University of Science 
 Technology for allowing

us to use their facility for collaborative research�
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Figure �� Three con	gurations of the experiments for error estimation

��� Data

We ran the experiments in a weekend when the network load was low� Although the time of day has

strong correlation to the performance of message delivery in the Internet� a relatively stable environment

made our estimation easier� In each run of the experiment we fed the stream of �� transactions generated

from the benchmark into site �� We recorded the response time for each transaction� and calculated the

average response time of the �� transactions� We set the timeout to be � second for each operation� and

the maximum number of restarts of a failed transaction to be three� The whole experiment consisted of

��� successful runs of the three con	gurations� a real experiment� then phase I of the emulation one� and

the phase II� That is� we ran a total of ���� transactions for each con	guration�

We measured three important performance metrics about distributed transaction processing� the esti�

mated mean response time� throughput� and transaction abort rate� The response time is the elapse time
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between a transaction is submitted to the system and the result �or failure� returned by the system� The

throughput is the average number of transactions completed by the system in one second� The transac�

tion abort rate means the percentage of transaction that cannot be 	nished due to the failure to delivery

message in a certain time� Figure � shows the samples of the response time �RT�� throughput �TP�� and

the abort rate �AR� for each run of the benchmark transactions�
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Figure �� Three con	gurations of the experiments for error estimation

From Figure � we can see that in the samples acquired in both phases of the emulation experiments

are very close to that acquired in the �real� experiments� We calculated the estimated mean times of RT�

TP� and AR and the standard deviations� �see Table ��� By taking the average of the numbers acquired
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in both phases of the emulation experiments we got �combined samples� for the emulation experiment�

These data were compared to the data acquired from the real experiments and the relative errors� were

also computed� Table � shows such estimated errors�

experimental methods

real emulation experiment

measures experiment phase I phase II combined

mean �second� ����� ��

� ����� �����

RT relative error � ���! �
��! ���!

standard deviation ����� ����� ��
�� �����

mean �per second� ����� ���
� ����� �����

TP relative error � ����! ���! ����!

standard deviation ����� ����� ����� �����

mean �!� ����� ����
 ����� �����

AR relative error � �
��! �����! ����!

standard deviation ���
� ����� ����� ���
�

�RT � Response Time� TP � Throughput� AR � Abort Rate�

Table �� The estimated error for emulation experiments

��� Results and Discussion

From Figure � and Table � we can see that the emulation method introduces small relative errors to the

experimental data� The data for both response time and throughput� the relative errors are within �
!�

Even the standard deviations are very close to each other�

We noticed that neither phase I nor phase II of the emulation experiment alone is su�cient� due to the

unbalanced message tra�c in both direction� We examined the message log between the two Raid sites�

��d� r	�r� where d is the datum from the emulation experiment and r is the datum from the real experiment�
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For one benchmark transactions stream� At least 
� remote messages� a total of ���� bytes �including

message headers� 
� bytes per message� ditto below�� were from site � to site �� at least another 
� remote

messages� a total of ���� bytes� were from site � to site �� which were only one�fourth the size in the other

direction� This is because all the transactions were injected into site �� read data were fetched locally�

but all writes had to go to site � as well� In a real experiment� a total of ��
�� bytes traveled across the

Internet� But in emulation experiment phase I� it were ����� bytes and in phase II only ���� bytes� Since

small messages travel slightly faster than large messages 
���� the transaction response time measured in

phase I of the emulation experiment is longer than the actual time measured in the real experiment� but

that measured in phase II is shorter� Similar situation applies to the throughput measurements� The

average of phase I and phase II� however� is closer to the real data since the average number of messages

and the average size of each message are the same as in the real experiments�

The transaction abort rate measurements in emulation experiments are much less accurate� Although

the number of remote messages are the same in all con	gurations� a message that is too large to be shipped

in one datagram in the Internet �usually ��� bytes� are fragmented into two or more pieces and hence has

two or more times higher probability to be lost or delayed� Lost and delayed messages cause transaction

aborts� Therefore the abort rate measured in both phases of the emulation experiments are quite di�erent

from the real experiments� Also� transaction abort is one kind of independent failures� which will be much

harder to measure than the response time or the throughput� Message loss in Internet is often transient�

Even though we interleaved the processing of two experiments� there is no guarantee that a message loss can

be repeated in all three experiments� Considering these factors� a ��! error on abort rates by emulation

experiment is acceptable�

The experiments clearly show the high 	delity of the emulation method on the measurements of dis�

tributed transaction processing performance� including metrics like response time and throughput� We

have demonstrated that the emulation experimental method is feasible and reliable�
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� Conclusion

Experimentation is important in understanding the behavior of geographically distributed system soft�

ware for a dynamic networking environment such as the Internet� We have discussed many ways of doing

experimentation over the Internet� namely� real experimentation� simulation� emulation� and trace�driven

emulation� Table � summarizes the pros and cons of these approaches and suggests the intended applica�

tions for each of these approaches�

pros cons suitable experiments

real experiments most reliable hard to set up� lim�

ited scale

not required to repeat on

di�erent set of sites

simulation inexpensive� easy to

scale up

require an accurate

model

systems involving large

number of sites

emulation real communication�

real processing� easy

setup

not good for asym�

metric processing or

decentralize control

client�server architecture�

natural of the experiment re�

quire repetition on di�erent

sites

trace�driven easy setup� good for

any distributed com�

puting paradigms

communication is

simulated� not real

natural of the experiment re�

quire repetition on di�erent

sites

Table �� A synopsis of Internet experimentation methods

We have shown that the emulation approach can reduce the complexities of performing experiments�

The use of WANCE tool free us from many tedious chores involved in conducting experiments� We can

thus concentrate more on the observations and analysis of experimental results� Another major advantage

of our approaches is that we are not bound in our experiments to some speci	c set of sites� We can do

experiments with nearly any host in the Internet by using the builtin routing� echoing facilities� or the

measuring facilities�
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The emulation method has proved to be a feasible and reliable approach� The WANCE tool emulates

Internet communication in a laboratory environment� Based on our preliminary experimental studies� the

relative errors between real and emulated experiments� in response time and throughput for distributed

transaction processing application are within 
!�

Using the WANCE tools we have conducted a serials of experiments on distributed transaction process�

ing in the Internet 
���� The experiments include comparison of the performance of the two�phrase commit

protocol versus the three�phrase commit protocol� the performance of locking based and timestamp based

concurrency control protocols� and the performance of di�erent data replication strategies� These exper�

iments with WANCE tools will have great impact in transaction processing software� It suggest changes

in the ACID properties� Atomicity� Consistency� Isolation� and Durability� for the large scale distributed

systems� Early results of this study can be found in another report 
����

Two interesting questions in the study of distributed system software scalability can also be answered

using the WANCE tool� The 	rst question is� �How does the distributed software work on the Internet �

and the second and more interesting question is �How well can this software be geographically distributed �

With WANCE tools we can easily vary the span of the experimental sites involving in the distributed

system� We can make it very small �e�g� to choose sites from the same campus network� to very large �e�g�

to choose sites from di�erent countries�� Thus we can obtain the scalability characteristics quickly�

Although the real processing is on the local hosts� the WANCE tool �steals� a few CPU cycles of the

emulated remote host for routing or echoing messages� But this is the minimum resource requirement

for experimenting with real communications� Compared this with the heavy load on a remote host in a

real experiment� such routing and echoing actions� if used with moderation� will not a�ect the normal

processing performance at the remote host� Also� considering the fact that many workstations in many

universities are simply idle in late night or weekend� we can be justi	ed the usage of idle resources at

remote sites for scienti	c research� To make sure that the remote computers are indeed idle� we have used

the Unix command rup to check the system loads before starting our emulation experiments� Moreover�

we have been careful and refrained from adding high loads on the Internet� In the trace�driven experiment�

we can tune the frequency of communication measurement in order to save Internet bandwidth�
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Future work We have conducted a preliminary validation of our WANCE tool in a transaction pro�

cessing application� We plan to continue our study on the experimental models� We will conduct further

experiments to validate the WANCE tool and to 	nd out whether the number of sites in the distributed

software will a�ect the relative errors� and whether the geographical location will a�ect the accuracy of

the emulation experiments� We have used the Purdue�Hong Kong case in our validation experiment� we

plan to repeat it in a larger scale involving more sites in United States and other places in the world� We

will start it as soon as we collected enough access to computers in these locations�

We will also test the WANCE tool for di�erent applications� For example� we are interested in the

performance of displaying multimedia interface over the Internet� which is important in digital library

applications� We will 	rst study the accuracy of the emulation experiments for these applications�

Another direction of research on the emulation experimental approach is to 	nd out how we can

emulate more than one remote sites in a single local computer� We could run multiple processes of the

same distributed software in one host and have the communication between these processes route through

the Internet or be delayed by real�time traces� More study is needed to investigate the model� If successful�

this may allow us to emulate a large scale systems with the number of distributed system sites greater

than the number of physical experimental hosts� This could be another step forward in the infrastructure

for Internet experimentation�

The idea of using source routing to support the emulation experiments has other applications� For

example� it could be used to emulate a mobile computing environment� In such an environment some sites

of a distributed system will be moving frequently in the Internet from a physical host to another 
����

The communication packages have to hop around to try to catch the mobile site� An emulation facility

can achieve this by routing the communication packages via many sites in the Internet� dynamically� This

method may ease the experimentation in mobile computing and needs investigation�

The idea of measuring the real world and feed the data into the emulation model at real�time is also

useful to other area of communication study� For example� it is expensive to set up a large scale wireless

communication network for experimental study� But it can be emulated in a local area network by getting

wireless communication measurement somewhere else and plug them into the WANCE tool� By combining

the two basic technique� we can develop a variety of facilities for experimental study�
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APPENDICES
In this appendix we explain the detail implementation issues of the WANCE tool� The �rst part is the

con�guration �le for initializing the WANCE tool� The second part is the system call proxy for routing message
in the emulation model� The last part is the system call proxy in the trace�based method�

The con�guration �le

When the program linking with the WANCE library starts up� it initializes the WANCE module� It �rst read in a
con�guration �le and parses it� The con�guration �le is an external �le that contains the emulation con�guration
� a list of local sites and their corresponding remote hosts being emulated� The �rst line in the con�guration �le
indicates the emulation strategy used


Emulation� strategy
strategy can be either 	source routing�� 	echo�� or 	trace�driven�� with means emulation by source routing�
by echo services� or by the trace�driven method�

If it speci�es 	source routing�� the rest of con�guration �le will contain lines like
my�site local�site remote�site

where my�site is to match the computer where the emulation program runs� local�site is the address of a local
computer �that is to emulate computer remote�site
� and remote�site is the address of the remote computer in the
Internet �that is to be emulated by computer local�site
� This line means a message from this computer to local�site
should be routed through remote�site �rst� With regarding to the current computer� the second address in the
line is the destination address� and the third is the echo address� For the example in Section �� in con�guration
�le would have the following line


raid�� raid�� cs�helsinki�fi

If the con�guration �le speci�es 	echo services�� the rest of con�guration �le will contain lines like
my�site local�site remote�site�port�protocol

here port�protocol is the echo services name� for example ��UDP for UDP echo service and ��TCP for TCP echo
service �see Subsection ���
� This means that from the my�site a message sent to local�site should be echoed to
remote�site �rst� using port of protocol� Both local�site and remote�site can also be logical addresses interpreted
by the distributed software�

If the con�guration �le speci�es 	trace�driven�� the rest of con�guration �le will contain lines like
local�site remote�site

This line means that local�site is to emulated remote�site� All communication between local sites should be delayed
the same way as if it were between the corresponding remote sites� For example� if raid�� is to emulate mit�edu
and raid�� is to emulate bnr�ca� the con�guration �le could contain


raid�� mit�edu

raid�� bnr�ca

Proxy system calls for emulation with source routing

When the application program starts up� the emulation module �rst reads the network address of the computer
that it runs on� It then parses the con�guration �le� For each line it builds a 	socket option� that sets the source
routing path from the echo address to the destination
 char sockopt	�
� � f��� �IP loose source routing
� ��
�size of the option string
� 
 �o�set of the �rst address
� the echo IP address� the destination IP address� � �padding
to a quad�octet boundary
g� It then hashes the destination address and the socket option into the WANCE routing
table
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destination address socket option
struct in addr char 	�
�

������

B ���� X� B� ���

������

The emulation module provides proxy functions for system calls accept��� connect��� sendto��� sendmsg���
etc� When these functions are called� if the destination address involved are stored in the WANCE route table �i�e�
speci�ed in the WANCE con�guration �le
� the source routing will be turned on by the setsockopt�� system
call� The pseudo code for a simpli�ed version of these proxy system calls is giving below� The actual code is much
more complicated� which also includes bookkeeping and routines to clean up the socket options� etc�

proxy accept�s� addr� addrlen�

f
newsocket � accept�s� addr� addrlen��

�� search the route table for addr and return its socket option ��
sockopt � searchRouteTable�addr��

if �sockopt� �� if found ��
setsockopt�newsocket� IPPROTO IP� IP OPTIONS� sockopt� �
��

g

proxy connect�s� addr� addrlen�

f
�� search the route table for addr and return its socket option ��
sockopt � searchRouteTable�addr��

if �sockopt� �� if found ��
setsockopt�s� IPPROTO IP� IP OPTIONS� sockopt� �
��

newsocket � connect�s� addr� addrlen��

if �sockopt�

setsockopt�newsocket� IPPROTO IP� IP OPTIONS� sockopt� �
��

g

proxy sendto�s� msg� len� flags� to� tolen�

f
�� search the route table for addr and return its socket option ��
sockopt � searchRouteTable�addr��

if �sockopt� �� if found ��
setsockopt�s� IPPROTO IP� IP OPTIONS� sockopt� �
��

sendto�s� msg� len� flags� to� tolen��

g

proxy sendmsg�s� msg� flags�

f
for each message m in msg do f
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�� search the route table for m�addr and return its socket option ��
sockopt � searchRouteTable�m�addr��

if �sockopt� �� if found ��
setsockopt�s� IPPROTO IP� IP OPTIONS� sockopt� �
��

sendmsg�s� message m only� flags��

g
g

The statement 	sockopt � searchRouteTable�addr��� searches the socket option in the route table set up
in the initialization for the given destination address� If the search is successful� the socket option is set up so that
the subsequent message will travel on the right path� For the connectionless communication� such setting is done
each time the application program calls sendto�� and sendmsg��� For connection�oriented communication� the
setting is done only when the application program establishes the connection by connect�� or accept�� calls� The
subsequent transfers� by send�� or write��� will inherit the routing option set to the socket� The extra overhead
in searching the table is negligible when the number of sites is moderate and when proper hashing technique is
used�

Empirical delay generator in the trace�driven method

Similar to implementation of emulation in the WANCE tool� we again use the 	proxy� technique in implementing
the trace�driven method� Instead of setting socket options� the proxy routines forward the message to a separate
server� the empirical delay generator �EDG
� EDG keeps a lists of messages that need to be delayed and attaches
each of them with a timer� When the timer expires� EDG sends out the message to its destination� The extra trip�
from sender to EDG and then to receiver� is local and can be ignored� since the delay imposed by EDG emulates
that in the real Internet and is much longer�

Another sever� the Internet sampler� is always running in the LAN to sample the outside Internet� When the
sampler starts� it reads the con�guration �le and determines the particular sites that need to be measured and
the frequency of the measurement� The measurement data is collected and exported to EDG immediately� EDG
depends on the measurement number to generate the random delays and packet losses for the local messages�
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