Big Data Means at Least Three Different Things....

Michael Stonebraker

The Meaning of Big Data - 3 V's

- Big Volume
 - With simple (SQL) analytics
 - With complex (non-SQL) analytics
- Big Velocity
 - Drink from a fire hose
- Big Variety
 - Large number of diverse data sources to integrate

Big Volume - Little Analytics

- Well addressed by data warehouse crowd
- Who are pretty good at SQL analytics on
 - Hundreds of nodes
 - Petabytes of data

In My Opinion....

- Column stores will win
- Factor of 50 or so faster than row stores

Big Data - Big Analytics

- Complex math operations (machine learning, clustering, trend detection,)
 - the world of the "quants"
 - Mostly specified as linear algebra on array data
- A dozen or so common 'inner loops'
 - Matrix multiply
 - QR decomposition
 - SVD decomposition
 - Linear regression

Big Analytics on Array Data -An Accessible Example

- Consider the closing price on all trading days for the last 10 years for two stocks A and B
- What is the covariance between the two timeseries?

```
(1/N) * sum (A_{i} - mean(A)) * (B_{i} - mean (B))
```


Now Make It Interesting ...

Do this for all pairs of 4000 stocks
 The data is the following 4000 x 2000 matrix

Stock	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	••••	t ₂₀₀₀
S ₁									
S ₂									
•••									
S ₄₀₀₀									

Hourly data? All securities?

Array Answer

• Ignoring the (1/N) and subtracting off the means

Stock * Stock^T

DBMS Requirements

- Complex analytics
 - Covariance is just the start
 - Defined on arrays
- Data management
 - Leave out outliers
 - Just on securities with a market cap over \$10B

These Requirements Arise in Many Other Domains

- Auto insurance
 - Sensor in your car (driving behavior and location)
 - Reward safe driving (no jackrabbit stops, stay out of bad neighborhoods)
- Ad placement on the web
 - Cluster customer sessions
- Lots of science apps
 - Genomics, satellite imagery, astronomy, weather,

In My Opinion....

- The focus will shift quickly from "small math" to "big math" in many domains
- I.e. this stuff will become main stream....

Solution Options R, SAS, MATLAB, et. al.

- Weak or non-existent data management
- File system storage
- R doesn't scale and is not a parallel system
 Revolution does a bit better

Solution Options RDBMS alone

- SQL simulator (MadLib) is slooooow (analytics * .01)
 And only does some of the required operations
- Coding operations as UDFs still requires you to simulate arrays on top of tables --- sloooow
 - And current UDF model not powerful enough to support iteration

Solution Options R + RDBMS

- Have to extract and transform the data from RDBMS table to R data format
- 'move the world' nightmare
- Need to learn 2 systems
- And R still doesn't scale and is not a parallel system

Solution Options Hadoop

- Analytics * .01
- Data management * .01
- Because
 - No state
 - No "sticky" computation
 - No point-to-point messaging
- Only viable if you don't care about performance

Solution Options

• New Array DBMS designed with this market in mind

An Example Array Engine DB SciDB (SciDB.org)

- All-in-one:
 - data management on arrays
 - massively scalable advanced analytics
- Data is updated via time-travel; not overwritten
 Supports reproducibility for research and compliance
- Supports uncertain data, provenance
- Open source
- Hardware agnostic

Big Velocity

- Trading volumes going through the roof on Wall Street - breaking infrastructure
- Sensor tagging of {cars, people, ...} creates a firehose to ingest
- The web empowers end users to submit transactions sending volume through the roof
- PDAs lets them submit transactions from anywhere....

Two Different Solutions

- Big pattern little state (electronic trading)
 - Find me a 'strawberry' followed within 100 msec by a 'banana'
- Complex event processing (CEP) is focused on this problem
 - Patterns in a firehose

Two Different Solutions

- Big state little pattern
 - For every security, assemble my real-time global position
 - And alert me if my exposure is greater than X
- Looks like high performance OLTP
 - Want to update a database at very high speed

My Suspicion

• Your have 3-4 Big state - little pattern problems for every one Big pattern - little state problem

Solution Choices

• Old SQL

- The elephants

- No SQL
 - 75 or so vendors giving up both SQL and ACID
- New SQL
 - Retain SQL and ACID but go fast with a new architecture

Why Not Use Old SQL?

- Sloooow
 - By a couple orders of magnitude
- Because of
 - Disk
 - Heavy-weight transactions
 - Multi-threading
- See "Through the OLTP Looking Glass"
 VLDB 2007

No SQL

- Give up SQL
 - Interesting to note that
 Cassandra and Mongo are
 moving to (yup) SQL
- Give up ACID
 - If you need ACID, this is a decision to tear your hair out by doing it in user code
 - Can you guarantee you won't need ACID tomorrow?

VoltDB: an example of New SQL

- A main memory SQL engine
- Open source
- Shared nothing, Linux, TCP/IP on jelly beans
- Light-weight transactions
 - Run-to-completion with no locking
- Single-threaded
 - Multi-core by splitting main memory
- About 100x RDBMS on TPC-C

In My Opinion

- ACID is good
- High level languages are good
- Standards (i.e. SQL) are good

Big Variety

- Typical enterprise has 5000 operational systems
 - Only a few get into the data warehouse
 - What about the rest?
- And what about all the rest of your data?
 - Spreadsheets
 - Access data bases
 - Web pages
- And public data from the web?

The World of Data Integration

Summary

- The rest of your data (public and private)
 - Is a treasure trove of incredibly valuable information
 - Largely untapped

Data Tamer

- Goal: integrate the rest of your data
- Has to
 - Be scalable to 1000s of sites
 - Deal with incomplete, conflicting, and incorrect data
 - Be incremental
 - Task is never done

Data Tamer in a Nutshell

- Apply machine learning and statistics to perform automatic:
 - Discovery of structure
 - Entity resolution
 - Transformation
- With a human assist if necessary
 WYSIWYG tool (Data Wrangler)

Data Tamer

- MIT research project
- Looking for more integration problems
 - Wanna partner?

Take away

- One size does not fit all
- Plan on (say) 6 DBMS architectures
 - Use the right tool for the job
- Elephants are not competitive
 - At anything
 - Have a bad 'innovator's dilemma' problem

Newest Intel Science and Technology Center

- Focus is on "big data" the stuff we have been talking about
 - Complex analytics on big data
 - Scalable visualization
 - Lowering the impedance mismatch between streaming and DBMSs
 - New storage architectures for big data
 - Moving DBMS functionality into silicon
- Hub is at M.I.T.
- Looking for more partners.....

