
A Facility For Experimenting Distributed Software in the

Internet �y

Yongguang Zhang

Bharat Bhargava

Department of Computer Sciences

Purdue University

West Lafayette� IN �����

Abstract

To test distributed software in the Internet we need many experimental sites in di�erent physical
locations� To ease the experimental setup� we have developed a facility for a study of distributed
transaction processing in the Internet� The facility emulates remote sites by local machines� and
emulates a true Internet communication environment in a local area network� by routing the inter�site
communication through actual Internet hosts� This provides a mechanism to conduct experiments
without any designated experimental sites except for the local ones� yet the results are as genuine as
in the real experiments� It also supports a trace�driven emulation method that measures the inter�site
communication of the Internet and uses the measurement data to generate empirical values for delay
and message loss between two local sites� We have studied these approaches and observed that they
are feasible and reliable� We have realized these two approaches in a communication package called
the WANCE tool� which can be used to test distributed software� without changing the application
programs� We have evaluated the emulation approach by comparing it with real experiments� The
results are statistically acceptable�

�This research is supported by Army Research Lab �System Technology Branch� contract number DAKF������C�����	
and AT
T�

yThis paper is an extension of a workshop presentation ��
�

� Introduction

The rapid growth of the Internet has generated a lot of interest in distributed systems connecting infor�

mation and computing resources of individual computers at di�erent geographical locations� Information

that was accessible to only a small group of people till now� will be available to a much broader community

of computer users� Software systems running in a local and isolated network environment will move to

the Internet environment� Thus� the importance of developing and studying the techniques for providing

access to remote computer resources in a controlled� predictable and manageable way� is evident�

To assist in the transition of distributed applications from their current working environment� such as a

local area network �LAN�� with a small number of sites� to a global environment such as the Internet� with

possibly a larger number of sites� we need to study the scalability and performance of these applications in

the new networking environment� Although the transition to these wide area network �WAN� environment

for some existing software is relatively straight forward� most practical systems will have di�culties in

scaling up� This is because most of the research e�orts for these application domains have been focused

for the LAN environment� We need to study the behavior of Internet with respect to these distributed

applications� We can achieve this objective by extensive experimentation and performance analysis of

these applications in the Internet environment�

Motivation for experiments One application of the large scale distributed system software that in�

terests us� is the transaction processing in WAN environment� The scalability of transaction processing

systems in a WAN environment is an important problem� We believe that it will have a signi	cant impact

in the design of the next generation database applications also
��� A lot of e�ort has been expended by the

database research community in the development of protocols and algorithms for transaction processing in

the past two decades

�� These algorithms have been implemented� analyzed and found to be adequate for

the LAN environment� However� not enough studies have been conducted for evaluating the applicability

of these protocols in the WAN environment� We want to study the performance implications of various

concurrency control� replication control� and commitment algorithms in the Internet environment� Based

on these studies we want to tailor these protocols for the WAN environment� The main theme of our

research is to understand the above implications through experimental studies and use them to develop

�

new protocols or modify existed ones for the design of a high performance and high availability transac�

tion processing system� This will also provide us with guidelines on how to extend various distributed

applications to the Internet�

Problems in experimental setup The Internet is one convenient wide area network testbed available

to the research community� We have observed that the availability of large number of sites for experi�

mentation is a problem faced by a researcher� This is because obtaining accounts on various remote sites

requires administrative intervention� Furthermore� incompatibility of the computing environments �such

as the operating system� makes porting the distributed application software di�cult� These factors imply

lower �exibility in choosing the sites for the experimentation with distributed software� But repeating the

same experiments with di�erent sites is necessary for conclusive evidence and carries a statistical perfor�

mance signi	cance� We also believe that having experimental sites wide spread makes it more di�cult to

monitor and control the experiments� as compared to their execution in the LAN environment� The goal

of this research is to overcome these problems and develop convenient facilities for experimenting with the

distributed software in the Internet environment�

In the rest of this paper we 	rst discuss a number of experimentation procedures that are in use for

studying distributed system software in the Internet� We introduce a novel experimental approach� called

Internet emulation experimentation� which will solve the resource scarcity problem and provide validated

results� We also introduce another similar approach called trace�driven emulation experimentation� which

is an extension of our Internet emulation experimentation approach� We then present the design and

implementation of a software tool that supports both of these experimentation methods� We have used

our tool to conduct the experiments for distributed transaction processing in the Internet� The validation

result is also discussed�

� Experimental Methods

There have been many attempts for conducting distributed processing system experiments in the Internet

Most of the e�orts have either been in conducting real experimentation using the actual sites on the

Internet� or been in simulation modeling to imitate the behavior of a distributed system in a WAN�

�

��� Real Experiments

A real experiment runs the distributed software on a set of actual Internet sites� In the literature� many

experimental studies have followed this approach� For example� research groups in Vrije University have

conducted wide�area experiment using Amoeba system with Cornell in the United States and Amsterdam

in the Netherlands as two Internet sites� to study the transparent computing
�� �� ��� A team at Columbia

University has investigated the performance of distributed processing in the Internet through experimental

studies
��� Two experiments were performed� one to run a distributed processing facility called Camelot

between Carnegie�Mellon University �CMU� and Columbia University� and the other to do Webster dic�

tionary lookup between Columbia and University of Washington� Researchers in University of California

at Santa Cruz have also studied the performance of distributed processing in the Internet environment
���

Parameterized results such as mean time to failure and availability of the Internet sites were obtained and

used to develop better distributed processing software�

As is evident from the previous studies� real experiments and testing with the actual sites in the Internet

works well for systems involving a small number of sites� The geographical distance between experimental

sites� the possible administrative barriers� and the need for remote control account for the high overhead

in setting up a real experiment� For example� the two Columbia experiments mentioned above involved a

professor in Washington and CMU to coordinate for setting up the experiments� Moreover� limitations on

the resources available to the individual researchers or research groups implies that the experiment has to

be conducted on some designated sites� It cannot be scaled arbitrarily nor can it be easily repeated on some

other sites� Therefore� when the number of sites becomes large� more autonomous units are involved� and

when the experimentation requires a wider selection of sites� real experiments simply become unrealistic�

��� Simulation

When the resource needed for real experiments are not available or too expensive� researchers use sim�

ulation to model real experiments� Simulation study can provide good scalability with minimum re�

sources requirement� There have been much simulation study on the behavior of the interconnection

networks
�� ��� ��� ����

Simulation is a good tool to determine the behavior model and the worst�case performance for a

distributed system� To study large scale distributed systems under the Internet environment� the simulation

heavily depends on the communication model� It is important to adopt a realistic model� to justify the

input parameters on Internet performance� and to validate the results� As a successful example� Yang

et al developed a fairly accurate interconnection network model using measured delay values for di�erent

network elements and used it to study the performance of 	le transfer in a satellite wide�area network
����

Danzig et al of University of Southern California developed an empirical workload model to drive simulation

experiments� It was based on the analysis of TCP tra�c collected at University of Southern California�

University of California at Berkeley� and Bellcore
��� There are also many studies that analyze the Internet

preformance and model it�
�
� ��� ��� ���� Better simulation techniques are being developed �e�g� the

Flowsim project in University of Southern California��

As stated above� a simulation model must be able to simulate the real world as closely as possible�

With over two million hosts in the Internet generating tra�c independently� designing a simulation model

to approximate the behavior of the real Internet is not an easy problem
���� Further� we often want to test

the distributed software under the realistic and nonstationary conditions� not just under simulated ones�

Thus if possible� there will be more interest in real experiments as opposed to the simulation studies�

��� Emulation

Emulation is a new way of testing software in the �real�life� Internet without the need for designated

remote sites� It overcomes the problem of lacking experimental sites in many real experiments� The basic

idea is to emulate a remote site using one local computer� and to emulate a true Internet communication

environment in a local area network by routing the inter�site communication through the actual Internet

hosts� The software only runs on local computers but the communication goes remote� Since the user�

speci	ed routing is supported by most part of the Internet� this kind of experiments can be set up in many

sites that have connection to the Internet�

We now illustrate how it works using an example� Assume that we have a two�site distributed system�

To carry a task� one site will send messages to the other site � the second site will send reply messages to the

	rst site� Suppose we want to set up an experiment with the following two sites� raid���cs�purdue�edu

�

�denoted as computer A� in Purdue University �West Lafayette� Indiana� and cs�helsinki�fi �denoted

as computer X� in Helsinki University �Helsinki� Finland�� Usually� we need to login to the both computers

using telnet or rlogin�� run the software� and set up the experiment� In the emulation model� we run

the system �site�� on the Purdue site as usual� However� we don�t run the other peer �site�� in the Helsinki

site� Instead� we can simply pick another machine at Purdue� say raid���cs�purdue�edu �denoted as

computer B�� which is in the same LAN as computer A� A specially designed communication software for

the distributed system is used so that all the communication packets from site� to site� are routed through

computer X �see Figure ��� Therefore� even though both sites are close to each other and are directly

connected by a LAN� the packets travel across the Atlantic Ocean to northern Europe and back� This

setup makes the processing of the A�X system nearly identical to that of the A�B system�

Although we use a two�site system as an example� it can be applied to a multi�site system� Figure �

gives such an example that local computer B emulates remote computer X� local computer C emulates

remote computer Y� and so on�

If we use this emulation approach� we can conduct distributed system experiments without having

control over remote hosts� The rationale behind this approach is based on the observations about the

isomorphic behaviors of the two con	gurations� a distributed system that spans over the Internet and the

same system that runs in a LAN� The di�erence between them is not due to the individual computers of

the distributed system �as long as they are comparable models�� nor on where these testbed computers

are located� It is the communication performance such as the delays between the testbed computers that

matters� Since they both have the same communication path over the Internet� we can project conclusions

from one system that runs in a LAN �the emulation result�� to the other that runs over the Internet �the

target con	guration��

����� Two�phase emulation technique

Using the above con	guration alone is not always su�cient� In many cases request�reply messages might

not have the same size� or sometimes a request message may not result in a reply message� Therefore� we

need to repeat the above emulation experiment in a �mirrored � con	guration� that is� with the pathes of

�Both are network utility programs that establish interactive terminal sessions with a remote computer in the Internet�

�

Internet

InternetAsite 1

X

Y

B

site 3

site 2

C

LAN

emulation experiment setup

A

site 1

site 2

site 3

X

Y

real experiment setup

Figure �� Emulating the real experiment

request and reply messages swapped� We called this a two�phase emulation technique� �See Figure � for

an example��

In a two�phase emulation experimentation� we repeat the same experiments under two con	gurations�

In the 	rst con	guration� all messages from site� to site� will be routed through computer X� all messages

from site� to site� will go directly �as described above�� This is the 	rst phase� In the second con	guration�

all messages from site� to site� will travel directly in the LAN� while all messages from site� to site� will

be routed through computer X� This is the second phase� We should make measurements in both phases

�

of experiments and take the averages of the results�

����� Applicability and limitations

The advantage of the emulation method over real experiments is that emulation experiments are easy

to control and easy to implement� The processing of the distributed systems can be controlled inside a

laboratory environment� It requires no designated site� the only requirement for the emulated site is that

it can bounce back the messages� No software is required to set up or run on that site� Therefore we

can do experiment with virtually any hosts in the Internet� This enables us to obtain a large amount of

data points under di�erent con	gurations for statistical purposes� or to carry thorough testing using many

di�erent sites� Both would be otherwise impractical in real experiments�

This approach has several limitations� First� it is not suitable for distributed system that are based

on asymmetric processing or decentralized control� Take the experiments in Figure � for example� if site�

communicates with site� in a real experiment� it cannot be easily implemented in an emulation experiment�

However� many distributed systems are based on a symmetric client�server model and has a centralized

control site �server�� All processing involves only communication between the centralized site �server� and

the other participating site �client�� Usually there is no direct communications among clients� For such

systems� emulation experiments is suitable as long as you place the server in computer A�

Secondly� the communication time for a message from one site to another in emulation con	guration

does not �equal� to that in the real experiment� From Figure � we can see that there is overhead of a local

message from site� to site�� However� compared with the message round trip time through the Internet

�about hundreds to thousands milliseconds�� the delivery time between two local sites �in terms of hundred

microseconds to a few milliseconds� is negligible� In fact� we will see in Section � that the overhead is

really insigni	cant�

Furthermore� this scheme works only when the distributed system is not based on the clock synchroniza�

tion among di�erent sites� because of the asymmetric communication time �the time to deliver the reply

message was actually taken to return the request message�� Since there has not been a practical solution

to the clocks drift problem in the Internet� many distributed systems are indeed based on asynchronous

coordination among sites�

�

Compared with simulation� one limitation about the emulation approach is the limited scale� Since the

computational part of the distributed system is not emulated� the number of sites that can participate in

the experiment is bounded by the number of computers available in the LAN� Although it is possible to

have a computer emulating multiple sites� the parameters will be far more complicated�

��� Trace�Driven Emulation Method

The emulation approach provides us with an inexpensive alternative to the real experimentation to test the

distributed software� but with some limitation as mentioned above� This limitation can be eliminated if

we combine the real�time traces of the Internet communication with emulation� We call this a trace�driven

emulation method�

Experiments using this method are similar to the emulation experiments� We use a local computer to

emulate a remote computer in the Internet and run the distributed software on the local computers� Instead

of having the inter�site communication packets routed through the remote sites� we make the local sites

communicate directly via the LAN� but impose a delay for each such communication packet �Figure ���

This delay is computed from the concurrent traces of packet delivery between the actual remote sites� and

this emulates the actual delay for distributed processing� Since this delay is based on the traces on the

Internet� it changes continuously and can be used to approximate the �real�life� situation in the Internet�

If the delays are found to be in	nite� the local sites simply drop the packet to emulate network congestion

or network partition�

The values for the delays are based on the real�time sampling of the Internet� For example in Figure ��

local machines A� B� C emulate remote machines X� Y� Z� A sampler program� which constantly measure the

communication behaviors among X� Y� and Z �including the communication delay and packet loss�� collects

the measurement data and exports them to the empirical delay generator� It delays the communication

among A� B� C according to the current delay measured at X� Y� Z�

The communication delay between X and Y� in the normal conditions� can be measured by routing a

probe packet from A to X to Y then back to A� echoing another probe packet from A to X then back to

A� and a third packet from A to Y then back to A� By putting a timestamp in each packet we can record

�

Internet

Internet

X

site 2

site 3
Z

Y

site 1

real experiment setup

LAN

X

Z

Y

real-time sampler

delay
generator

A

site 3 C

B

site 2

site 1

the trace-driven method

LAN

empiricalEDG

Figure �� Emulation with real�time communication trace

the delay of the trips and calculate the delay from X to Y�

delay�X � Y � � delay�A� X � Y � A�� delay�A� X � A���� delay�A� Y � A���

Thus� we can obtain delays between any pair of sites�

The probability of packet loss between X and Y can be calculated as follows� We repeat the above

measurement for delays for a large number of times and count how many packets of the type A � X �

Y � A� A � X � A� and A � Y � A come back to A� Divide the numbers by the amount of probe

�

packets sent and we have the probabilities of loss in the trip A to X to Y to A� the trip A to X to A� and

the trip A to Y to A� Then the probability of loss in the path of X to Y can be calculated by solving the

following equation set�

Pl�A� X � Y � A� � �� ��� Pl�A� X����� Pl�X � Y ����� Pl�Y � A��

Pl�A� X � A� � �� ��� Pl�A� X����� Pl�X � A��

Pl�A� Y � A� � �� ��� Pl�A� Y ����� Pl�Y � A��

where Pl denotes the probability of loss in the path� Assuming Pl�A � X� � Pl�X � A� and Pl�A �

Y � � Pl�Y � A�� we have

Pl�X � Y � � ��
�� Pl�A� X � Y � A�q

�� Pl�A� X � A�
q
�� Pl�A� Y � A�

Since most of the Internet supports the routing and echoing� we can emulate virtually any Internet site

without having the control over it� The measurement for delays and packet losses and the experimentation

with the distributed software are simultaneous� This approach uses the real processing of the experimental

software system� Further combining this with the �communication trace� collected in the real�time� we

can reasonably conclude that the experiments conduced under such a setup will re�ect the behavior of real

experiments�

Compared with the arti	cial workload approach developed at University of Southern California
��� our

trace�driven approach is not based on the analysis of previous collected traces� It generates delays and

losses directly from the traces collected at the time of the experiment�

The real�time trace�driven approach eliminates many of the limitations of the emulation approach

discussed in the previous subsection� The requirement of symmetric processing and centralized control

is no longer necessary� because now each site communicates with any other site in the same way� Also�

systems that rely on synchronous coordination can now be supported�

� Implementation of WANCE Tools

We have implemented a special communication software system that supports the emulation experiments

in the Internet� It is called the WANCE �Wide Area Network Communication Emulation� tool� It is a

��

general�purpose communication package for testing distributed software� We wrote the 	rst version of

WANCE tool �WANCE��� in ���� to support emulation experiments� We recently developed the second

version� WANCE��� to support both emulation method and trace�driven method� In this section we will

describe the architecture and some implementation issues�

For emulation experiments� the WANCE tool will capture the communication messages and route them

through a pre�de	ned remote site� according to the message�s source and destination addresses� and the

user�supplied con	guration� It will also ensure that each message arrives at the appropriate destination

after reaching the intermediate echo site� For trace�driven experiments� the WANCE tool will spawn an

Internet sampler after start up� and then capture the communication messages� and delay it for a period

of time suggested by the sampler�

There are many ways to implement a WANCE tool for the Internet� such as the echo service at

the protocol level or the packet source routing� depending on the strategy used� A criterion for a good

implementation is that it should make the emulation experiment as close to the real experiment as possible�

��� Routing Communication Packets

In the emulation model� for each message originated from computer A �site�� and destinated to computer

B �site��� the WANCE tool has to send it to a remote computer X over the Internet and it must be bounced

back to computer B� Although there is no generally available high�level message forwarding service in the

Internet� we can use two kinds of standard Internet services to solve the problem� They are the loose

source routing option of IP �Internet Protocol� datagram delivery� and the echo services in each protocol

layer
����

IP source routing Internet is a packet delivery network� The path of an IP datagram traveling from

the sender host to the receiver host in the Internet is usually determined by the gateways� according to

network topology and the current connectivity condition� The loose source routing option of the IP packet

also provides a way for the sender to dictate a path of the packet through the Internet� It is a sequence of

Internet addresses specifying that the packet must follow the sequence of Internet addresses before reaching

the destination� This feature of Internet delivery can be used to redirect messages in the WANCE tool�

��

For example� if we want to route a message from source computer A through computer X to destination

computer B� we can specify the loose source route option �A� X� B� in every packet of the message before

sending it out from computer A�

One limitation of the IP source routing technique is its availability� Although source routing is a stan�

dard option of IP delivery that every gateway in the Internet is supposed to conform� some implementations

of Internet gateways choose to ignore it for the sake of performance� Some even drop those packet that

carries the source routing option� Many others� although doing source routing� put packets that carry the

source routing option into queues with lower priorities� Such packets may travel slower than others�

Echo services We can also use the echo services in each layer of the Internet protocol� IP �Internet

Protocol� the fundamental layer�� UDP �User Datagram Protocol�� and TCP �Transmission Control Pro�

tocol�� IP includes ICMP �Internet Control Message Protocol� as an integral part that handles error and

control messages� The echo service of IP level is implemented by the ICMP echo request�reply messages�

Any gateway or host that receives an echo request addressed to it will formulate an echo reply and return

it to whichever machine sent the request� UDP adds a port number to the IP layer to distinguish multiple

applications running in a same machine� Port number � is reserved for the UDP echo services� Whenever

a packet arrives at that port� the receiving host sends the identical packet back to the sender� The same

service is also implemented in the TCP layer� A program can get back what it writes to a remote host

using TCP as long as it connects to the port � of the remote host� These echo services returns a message

that is identical to what one sends�� only with a delay of the round�trip communication time across the

Internet� from the sender to the echo host�

All these echo services in the three layers can be used in the emulation system to redirect messages� For

example� to route a message from source A to destination B through remote computer X� the WANCE tool

in A can 	lter the outgoing communication from A to B� If the protocol is UDP� the WANCE tool sends

the messages to X���UDP instead� If the protocol is TCP� the WANCE tool rather connects to X���TCP�

Usually the echoed message will get back to the sender �A�� To make it reach the destination �B�� the

WANCE tool in computer A simply picks up this returned message and directly passes it to computer B

�Some implementations of UDP echo service restrict the size of the packet� For example� the maximum size of an UDP

echo packet allowed in SunOS is ���� bytes�

��

�which is in the same LAN�� Although extra overhead is involved here� the time for the message to travel

over the Internet dominates in the total time from A� to X� back to A� and then to B� The overhead for the

last leg is a small constant and negligible� An alternative implementation is to set up a special forwarding

program running in the gateway of the LAN� All messages are sent to the gateway 	rst� The gateway

does the redirection by sending them to Site� and upon receiving the echo messages� passes them to the

receiver�

��� Emulating the Communication with Real�Time Trace

In the trace�driven model� each message from A to B is delayed by a certain amount of time TA�B�t� �where

t is the real�time clock value when A sends the message�� At the same time� an Internet sampler collects the

delay between host EA and EB continuously �where Ex is the remote site emulated by the local computer

x�� It generates an elapse time delayEA�EB�ti�� where ti is the real�time clock when the data is collected�

Unlike emulation where messages are packaged and traveled through the real Internet� the trace�driven

method depends on the measurement data� Very often at the time a message needs to be sent� the current

measurement data is not ready� We have to rely on the previous measured data and generate the delay

value randomly and according to some distribution� Bying using such simulation technique� we can also

save the bandwidth by probing the Internet less frequently� The frequency depends on the distance and

normal latency between EA and EB� We found that a measurement of every 	ve seconds is a moderate

sample rate between two sites in the United States�

We now show how we generate the delay from the measurement data� The delay TA�B�t� is estimated

from the latest delayEA�EB�ti�� When t � ti� we simply take the elapse time delayEA�EB�ti� to be TA�B�t��

When t �� ti� we have a few choices� An easy way is to take the latest delayEA�EB�ti� to be TA�B�t�� This

assumes that Internet communication behavior won�t change signi	cantly in 	ve seconds�

A more precise way is to use the recursive prediction error or stochastic gradient method� an important

technique in estimation and control theory� It has been successfully used in computer communication�

e�g� to determine timeout in TCP implementation
���� and to predict the latency
���� According to this

method� the delay expectation ED�ti� at time ti can be calculated by

ED�ti� � ��� w�ED�ti��� � w � delayEA�EB�ti�

�

i�e� a moving average of the recent samples� Here parameter w is a factor �� � w � �� that one can choose

to weigh more on the recent samples or on the old ones� A typical value for w would be �������� but we

pick ����� as suggested by
����

We then compute the expected variation of communication delay as

var�ti� � var�ti��� � j ED�ti�� delayEA�EB�ti� j
�

To generate random delay for TA�B�t�� we assume normal distribution for the communication delay

between two sampling time� and use ED�ti� as the mean and mdev�ti� as the mean deviation�

With the frequent sampling of the Internet communication between EA and EB �using the method sug�

gested in section ���� and with the random delay generation� we can accurately emulate the communication

delay and enforce the same delay on communication between A and B�

��� WANCE Tools

Unix Sysetm Calls

UNIX Kernel

(libc.a) Unix Sysetm Calls
(libc.a)

System Calls

Proxy

Program

Application

Program

Application

UNIX Kernel

Unix Sysetm Calls
(libc.a)

System Calls

Proxy

Program

Application

route table

WANCE
Initialization

Configuration File

Internet
sampler

WANCE
Initialization

Configuration File

communication
cost matrix

UNIX Kernel

(a) Normal Linking (b) Linking with WANCE tool
(for emulation)

(c) Linking with WANCE tool
(for trace-driven emulation)

Figure
� Software structure of the WANCE tools

��

We implemented WANCE�� using echo services instead of source routing since the latter was not always

available in the gateway of our Purdue network to the Internet� The new WANCE�� provides both echo

and source routing as alternative ways to redirect messages� We developed the WANCE tools under SunOS

���� It is based on BSD Unix interprocess communication primitives �the socket interface� and consists

of a library of C routines and a set of data collection and analysis programs� For emulation experiments�

each module or server of the distributed software must be linked against the WANCE library 	rst� The

library functions as a communication subsystem that sits between the distributed software modules and

the communication primitives provided by Unix� It provides the same interface for the upper layers but

replaces the original communication primitives with special message redirection semantics� A variety of

distributed system may be linked to the library with little or no change to the code�

The technique used is �proxy�� that is� to replace some of the Unix communication system calls with

equivalent versions that change the message delivery semantics� The proxy versions later invoke the original

system calls to complete the delivery� Figure
 shows the structure of the WANCE tools with an application

program�

The Unix system calls that are replaced include connect��� accept��� sendto��� sendmsg��� send���

and also write�� if used with a socket� For most programs whose communication is mainly handled by

these routines� the proxy works satisfactorily�

For more detail on how WANCE tool changes the semantics of these routines� please see the Appendix�

It discusses how the WANCE tool is initialized� and how it proxies system calls under di�erent emulation

models�

With the WANCE tool� we can easily set up experiments for our experimental distributed software� We

have linked the Raid system� with WANCE and have been able to conduct experiments on the Internet�

The integration was smooth�

�Raid is a distributed database system developed in Purdue ���
� We have been using it as an experimental infrastructure

for our researches in communication� adaptability� reliability� transaction processing over several years� The interactions

between Raid servers are in form of request�reply messages following the �client�server� paradigm� handled by the Raid

communication subsystem ���
�

��

� Validation of the Emulation Model

Emulation is an experimental method that provides a communication environment comparable to that in

a real experiment� Before any observations and conclusions are drawn from emulation experiments� we

would like to identify the relative error involved in the emulation model� We will answer the question�

�how close is the emulation experiment to the real experiment �

In this section we only discuss the validation of emulation method and omit the study on the trace�

driven method� The trace�driven method is based on a distribution model and an estimation method that

are well�established in statistics� Comparatively we need a thorough validation study on the emulation

method� The overhead of the WANCE tool in the emulation method also applies to the trace�driven

method�

��� Procedure

Error estimation The relative errors of the emulation method can be estimated by doing a real

experiment and an emulation experiment side�by�side and comparing the measured data� These two

experiments are actually the same except using di�erent experimental methods� Since there are large

intrinsic variations in Internet experiments� they have to be repeated a large number of times� To ensure

that both experiments are under the comparable Internet communication conditions� we interleaved the

processing in two experiments�

Application We have been conducting studies in distributed transaction processing� so we the Raid

distributed database system as the application in our validation experiments� We use the DebitCredit

benchmark �also known as TP� or ET��
�
�� It is a realistic transaction processing benchmark and is

well�accepted� This benchmark uses a small banking database� which consists of three relations� the teller

relation� the branch relation� and the account relation� The tuples are ��� byte long and contain an integer

key and a 	xed�point dollar value� In addition� there is a sequential history relation� which records one

tuple per transaction� Its tuples are �� bytes long and contain a teller identi	er� a branch identi	er� an

account number� and the relative dollar value speci	ed in the transaction� A transaction updates one tuple

from each of the three relations and appends a logging tuple to the sequential history relation� Hot�spot

��

access is ��!� i�e� ��! of the access focuses on ��! of the data items� ��! of the transactions are read�only

transaction� The average number of read�write operations per transaction is six with variance ���� A run

of the benchmark is a stream of �� such transactions �total ��� read�write actions�� It is su�cient to

make observation in an unreliable Internet environment� More details about the benchmark can be found

in
��� �
��

The database is fully replicated at both sites� We use ROWA �Read One Write All� protocol in the

replication control� two�phase locking protocol in the concurrency control� and two�phase commit protocol

in the atomicity control� We set the concurrency level to be one� i�e� one transaction at a time� since we

like to distinguish the cause of transaction aborts due to the con�ict access to the database items or due

to the unreliability of the Internet�

Con�guration We used three Sun workstations in the experiments� Two of them are located in

our laboratory� We refer them as raid� and raid�� here� Raid� is a SPARC IPC and raid�� is a

SPARCstation��� The third workstation we used is physically located in Hong Kong�� We refer this

machine as ust� It is also a SPARC IPC�

All of the three machines are properly equipped for distributed transaction processing� Both raid�

and ust have the same con	guration and run the same version of SunOS ������ for the purpose of fair

comparison between emulation experiments and real experiments�

As a side note� the geographical distance between the two sites in our laboratory and the one in

Hong Kong is about � thousand miles� The Internet connection between them are through Chicago� San

Francisco� and then across Paci	c Ocean to Hong Kong�

Figure � shows the con	gurations of the real experiment and the emulation experiment� In the real

experiments� site � of the two�site database system runs in raid�� and site � runs in ust� In the emulation

experiments� site � runs in raid� instead� In phase I of the emulation experiment� messages from site �

to site � are redirected to ust� while in phase II� messages from site � to site � are redirected� This is to

study how much bias will be introduced if request and reply messages are not of the same length�

�It is the courtesy of Department of Computer Science� the Hong Kong University of Science
 Technology for allowing

us to use their facility for collaborative research�

��

raid4

raid11

raid4

WANCE configuration file:

WANCE configuration file:raid11

ust

ust

raid11 ust

Internet

Internet

Internet

<8,2,AC,0> <8,1,AC,0> ust:7/UDP

<8,2,RC,0> <8,1,RC,0> ust:7/UDP

<8,1,AC,0> <8,2,AC,0> ust:7/UDP

<8,1,RC,0> <8,2,RC,0> ust:7/UDP

(c) the emulation experiment (phase II)

(b) the emulation experiment (phase I)

(a) the real experiment

site 2

site 1

site 2

site 1

site 1 site 2

Figure �� Three con	gurations of the experiments for error estimation

��� Data

We ran the experiments in a weekend when the network load was low� Although the time of day has

strong correlation to the performance of message delivery in the Internet� a relatively stable environment

made our estimation easier� In each run of the experiment we fed the stream of �� transactions generated

from the benchmark into site �� We recorded the response time for each transaction� and calculated the

average response time of the �� transactions� We set the timeout to be � second for each operation� and

the maximum number of restarts of a failed transaction to be three� The whole experiment consisted of

��� successful runs of the three con	gurations� a real experiment� then phase I of the emulation one� and

the phase II� That is� we ran a total of ���� transactions for each con	guration�

We measured three important performance metrics about distributed transaction processing� the esti�

mated mean response time� throughput� and transaction abort rate� The response time is the elapse time

��

between a transaction is submitted to the system and the result �or failure� returned by the system� The

throughput is the average number of transactions completed by the system in one second� The transac�

tion abort rate means the percentage of transaction that cannot be 	nished due to the failure to delivery

message in a certain time� Figure � shows the samples of the response time �RT�� throughput �TP�� and

the abort rate �AR� for each run of the benchmark transactions�

0 50 100 150

runs of the benchmark

0

10

20

30

40

50

pe
rc

en
ta

ge

Abort Rate

0.0

0.5

1.0

1.5

2.0

tr
an

sa
ct

io
n/

se
co

nd Throughput

0

5

10

15

se
co

nd

Response Time

real experiment: emulation I: emulation II:

Figure �� Three con	gurations of the experiments for error estimation

From Figure � we can see that in the samples acquired in both phases of the emulation experiments

are very close to that acquired in the �real� experiments� We calculated the estimated mean times of RT�

TP� and AR and the standard deviations� �see Table ��� By taking the average of the numbers acquired

��

in both phases of the emulation experiments we got �combined samples� for the emulation experiment�

These data were compared to the data acquired from the real experiments and the relative errors� were

also computed� Table � shows such estimated errors�

experimental methods

real emulation experiment

measures experiment phase I phase II combined

mean �second� ����� ��

� ����� �����

RT relative error � ���! �
��! ���!

standard deviation ����� ����� ��
�� �����

mean �per second� ����� ���
� ����� �����

TP relative error � ����! ���! ����!

standard deviation ����� ����� ����� �����

mean �!� ����� ����
 ����� �����

AR relative error � �
��! �����! ����!

standard deviation ���
� ����� ����� ���
�

�RT � Response Time� TP � Throughput� AR � Abort Rate�

Table �� The estimated error for emulation experiments

��� Results and Discussion

From Figure � and Table � we can see that the emulation method introduces small relative errors to the

experimental data� The data for both response time and throughput� the relative errors are within �
!�

Even the standard deviations are very close to each other�

We noticed that neither phase I nor phase II of the emulation experiment alone is su�cient� due to the

unbalanced message tra�c in both direction� We examined the message log between the two Raid sites�

��d� r	�r� where d is the datum from the emulation experiment and r is the datum from the real experiment�

��

For one benchmark transactions stream� At least
� remote messages� a total of ���� bytes �including

message headers�
� bytes per message� ditto below�� were from site � to site �� at least another
� remote

messages� a total of ���� bytes� were from site � to site �� which were only one�fourth the size in the other

direction� This is because all the transactions were injected into site �� read data were fetched locally�

but all writes had to go to site � as well� In a real experiment� a total of ��
�� bytes traveled across the

Internet� But in emulation experiment phase I� it were ����� bytes and in phase II only ���� bytes� Since

small messages travel slightly faster than large messages
���� the transaction response time measured in

phase I of the emulation experiment is longer than the actual time measured in the real experiment� but

that measured in phase II is shorter� Similar situation applies to the throughput measurements� The

average of phase I and phase II� however� is closer to the real data since the average number of messages

and the average size of each message are the same as in the real experiments�

The transaction abort rate measurements in emulation experiments are much less accurate� Although

the number of remote messages are the same in all con	gurations� a message that is too large to be shipped

in one datagram in the Internet �usually ��� bytes� are fragmented into two or more pieces and hence has

two or more times higher probability to be lost or delayed� Lost and delayed messages cause transaction

aborts� Therefore the abort rate measured in both phases of the emulation experiments are quite di�erent

from the real experiments� Also� transaction abort is one kind of independent failures� which will be much

harder to measure than the response time or the throughput� Message loss in Internet is often transient�

Even though we interleaved the processing of two experiments� there is no guarantee that a message loss can

be repeated in all three experiments� Considering these factors� a ��! error on abort rates by emulation

experiment is acceptable�

The experiments clearly show the high 	delity of the emulation method on the measurements of dis�

tributed transaction processing performance� including metrics like response time and throughput� We

have demonstrated that the emulation experimental method is feasible and reliable�

��

� Conclusion

Experimentation is important in understanding the behavior of geographically distributed system soft�

ware for a dynamic networking environment such as the Internet� We have discussed many ways of doing

experimentation over the Internet� namely� real experimentation� simulation� emulation� and trace�driven

emulation� Table � summarizes the pros and cons of these approaches and suggests the intended applica�

tions for each of these approaches�

pros cons suitable experiments

real experiments most reliable hard to set up� lim�

ited scale

not required to repeat on

di�erent set of sites

simulation inexpensive� easy to

scale up

require an accurate

model

systems involving large

number of sites

emulation real communication�

real processing� easy

setup

not good for asym�

metric processing or

decentralize control

client�server architecture�

natural of the experiment re�

quire repetition on di�erent

sites

trace�driven easy setup� good for

any distributed com�

puting paradigms

communication is

simulated� not real

natural of the experiment re�

quire repetition on di�erent

sites

Table �� A synopsis of Internet experimentation methods

We have shown that the emulation approach can reduce the complexities of performing experiments�

The use of WANCE tool free us from many tedious chores involved in conducting experiments� We can

thus concentrate more on the observations and analysis of experimental results� Another major advantage

of our approaches is that we are not bound in our experiments to some speci	c set of sites� We can do

experiments with nearly any host in the Internet by using the builtin routing� echoing facilities� or the

measuring facilities�

��

The emulation method has proved to be a feasible and reliable approach� The WANCE tool emulates

Internet communication in a laboratory environment� Based on our preliminary experimental studies� the

relative errors between real and emulated experiments� in response time and throughput for distributed

transaction processing application are within
!�

Using the WANCE tools we have conducted a serials of experiments on distributed transaction process�

ing in the Internet
���� The experiments include comparison of the performance of the two�phrase commit

protocol versus the three�phrase commit protocol� the performance of locking based and timestamp based

concurrency control protocols� and the performance of di�erent data replication strategies� These exper�

iments with WANCE tools will have great impact in transaction processing software� It suggest changes

in the ACID properties� Atomicity� Consistency� Isolation� and Durability� for the large scale distributed

systems� Early results of this study can be found in another report
����

Two interesting questions in the study of distributed system software scalability can also be answered

using the WANCE tool� The 	rst question is� �How does the distributed software work on the Internet �

and the second and more interesting question is �How well can this software be geographically distributed �

With WANCE tools we can easily vary the span of the experimental sites involving in the distributed

system� We can make it very small �e�g� to choose sites from the same campus network� to very large �e�g�

to choose sites from di�erent countries�� Thus we can obtain the scalability characteristics quickly�

Although the real processing is on the local hosts� the WANCE tool �steals� a few CPU cycles of the

emulated remote host for routing or echoing messages� But this is the minimum resource requirement

for experimenting with real communications� Compared this with the heavy load on a remote host in a

real experiment� such routing and echoing actions� if used with moderation� will not a�ect the normal

processing performance at the remote host� Also� considering the fact that many workstations in many

universities are simply idle in late night or weekend� we can be justi	ed the usage of idle resources at

remote sites for scienti	c research� To make sure that the remote computers are indeed idle� we have used

the Unix command rup to check the system loads before starting our emulation experiments� Moreover�

we have been careful and refrained from adding high loads on the Internet� In the trace�driven experiment�

we can tune the frequency of communication measurement in order to save Internet bandwidth�

�

Future work We have conducted a preliminary validation of our WANCE tool in a transaction pro�

cessing application� We plan to continue our study on the experimental models� We will conduct further

experiments to validate the WANCE tool and to 	nd out whether the number of sites in the distributed

software will a�ect the relative errors� and whether the geographical location will a�ect the accuracy of

the emulation experiments� We have used the Purdue�Hong Kong case in our validation experiment� we

plan to repeat it in a larger scale involving more sites in United States and other places in the world� We

will start it as soon as we collected enough access to computers in these locations�

We will also test the WANCE tool for di�erent applications� For example� we are interested in the

performance of displaying multimedia interface over the Internet� which is important in digital library

applications� We will 	rst study the accuracy of the emulation experiments for these applications�

Another direction of research on the emulation experimental approach is to 	nd out how we can

emulate more than one remote sites in a single local computer� We could run multiple processes of the

same distributed software in one host and have the communication between these processes route through

the Internet or be delayed by real�time traces� More study is needed to investigate the model� If successful�

this may allow us to emulate a large scale systems with the number of distributed system sites greater

than the number of physical experimental hosts� This could be another step forward in the infrastructure

for Internet experimentation�

The idea of using source routing to support the emulation experiments has other applications� For

example� it could be used to emulate a mobile computing environment� In such an environment some sites

of a distributed system will be moving frequently in the Internet from a physical host to another
����

The communication packages have to hop around to try to catch the mobile site� An emulation facility

can achieve this by routing the communication packages via many sites in the Internet� dynamically� This

method may ease the experimentation in mobile computing and needs investigation�

The idea of measuring the real world and feed the data into the emulation model at real�time is also

useful to other area of communication study� For example� it is expensive to set up a large scale wireless

communication network for experimental study� But it can be emulated in a local area network by getting

wireless communication measurement somewhere else and plug them into the WANCE tool� By combining

the two basic technique� we can develop a variety of facilities for experimental study�

��

References

��� Y� Zhang and B� Bhargava� 	Wance
 A wide area network communication emulation system�� in Proc� of
IEEE workshop on Advances in Parallel and Distributed Systems� �Princeton� NJ
� pp� ������ Oct� �����

��� A� Silberschatz� M� Stonebraker� and J� Ullman� 	Database systems
 Achievements and opportunities�� Com�
munications ACM� vol� ��� pp� �������� Oct� �����

��� P� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery in Database Systems�
Addison Wesley� �����

��� R� van Renesse� A� S� Tanenbaum� H� van Staveren� and J� Hall� 	Connecting RPC�based distributed systems
using wide�area networks�� in Proc of �th Int�l Conf on Dist� Comp� Systems� �IEEE� Piscataway� NJ
�
pp� ������ �����

��� R� van Renesse� H� van Staveren� and A� S� Tanenbaum� 	Performance of the world�s fastest distributed
operating system�� Operating System Reviews� vol� ��� pp� ������ Oct� �����

��� M� F� Kaashoek� Group Communication for Distributed Computing Systems� PhD thesis� Wrije Universititeit�
Amsterdam� The Netherlands� Aug� �����

��� C� Pu� F� Korz� and R� C� Lehman� 	An experiment on measuring application performance over the Internet��
in Proceedings of the ���� ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems� �San Diego� CA
� May �����

��� D� D� E� Long� J� L� Carroll� and C� J� Park� 	A study of the reliability of Internet sites�� in Proceedings of
the ��th Symposium on Reliable Distributed Systems� �Pisa� Italy
� pp� �������� IEEE� Sept� �����

��� P� B� Danzig� S� Jamin� R� C�acceres� D� J� Mitzel� and D� Estrin� 	An empirical workload model for driving
wide�area TCP�IP network simulations�� Internetworking	 Reseach and Experience� vol� �� Mar� �����

���� L� Zhang and D� D� Clark� 	Oscillating behavior of network tra�c
 A case study simulation�� Internetworking	
Research and Experience� vol� �� Dec� �����

���� D� Mitra and J� Seery� 	Dynamic adaptive windows for high speed data networks with multiple paths and
propagation delays�� Computer Networks and ISDN Systems� vol� ��� pp� �������� Jan� �����

���� O� W� W� Yang� X��X� Yan� and K� M� S� Murthy� 	Modeling and performance analysis of �le transfer in a
satellite wide area network�� IEEE Journal on Selected Areas in Communications� vol� ��� pp� �������� Feb�
�����

���� S� A� Heimlich� 	Tra�c characterization of the NSFNET national backbone�� in Proceedings of the ���� ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems� �Boulder� CO
� pp� ��������
May �����

���� V� Paxson� 	Measurements and models of wide area TCP conversations�� Tech� Rep� LBL������� Lawrence
Berkeley Laboratory� May �����

���� J� C� Mogul� 	Observing TCP dynamics in real networks�� in Proc� SIGCOMM��
� �Baltimore� MD
� pp� ����
���� Aug� �����

���� A� K� Agrawala and D� Sanghi� 	Network dynamics
 An experimental study of the Internet�� in Proceedings
of GLOBECOM��
� �Orlando� FL
� Dec� �����

��

���� R� C�acceres� P� B� Danzig� S� Jamin� and D� J� Mitzel� 	Characteristics of wide�area TCP�IP conversa�
tions�� in Proc� of ACM SIGCOMM��� Conf� �Zurich� Switzerland
� pp� �������� Sept� ����� in Computer
Communication Review ����
�

���� D� E� Comer� Internetworking with TCP�IP� Englewood Cli�s� NJ
 Prentice�Hall� �����

���� V� Jacobson� 	Congestion avoidance and control�� in Proc� SIGCOMM���� pp� �������� �����

���� R� A� Golding� 	A weak�consistency architecture for distributed information services�� Computing Systems�
vol� �� pp� �������� fall �����

���� B� Bhargava and J� Riedl� 	The Raid distributed database system�� IEEE Transactions on Software Engi�
neering� vol� ��� June �����

���� B� Bhargava� Y� Zhang� and E� Ma�a� 	Evolution of communication system for distributed transaction pro�
cessing in Raid�� Computing Systems� vol� �� pp� �������� Summer �����

���� J� Gray� ed�� The Benchmark Handbook for Database and Transaction Processing Systems� San Mateo� CA

Morgan Kaufmann� �����

���� B� Bhargava and Y� Zhang� 	A study of distributed transaction processing in wide area networks�� Tech�
Rep� CS�������� Purdue University� Mar� �����

���� E� Pitoura and B� Bhargava� 	Dealing with mobility
 Issues and research challenges�� Tech� Rep� CS��������
Purdue University� Nov� �����

��

APPENDICES
In this appendix we explain the detail implementation issues of the WANCE tool� The �rst part is the

con�guration �le for initializing the WANCE tool� The second part is the system call proxy for routing message
in the emulation model� The last part is the system call proxy in the trace�based method�

The con�guration �le

When the program linking with the WANCE library starts up� it initializes the WANCE module� It �rst read in a
con�guration �le and parses it� The con�guration �le is an external �le that contains the emulation con�guration
� a list of local sites and their corresponding remote hosts being emulated� The �rst line in the con�guration �le
indicates the emulation strategy used

Emulation� strategy
strategy can be either 	source routing�� 	echo�� or 	trace�driven�� with means emulation by source routing�
by echo services� or by the trace�driven method�

If it speci�es 	source routing�� the rest of con�guration �le will contain lines like
my�site local�site remote�site

where my�site is to match the computer where the emulation program runs� local�site is the address of a local
computer �that is to emulate computer remote�site
� and remote�site is the address of the remote computer in the
Internet �that is to be emulated by computer local�site
� This line means a message from this computer to local�site
should be routed through remote�site �rst� With regarding to the current computer� the second address in the
line is the destination address� and the third is the echo address� For the example in Section �� in con�guration
�le would have the following line

raid�� raid�� cs�helsinki�fi

If the con�guration �le speci�es 	echo services�� the rest of con�guration �le will contain lines like
my�site local�site remote�site�port�protocol

here port�protocol is the echo services name� for example ��UDP for UDP echo service and ��TCP for TCP echo
service �see Subsection ���
� This means that from the my�site a message sent to local�site should be echoed to
remote�site �rst� using port of protocol� Both local�site and remote�site can also be logical addresses interpreted
by the distributed software�

If the con�guration �le speci�es 	trace�driven�� the rest of con�guration �le will contain lines like
local�site remote�site

This line means that local�site is to emulated remote�site� All communication between local sites should be delayed
the same way as if it were between the corresponding remote sites� For example� if raid�� is to emulate mit�edu
and raid�� is to emulate bnr�ca� the con�guration �le could contain

raid�� mit�edu

raid�� bnr�ca

Proxy system calls for emulation with source routing

When the application program starts up� the emulation module �rst reads the network address of the computer
that it runs on� It then parses the con�guration �le� For each line it builds a 	socket option� that sets the source
routing path from the echo address to the destination
 char sockopt	�
� � f��� �IP loose source routing
� ��
�size of the option string
�
 �o�set of the �rst address
� the echo IP address� the destination IP address� � �padding
to a quad�octet boundary
g� It then hashes the destination address and the socket option into the WANCE routing
table

��

destination address socket option
struct in addr char 	�
�

������

B ���� X� B� ���

������

The emulation module provides proxy functions for system calls accept��� connect��� sendto��� sendmsg���
etc� When these functions are called� if the destination address involved are stored in the WANCE route table �i�e�
speci�ed in the WANCE con�guration �le
� the source routing will be turned on by the setsockopt�� system
call� The pseudo code for a simpli�ed version of these proxy system calls is giving below� The actual code is much
more complicated� which also includes bookkeeping and routines to clean up the socket options� etc�

proxy accept�s� addr� addrlen�

f
newsocket � accept�s� addr� addrlen��

�� search the route table for addr and return its socket option ��
sockopt � searchRouteTable�addr��

if �sockopt� �� if found ��
setsockopt�newsocket� IPPROTO IP� IP OPTIONS� sockopt� �
��

g

proxy connect�s� addr� addrlen�

f
�� search the route table for addr and return its socket option ��
sockopt � searchRouteTable�addr��

if �sockopt� �� if found ��
setsockopt�s� IPPROTO IP� IP OPTIONS� sockopt� �
��

newsocket � connect�s� addr� addrlen��

if �sockopt�

setsockopt�newsocket� IPPROTO IP� IP OPTIONS� sockopt� �
��

g

proxy sendto�s� msg� len� flags� to� tolen�

f
�� search the route table for addr and return its socket option ��
sockopt � searchRouteTable�addr��

if �sockopt� �� if found ��
setsockopt�s� IPPROTO IP� IP OPTIONS� sockopt� �
��

sendto�s� msg� len� flags� to� tolen��

g

proxy sendmsg�s� msg� flags�

f
for each message m in msg do f

��

�� search the route table for m�addr and return its socket option ��
sockopt � searchRouteTable�m�addr��

if �sockopt� �� if found ��
setsockopt�s� IPPROTO IP� IP OPTIONS� sockopt� �
��

sendmsg�s� message m only� flags��

g
g

The statement 	sockopt � searchRouteTable�addr��� searches the socket option in the route table set up
in the initialization for the given destination address� If the search is successful� the socket option is set up so that
the subsequent message will travel on the right path� For the connectionless communication� such setting is done
each time the application program calls sendto�� and sendmsg��� For connection�oriented communication� the
setting is done only when the application program establishes the connection by connect�� or accept�� calls� The
subsequent transfers� by send�� or write��� will inherit the routing option set to the socket� The extra overhead
in searching the table is negligible when the number of sites is moderate and when proper hashing technique is
used�

Empirical delay generator in the trace�driven method

Similar to implementation of emulation in the WANCE tool� we again use the 	proxy� technique in implementing
the trace�driven method� Instead of setting socket options� the proxy routines forward the message to a separate
server� the empirical delay generator �EDG
� EDG keeps a lists of messages that need to be delayed and attaches
each of them with a timer� When the timer expires� EDG sends out the message to its destination� The extra trip�
from sender to EDG and then to receiver� is local and can be ignored� since the delay imposed by EDG emulates
that in the real Internet and is much longer�

Another sever� the Internet sampler� is always running in the LAN to sample the outside Internet� When the
sampler starts� it reads the con�guration �le and determines the particular sites that need to be measured and
the frequency of the measurement� The measurement data is collected and exported to EDG immediately� EDG
depends on the measurement number to generate the random delays and packet losses for the local messages�

��

