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Abstract. In a distributed system, one strategy for achieving mutual exclusion of groups of nodes without
communication is to assign to each node a number of votes. Only a group with a majority of votes can
execute the critical operations, and mutual exclusion is achieved because at any given time there is at
most one such group. A second strategy, which appears to be similar to votes, is to define a priori a set
of groups that intersect each other. Any group of nodes that finds itself in this set can perform the
restricted operations. In this paper, both of these strategies are studied in detail and it is shown that they
are not equivalent in general (although they are in some cases). In doing so, a number of other interesting
properties are proved. These properties will be of use to a system designer who is selecting a vote
assignment or a set of groups for a specific application.
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tems—distributed databases; H.2.4 [Database Management]: Systems—distributed systems
General Terms: Algorithms, Theory
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1. Introduction

In many distributed systems it is necessary to have a mutual exclusion mechanism
that works even when nodes fail or the communication lines are broken. For
example, consider a system that manages replicated data. Owing to a network

partition, the system may be divided into isolated groups of nodes. We probably

do not want users at isolated groups updating the database concurrently since this
would cause the copies to diverge [12]. So, if a group is going to perform updates,
it must be able to guarantee that no other group is performing this activity. This
mutual exclusion has to be enforced without communication between groups.

One well-known solution is to assign a priori a number of votes (or points) to
each node in the system, and a group whose members have a majority of the total
votes is allowed to perform the restricted operation (e.g., [3, 5, 6, 15]). The mutual
exclusion is achieved because at most a single group can have a majority of votes
at a time. (It is possible that at a given time no group has a majority and can
perform the operation. There seems to be no way to avoid this problem. Even
giving one node all votes does not help since that node may fail.)

Votes are used to achieve mutual exclusion in a number of other algorithms.
For example, in the so-called Byzantine Generals problem, nodes may fail and

yield incorrect or even misleading results. The computation being performed must
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be replicated, and if nodes with a majority of votes agree on a result, it is considered
correct (e.g., [4], [8] and [11}]). Votes are also used in some commit protocols (e.g.,
[13] and [14]). After a failure, nodes must decide whether to commit or abort a
lrdIldellUIl dIlU lllC pIUlULUl must ensure l.Ildl at nost one gluup Ol HUUCb IHdKCb
such a decision.

A second solution to the mutual exclusion problem was suggested by Lamport
in 1978 [7], but because it appears to be so similar to vote assignment, it has

received little attention. The idea is to define a priori a set of groups that may

nerform the restricted oneration. Each pair of grouns cshould have a node in

perform the restricted operation, Each pair ups should have a node in
common to guarantee mutual exclusion. For example, if we have nodes a, b, and
¢ we may define the set {{a, b}, {b, ¢}, {a, c}}. Nodes a and b can perform the
operation together, knowing that neither group {b, ¢} or {a, ¢} can be formed.
Notice that this set of groups is equivalent to assigning one vote to each node (or
n votes to each node).

The assignment of votes or the choice of set of groups can have a critical effect
on the reliability of a distributed system Consider, for example, a system with
nodes a, U, C, and 4 and an 3551gr“11“1‘1€1“u that gi'v'es one vote to each. This seems like
a natural choice because it gives each node equal weight. Since three votes are

needed for a majority, this is equivalent to the set of groups
= {{a, b, ¢}, {a, b, d}, {a, ¢, d}, {b, c, d}}.

But now, consider an assignment that gives node a two votes and the rest a single
vote. The majority is still three votes, so this is equivalent to
R = {la, b}, la, ¢}, {a, d}, b, ¢, d}
) t ) S } S 1y

Set R and its associated vote assignment is clearly superior to S because all
groups of nodes that can operate under .S can operate under R, but not vice versa.
For instance, g and b can form a group under R but not under S. So, if the system
splits into groups {a, b} and {c, d}, there will be one active group under R but none
under S. So clearly, no system designer should ever serect set S (or its equivalent
vote assignment), in spite of the fact it seems “natural.’

We use the term “R dominates S” to mean that R is always superior to S.
Obviously, we want to ignore dominated sets (or vote assignments). But even if we
do, we must still select one of the nondominated sets, and this is no easy task. In
our example, which of the nodes should get the two votes? Or should we give one
node one vote and the rest three votes? Or four, three, two, and two votes?

There are many choices, but many are duplicates For example, giving a four
votes, b three votes, and ¢ and d two each, yields exactly the same set of groups
that was given by R. So again, in the selection process, we want to ignore duplicate
vote assignments.

Once the number of choices is narrowed down, the system designer will have to
consider each one in light of the failure characteristics of the system. The set or

assionment that maximizes the nrnhahilﬁv that the system is in operation would
aoolblllll\/.ll LIV 1MiaAniLliILNvY y VWALV AL VYU WA

be selected and used in practice.

The objective of this paper is to study vote assignments and sets of groups, in
order to narrow down the number of choices that must be considered by the system
designer. We start by formalizing notions like dominated sets, dominated assign-
ments, and identical assignments. In doing so, we prove a number of interesting
results, including the fact that vote assignments and sets of groups are #not equiva-
lent. That is, there are sets for which there exists no vote assignment.
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In the second part of the paper, we show that any algorithm to enumerate all the
nondominated (ND) choices is too expensive, and we develop a partial enumeration
technique that covers all our needs and has interesting properties. In general, the
number of choices is huge, but surprisingly, for systems with 5 or fewer nodes, the
number is relatively small. For example, for 4 nodes, there are only 3 basic sets of
groups that “make sense.” (Considering permutations of the nodes, this becomes a
total of 12 cases. For 5 nodes, there are 7 basic sets, or 131 cases including
permutations.) These results are very encouraging. They imply that, in “small
systems,” it is possible to study all choices and select the true optimum with respect
to reliability.

For systems with 6 or more nodes, the number of choices explodes, and it will
be practically impossible (even for 6 nodes) to select the true optimum. However,
we expect that in reality a vast majority of the systems will be under 6 nodes, so
this result is not too disheartening. Most systems will be small because the “system”
only includes the nodes participating in the mutual exclusion algorithm, not the
entire distributed system. Furthermore, many of the algorithms involve replication
of resources, which because of its cost, tends to be limited. (For instance, even in
the Space Shuttle, 5 replicated computers were judged to give sufficient reliability).

2. Basic Concepts

We start by defining sets of groups and domination. Notice that, to avoid confusion,
we are referring to sets of nodes as groups. Sets of groups are thus sets of
sets of nodes. In dealing with mutual exclusion, we do not want to have sets like
{{al, {b, c}} or {{a}, {a, b}}. We use the term coterie (from the French) to refer to
the sets of groups that are “well formed.” (According to Webster’s dictionary, a
coterie is a “close circle of friends who share a common interest. . . A set refers to
a group, usually larger and, hence, less exclusive than a coterie.”)

Definition 2.1. Coterie. Let U be the set of nodes that compose the system. A
set of groups S is a coterie under U iff

(i) GeSimplies that G # &, and G C U.
(i1) (Intersection property) If G, H € S, then G and H must have at least one
common node.
(iii) (Minimality) There are no G, H € S such that G C H.

When U is understood, we will drop it from the discussion. O

Note that not all nodes must appear in a coterie. For instance, {{a}} is a coterie
under {a, b, c}.

Definition 2.2. Domination for Coteries. Let R, S be coteries (under U). R
dominates S iff R # S and, for each H € S, there is a G € R such that G C H. (We
say that G is the group that dominates H.) O

Definition 2.3. Dominated and Nondominated Coteries. A coterie S (under U)
is dominated iff there is another coterie (under U) which dominates S. If there is
no such coterie, then S is nondominated (ND). O

As discussed in the introduction, a dominated coterie should not be used because
there is a coterie that provides more protection against partitions. For instance, the

coterie (

fla, b, ¢}, {c, d, e}}
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should be replaced by {{c}}, and the coterie
{{a, b}, {b, c}}

should be replaced by
{ta, b}, {a, ¢}, {b, c}}

or by
{{o .

The next theorem gives us a way to check if a coterie is ND without enumerating
all other coteries. This will be useful later on.

THEOREM 2.1. Let S be a coterie under U. S is dominated iff there exists a
group G € U such that

(i) G is not a superset of any group in S.
(ii) G has the intersection property. That is, forall HE S, G N H # @.

PrOOF. First we show that conditions (i) and (ii) imply S is dominated. There
are two cases to consider. If there are one or more H,, H,, ..., H, € § such that
GCH,, H,,...,H, thenconstructset R=(S—-H,—H,— ... —H,)UG. Itis
easy to see that R is a valid coterie (Definition 2.1) and that R dominates S. If
there are no supersets of G in S, then R = S U G is the dominating coterie.

Now, assume that .S is dominated by coterie R. We show that conditions (i) and
(ii) hold by considering two cases. In the first case, S C R. Let G be one of the
elements in R — S. Set G must satisfy conditions (i) and (ii) or else R would not be
a coterie. For the second case, S ¢ R and there must be an H € Sanda GER
such that G C H (see Definition 2.2). If condition (i) is false for G, then G 2 H’
for some H’ € S and S is not a coterie because H D ¢ 2 H'. Similarly, if condition
(i1) does not hold for G, R would not be a coterie. If H € Sand H' N G’ = O,
then G N G’ = J, where G’ is the group in R that dominates H’.) So in either
case, the conditions hold. O

Checking domination of coteries seems to be a hard problem. The best algorithm
that we know at this point is the one suggested by Theorem 2.1. It generates all the
possible subsets of the universe of n nodes, and for each one, checks if it can be
added to the coterie. This algorithm is clearly exponential in n. The worst-case
complexity of an algorithm to check for nondomination is however an open
problem. Nevertheless, the following two theorems show that the size of the coterie
to be tested can be exponential in # in the worst case.

THEOREM 2.2. The maximum number of groups in a coterie under a universe
of n elements is bounded by 2"".

PROOF. Since all the groups in the coterie must intersect with each other, no
group and its complement may be present. Thus, a coterie can have at most half
of the possible subsets of the set of n elements. [

THEOREM 2.3. There are coteries that have an exponential number of groups
on n.

PrROOF. Consider the coteries with groups of size [(n + 1)/21. There are
[(» +"1y2] such groups. Using the definition of combinations, it can be proved that

[ins"yd >2"/n. O
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As an exampie of the coteries discussed i
R = {{a, b, c}, {a, b, d}, {a, b, e}, {a, ¢, d}, {a, c, e},

{a, d, e}, {b, c, d}, {b, ¢, e}, {b, d, e}, {c, d, e}},

which consists of all the groups of size 3 in a universe of five nodes.

We end this section offering some results that establish the relationship between
coteries and a combinatorial object called hypergraph. This connection proves
to be useful in showing some properties of coteries and in establishing an-
other characterization of ND-Coteries. (For a complete treatment of hypergraphs,
see [2].)

Definition 2.4 [2]. Hypergraph. Let X = {X\, ..., X,} be a finite set and

= (Eili=1,..., m)a family of subsets of X. If E; # @ (i = 1, m) and
U,E C X, the couple H={(X, E)iscalled a hypergraph. The value } X} = pn1s the
order of the hypergraph, the elements X, ..., X, are called the vertices, and the
sets Ey, ..., E, are called the hyperedges. O

A coterie can be viewed as a hypergraph where the coterie groups are the
hyperedges. However, not all hypergraphs represent coteries, since clearly the
properties of intersection and minimality must be present.

Definition 2.5. Transversal A transversal of a hypergraph H=WX;E, ...,
E.)isdefinedtobeaset TC Xsuchthat TN E; #@ for(i=1,...,m). A
minimal transversal is a transversal such that no proper subset of it is a transversal.

The same concept is applicable to coteries. O

Definition 2.6. Coloring of a Hypergraph. A coloring of a hypergraph is a
coloring of the nodes so every hyperedge has at least two colors. [

Definition 2.7. Chromatic Number of a Hypergraph. The chromatic number is
defined to be the smallest number of colors needed for a hypergraph coloring. A
hypergraph for which there exist a k-coloring 1s said to be k-colorable. T

The following theorem is equivalent to the Theorem 2.1

THEOREM 2.4, A coterie is dominated iff the corresponding hypergraph is
2-colorable.

Proor. If a coterie S is dominated, according to Theorem 2.1 there exists a
group G not in S that is not a superset of any group in .S and that has the

ntarcacstinan nronerty and tharefn that can he ad
intersection proplriy anda, incréiore, uat ¢an o added to S. It is enough to view

G as one color class and the complement of it as the other. [

Recgomzmo 2-colorable hypergraphs is known to be NP-complete nm which
reenforces our belief that the same is true for coterie dommatlon. However, since
coteries are special hypergraphs, this result cannot be directly extended to the
probiem of coterie domination.

In [10], Lovasz observed that if a hypergraph has the intersection property and
is not 2-colorable, it must have rather strict properties, and called those types of
hypergraphs strange. Indeed, if we add the restriction of minimality, those hyper-
graphs correspond to our ND coteries.

A better characterization of ND coteries in terms of hy
nterms of I

(18w § V-4 Lo i Lo B Y 4 4

using the following definitions.

! But this is not required for a coterie.
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Definition 2.8. Critical Hypergraph. An edge E of a hypergraph H is critical if
the chromatic number of H — {E} is less than the chromatic number of H, that is,
if deleting the hyperedge reduces the chromatic number. A hypergraph is critical if
it is connected and each edge of it is critical. (Critical hypergraphs were introduced
by Lovasz [9].) O

We can now prove that ND coteries are 3-chromatic critical hypergraphs.

Definition 2.9. Used Nodes. The nodes that actually appear in a coterie S are
called the used nodes and are represented by u(S). O

LEMMA 2.1. For a given ND coterie R, different from the singleton coterie
({a}), there exists at least one partition of u(R) into three pairwise disjoint subsets
w1/ p2/us such that no group of R is completely contained in one of the subsets.

PrROOF. Let G be any group of R with two or more elements. Define
m = G, p2 = G, s =G =uR) -G,
with
G\ UG, =G, GNG, =9,

with G, and G, each nonnull.

Group G is clearly not contained in any of these subsets. Similarly, any other
J € R must have elements in p3 (else it would be a subset of G) and in u; U p; (else
J would not intersect G'). Thus the theorem follows. O

Lemma 2.1 gives way to the following theorem:
THEOREM 2.5. ND coteries are critical 3-chromatic hypergraphs.

PrROOF. Dropping a group from a ND coterie will produce a dominated coterie;
hence, according to Definition 2.8, ND coteries are critical hypergraphs. By Lemma
2.1, they are 3-colorable. [

Using Theorem 2.5, we can see that the following lemma is in accordance with
a theorem proved by Benzaken in [1] that shows that a hypergraph H is 3-chromatic
and critical iff the hyperedges of H are all minimal transversals of H.

LEMMA 2.2. Let S be a ND coterie and G a transversal of it. Then G is either
in S or a superset of a group in S.

PROOF. Assume that there exists a group J & S such that J is not a superset of
any group in S, and J is a transversal of S. Then J would fulfill the intersection
and minimality properties of Theorem 2.1, so S would not be an ND coterie. [
3. Vote Assignments
In this section we study vote assignments and show some of their properties.

Definition 3.1. Vote Assignment. Let U be the set of nodes that compose the
system. A vote assignment is a function v: U — N. (N is the nonnegative integers.)
v(a) is the number of votes assigned to node a. O

Definition 3.2. Total and Majority. For a vote assignment v over U, TOT (v)
and MAJ(v) are defined by

TOT(v) = } v(a)
acelU
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and
[mv_) + 1 if TOT(v) is even,
MAJ(v) = i
LEI%)LI if TOT(v) is odd. 0

Each vote assignment implicitly defines a set of groups of nodes that may be
active, that is, those holding a majority of the votes. This is formalized by the next
definition.

Definition 3.3. The Coterie Corresponding to a Vote Assignment. Let v be a
vote assignment over U, Let

( )
Z= iGl G CUand ¥ v(a) = MAI(v)
aeG
and call the elements of Z the I‘Iiajwuy groups. The minimal elements of Z (i.e.,
those sets such that no subset of them is in Z) are the tight majority groups and
constitute the coterie corresponding to v. (The set of tight majority groups is clearly
a coterie, since it satisfies the properties of Definition 2.1.) O

Coteries may have more than a single vote assignment corresponding to them.
For exampile, assignments v(a) = 1, v(b) = 1, v(c) = 1, and w(a) = 2, w(b) = 2,
w(c) = 3 correspond to the same coterie, and we call them similar assignments.

Tex;,

Nofinitinn 24 Cipailar Unte Accignne Tw

egjinition 5.4, sSimiar vote Assignmentis.

iff their corresponding coteries are equal. O

o
<
=]
-k
[¢]
[-%]
[72]
w
M.
o
=
ot
=
a
=
=+
7]
[
o}

vote
vote

assignments. As a matter of fact, even nondominated coteries may
assignment. But first, let us define domination for vote assignments.

As we shall see shortly, some coteries do not have any correspondi ng
have no

Definition 3.5. Domination for Vote Assignments. Let v, w be two vote assign-
ments (under U), and let R, S be their corresponding coteries. v dommates wiff R

ated: and v Ic

dominates S Q:mﬂarl\/ we savy that v 1c dominatod if R ic
ed 1l X 1§ utvu, aliG Vv

OULIALIIGWWS iJ. wJiiliiiqiay DAy uiGe VA5 Ll

nondominated (ND) 1f R isND. O
THEOREM 3.1. There are ND coteries such that no vote assignment corresponds
to them.
Proor (by example). Let U= {a, b, ¢, d, e, f} and consider the coterie
S = {{a, b}, {a, ¢, d}, {a, ¢, e}, {a, d, f},
{a, e, [}, (b, ¢, [}, {b, d, el}.

We omit the proof that S is ND since it is simple but tedious. (We have to show
that there is no set satisfying the properties of Theorem 2.1. I.e. we enumerate all
sets that intersect the groups of S and verify that all such groups are already
included in S.) Suppose that there is a vote assignment v corresponding to .S. From
Definition 3.3, v would have to satisfy the inequalities

v(a) + v(b) = MAJ(v),
v(a) + v(c) + v(d) = MAJI(v),
v(a) + v(c) + v(e) = MAJ(v),

CJ..
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From these inequalities, it is easy to reach a contradiction. For instance, since
{b, d, e} is in S but {q, d, e} is not, v(b) + v(d) + v(e) = MAJ(v) and v(a) + v(d)
+ v(e) < MAJ(v). Therefore, v(b) > v(a). This fact, plus the second inequality
above implies that v(b) + v(c) + v(d) = MAJ((v) and {b, ¢, d} or a subset should
be in S. This is not true. [

Theorem 3.1 tells us that coteries are a more powerful concept than vote
assignments. That is, in some systems a coterie like the one in the theorem could
actually yield the best reliability characteristics, and there would be no way to
enforce the same groups with votes. However, vote assignments have some advan-
tages over coteries (e.g., easier to implement), but we defer this discussion until
after we discover some more properties of vote assignments and coteries.

In Section 2 we have shown that checking domination for coteries is hard; the
next two theorems tell us that checking domination for vote assignments is trivial.

THEOREM 3.2. Let v be a vote assignment for nodes U. If TOT(v) is odd, then
v is nondominated.

ProoF (by contradiction). Assume that v is dominated. Let .S be the (domi-
nated) coterie corresponding to v. By Theorem 2.1, there is a group G that satisfies
the intersection property but is not a superset of a group in S. Notice that G cannot
be a majority group (Definition 4.3) because then it or a subset would be in S.
Now, consider the group U — G. Since TOT(v) is odd, U — G must be a majority
group (i.e., there is no way to split the nodes into two groups without having one
of them contain a majority of votes). Thus, U — G or a subset must be in S. This
is a contradiction, since G, which was supposed to intersect all sets in S, clearly
does not intersect U — G or its subsets. []

If TOT(v) is even, v may or may not be ND. For instance, the assignment
v(ia) = 1, v(b) =1, v(c) = 1, and v(d) = 1 is an even assignment that is not ND,
whereas the assignment v(a) = 4, v(b) = 2, v(¢) = 2, and v(d) = 2 is ND.

However, as we shall show shortly, we can easily transform v into an ND odd
assignment which is either similar to v or dominates v. Thus, we should always use
the transformed assignment instead of v.

THEOREM 3.3. Let v be a vote assignment for nodes U, where TOT (v) is even.
Let w be an assignment with TOT(w) = TOT (v) + 1 that distributes the TOT(v)
votes as v does and gives any node the extra vote. Then w is ND and either is
similar to v or dominates v.

PrOOF. wis ND by the previous theorem. Since MAJ(w) = MAJ(v), any group
in the coterie for v will be in the coterie for w. This means that either the coterie
for v equals the coterie for w (assignments similar) or the v coterie is a subset (w
dominates v). O

Theorems 3.2 and 3.3 imply that it is simple to avoid dominated vote assign-
ments. In general, this is not the case for coteries.

4. Counting Coteries and Vote Assignments

In this section we attempt to enumerate ND coteries. Shortly, we shall discover
that any algorithm that attempts to enumerate all coteries will be inefficient due
simply to the number of ND coteries that exist. However, since our aim is to
optimize the choice of coterie in a given system, we need some way of enumerating
the choices, or at least a convenient subset of them.
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We enumerate coteries instead of vote assignments since they are more general
(Theorem 3.1) and there are no “duplicates” (i.e., similar vote assignments). We
return to vote assignments in the following section.

Before enumerating ND coteries, we must address the issue of isomorphic
coteries. For instance, consider a system with nodes a, b, ¢, and d, and the two
coteries

S = {{a, b, c}, {a, d}, {b, d}, {c, d}},
R ={{b, ¢, d}, {b, a}, {c, a}, {d, al}.

Clearly, R is isomorphic to S; that is, if in S, we exchange a and d we obtain R. In
enumerating coteries, we prefer not to list isomorphic ones. Instead, we only list a
representative of each category, from which the isomorphic ones can easily be
generated.

Definition 4.1. Isomorphic Coteries. Two coteries R and S under U = {a,, as,
..., ay} are isomorphic iff there is a permutation II (of the integers 1 - .. 1) such
that when we replace each a; in S by an we obtain R. O

Definition 4.2. Enumeration. A set of ND coteries (under U), E, is an enumer-
ation (under U) iff

(i) every ND coterie (under U) is either in E or is isomorphic to one in E; and
(ii) no two coteries in E are isomorphic.

To avoid confusion, we enclose enumerations in square brackets instead of in set
brackets (i.e., E=[...]). O

One strategy for producing enumerations is to generate all possible coteries and
then eliminate dominated and isomorphic ones. For references, let us call this
strategy the exhaustive algorithm. If we use it for a system with a single node, we
easily obtain the one and only enumeration:

Observation 4.1. The set [{}, {{a}}] is an enumeration (and the only one) for
U={a}. O

For systems with more nodes, we quickly discover that the enumeration algo-
rithm is too expensive. To formalize this assertion, we have to find a way of
counting ND coteries. In order to do that, the following lemma establishes a way
of constructing an ND coterie under U with | U| = # elements from a coterie
under U’ with | U’| = n — 1 in a way that there is a one-to-one correspondence
between the two.

LemMA 4.1. Consider a nonempty coterie R under U’ = {a,, aa, . . ., an-1}. Let
T be the set of minimal transversals of R. From the set S that contains the groups
of R plus all groups of the form T U {n} where TE€ T and T not in R. Then S is an
ND coterie under U = {a,, aa, . . ., a}.

PrOOF. S is clearly a coterie since every new group added intersects with the
rest of the groups, and no group is contained in another. For the ND part, assume
S is dominated. Then, by Theorem 2.1, there exists a G not in § that has the
intersection property and is not a superset of any group in S. There are two cases
to consider:

(a) n € G. In this case, since G has the intersection property, there must be a
minimal transversal of R, T, such that 7 C G and therefore T U {n} C G,so G is a
superset of some group in S.
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(b) n & G. Since G is not a superset of any group in S, then G has the
intersection property. Therefore, there must be a minimal transversal in R, TC G
and (T U {n}) N G = &. Thus, G does not have the intersection property as was
claimed. O

To illustrate the transformation of Lemma 4.1, consider the coterie
R = Ha, b}, {a, c}},

andlet U={aq, b, ¢, d}. The set T’ = {{a}, {b, c}} contains all the minimal transversals
for R, so we can form

S = {{a, b}, {a, c}, {a, d}, 1b, ¢, d}},

which is an ND coterie.

It is easy to see that distinct R will give distinct ND coteries S and that R can be
recovered from S by dropping all groups that contain the #nth element. Now we
can use this fact to count the number of ND coteries with # elements counting the
number of distinct coteries of # — 1 elements.

THEOREM 4.1. (M. Yannakakis, personal communication). The value 2> for
some constant ¢ is a lower bound of the number of ND coteries under a universe of
n elements.

PROOF. Assume that 7 is odd (the case for # even is handled similarly). Consider
only coteries under U’ = {a,, ..., a,—} with groups of size (n + 1)/2. That is,
consider sets of the form {{bi, ..., b} | b; € U’ and m = (n + 1)/2}. These sets
are coteries since no group can possibly be a superset of another and any two
groups will intersect. There are [, 7,] potential groups of that size and, therefore,
2[n=1.0+1/2] coteries under U’ of this form. Now, since [,17,,] > 2"/(n + 1), and,
for each of these coteries, there is an ND coterie under U, the result follows. [

Theorem 4.1 shows unequivocally that any attempt to enumerate all the ND
coteries is hopeless for large #. Besides having a doubly exponential number of
them, some of them are exponentially long, as seen in Theorem 2.3. Thus, the
sample space for the optimization problem is really huge.

Although we have just shown that the total number of coteries is large, there are
two important questions that arise:

(1) Can we enumerate them for small systems? As we stated in the introduction,
these are the most probable systems in practice.

(2) Even for large systems, can we at least enumerate a subset of the class of ND
coteries? From a practical point of view, optimizing over this subclass may be
good enough. However, we are interested in covering at least the original
choices in our problem, that is, those coteries that have a corresponding vote
assignment. Therefore, we concentrate on finding a subclass of ND coteries
that results in a more manageable number of choices and that includes those
ND coteries with vote assignment,

We now develop an algorithm that will let us answer both of these questions
positively. This algorithm is based on a transformation that generates ND coteries
from other ones and is, hence, called the transformation algorithm (TA). The idea
of the transformation is to delete one group of a coterie and to add the complement
and a set of groups that are supersets of the deleted group, making the coterie grow
in size. We prove that this procedure, when applied to ND coteries, produces new
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ND coteries. The definitions that follow will lead to this algorithm. (This transfor-
mation may also be useful in an optimization procedure. That is, if we have found
a good coterie, the transformation will give us related coteries that may be superior.)

Definition 4.3. Coterie Transformation. The coterie transformation CT is a
function that takes as inputs an ND coterie S and two sets of nodes, G and U, and
yields a set of groups. Let

G=U-G
and
B={GU{bl|beEGand HZL G U {b} forany HE€ S — G}.

The transformation CT(S, G, U) is undefined if any of the following conditions
are false:

() GES,
(i) p(S)E U,
(i) |G| = 2,
(iv) |8l =1,
(v) Sis ND.

If the conditions hold, then
CT(S, G, U)=(S - {G) U {G} U
We call the groups in 3 the new groups. O

To illustrate the use of the transformation, take S = {{a}}, G = [a}, and
U = {a, b, c¢}]. Since the conditions hold, we have G = (b, ¢} and 8 =
{{a, b}, {a, ci}; therefore, CT(S, G, U) = {{b, ¢}, {a, b}, {a, c}}. The resulting set of
groups is an ND coterie, and as will prove later, this is no coincidence. If we change
U to {a, b}, condition (iii) is violated; so CT is undefined. If we were to go ahead
and compute CT as (S — {G}) U G U B, we would get {{b}, {a, b}}, which is not
even a coterie. Similarly, if condition (iv) is false, we would not get an ND coterie.
For example, make S = {{a, b, ¢}, {a, d, e}, {b, d}, {c, d}, {b, ¢, e}}, G = {qa, b, c},
and U={a, b, ¢, d, e}.

The algorithm for partial enumeration of ND coteries is shown in Figure 1. The
algorithm calls the nodes a, as, ..., a.. It takes as input integer { and outputs a
set of coteries under {a,, a», ..., a;}. We use p-enum for both the name of the
algorithm and the set it returns as a result.

As an example, suppose we evaluate p-enum (2). The algorithm starts by storing
p-enum(1) = [{}, {{a:}}] in temp and p-enum. The algorithm then considers each
coterie in temp and attempts to transform it into a coterie with more groups. In
this case, neither coterie can be transformed, so p-enum(2) = p-enum(1).

If we compute p-enum(3), we are able to tranform {{a,}} into {{a>, as}}, {ai, a2},
{a,, as}} (as illustrated before). This means that p-enum(3) will contain this coterie
plus the ones in p-enum(2). In a similar fashion, we can compute p-enum(3),
p-enum(4), and p-enum(S), which are displayed in Figure 2. We do not display
higher ordered sets since they are much larger.

The algorithm for producing partial enumeration has some interesting properties.
It does produce total enumerations for “small” systems, which we believe are the
most common ones. And as we shall see in the following section, it enumerates all
the ND coteries that correspond to a vote assignment.
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function p-enum ()
if § <1 then p-enum « f{ }, {{a,}}]

else
begin
temp + p-enum (s-1);
p-enum « temp;
while temp 7 @ do
begin

select S € temp;

temp +« temp - S,

for each G € Sdo

begin
H‘—CHS,G,{GI,...G.'});
if ““H is defined and neither it nor an
isomorphism is in p-enum’’ then
begin
p-enum « p-enum U H,
temp « temp U H;
end;
end;
end;
end;

FiG. 1. The algorithm for partial enumeration of ND.

p-enum(1) = [{ }, {{a}}]
p-enum(2) = [{ }, {{a}}]
penum(3) = [{ }, {{a}}, {{a,0},{a,c},{b,c}}]
p-enum(4) = [ }, {{a}}, {a,0}.{a,c},{b,c}},
{{ab,c}.{ad}{bd} {c,d}}]
p-enum(5) = [{ }
FiG. 2. The algorithm for partial enumer- Hal},
ation of ND, using {a, b, ¢, d, e} instead of {{a,8},{a,ch.{be}},
{a1, a3, as, as, as). {{a,b,c},{a,d},{b,d},{c,d}},
{{a,b,¢},{b,d},{c,d},{b,c,e},{a,d,e}},
{{a,b,c},{c,d},{b,c,e},{a,de},
{a,c,e},{b,d,a},{b,de}},
{{a,b,e},{b,c,e},{a,d,e},
{a,c,e}{b,d,a},{b,d,e},
{a,b,e},{¢,d,a},{¢,d,b},{c,de}},
{{a.bc,d},{a,e},{be},{ce},{de}}]

In the rest of this section, we prove the properties of the CT transformation and
of the partial enumeration algorithm we have alluded to. We start by showing some
simple but useful results for ND coteries.

LEMMA 4.2. Say S is an ND coterie, G an element of it, and U a set of nodes
such that u(S) C U. Let G = U — G. Then,

(i) Forall HE S suchthat H# G, GN H# Q.
(ii) ForallHE S, HZ G. 3
(iii) For each a € G, the group G U {a} or a subset of it must be in S.
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PROOF

(i) If there were such an H, HN G =@, H C G, and S would not be a coterie
(Definition 2.1).
(ii) If H C G, then HN G =@ and S is not a coterie.
(iii) If neither G U {a} nor a subset is in S, we can use this group to show that S is
dominated (Theorem 2.1). Note that by (i), G U {a} intersects all S groups
except G. But since a € G, G U {a} also intersects G. O

THEOREM 4.2. If the set produced by the CT transformation, CT(S, G, U), is
defined, then it is a coterie.

PrROOF. We must show that the coterie properties (Definition 2.1) hold. The
proofs for most cases are trivial because S is a coterie. Here we only cover the
interesting cases. To show minimality:

(1) No H € S can be a proper subset of G. True by Lemma 4.2.

(2) G should not be a proper subset of a new group (i.e., of a group in 8). Each
new group has a single G element, and |G | = 2.

(3) G cannot be a proper subset of an H € S. Suppose not; that is, G C H. Let us
write H as G U I(I # @). Sinc | 8] = 1, there must be a set G U {a} (a € G)
such that no group in § is included in it. This means that all S mem-
bers must have a member not in G U {a}, that is, a member in G — {a}.
With this information, we can show that S is dominated (a contradiction):
Let J= H — {a} = (G — {a}) U I This set cannot be equal to or a superset of
some other .§ group (or else S would not be a coterie). Also, J intersects all S
groups (then all have an element of G — {a}). Thus, S is dominated.

To show the intersection property for CT(S, G, U), there is only one nontrivial
case to consider:

4 IfHES H #G, HNG#@. Trueby Lemma 4.2. O
THEOREM 4.3. If CT(S, G, U) is defined, then it is an ND coterie.

PROOF. By the previous theorem, it is a coterie. To show it is ND, we assume
it is dominated and use Theorem 2.1 to show that Sis dominated (a contradiction).
Let / be the set guaranteed by Theorem 2.1 for a dominated CT((S, G, U). This
same I will prove that S is dominated.

Since all groups of S (except G) are in CT, we already know that I intersects
these groups and is not equal to or a superset of them. We just have to show that
these same properties hold for G.

(1) GZ 1 Clearly, I # G, for else I and G (a group of CT) would not intersect.
If G C I, I must contain at least one node ¢ € G that does no appear in a new
group (else I would be a superset of the new groups). If ¢ is not in a new group,
there must be an H € S such that H C G U {c} C I, which is impossible.

(2) ING#3. Suppose not. Then, I C G (since I # G). Let ¢ be one of the nodes
in G — I. This means that ¢ cannot be one of the elements of G selected to
form a new group, or else I would not intersect that group. But if ¢ was not
used, it must be because H C G U {c} for some H € S; and I does not intersect
this H (a contradiction). O

The following three lemmas will be useful for proving the next theorem.

LEMMA 4.3. Let U and U’ be two sets of nodes such that U C U’. If S is an
ND coterie under U, then it is also an ND coterie under U’ .
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PROOF. Suppose that S is dominated under U’. By Theorem 2.1, there is
G € U’ not equal to or a superset of an .S group, such that the intersection property
holds. Since u(S) C U, we can remove from G the nodes in U’ — U without
violating the properties of G. The existence of this new set implies that S is
dominated under U, a contradiction. [

The next two lemmas describe the conditions that must hold for a coterie to be
obtainable from another one through the CT transformation.

LEMMA 4.4. Let R be an ND coterie. There exists an ND coterie S, | S| < | R|,
such that CT transforms S into R iff there exist groups I, H € R such that u(R) —
HCI |H| =2 and I - (u(R) - H)| = 1.

Proor. If R = CT(S, G, U), p(R) = U and G, G U {a} are elements of
R (a € G). If we refer to G as H, and G U {a} as I, we see that u(R) — H C I,
|H| =2, and | I - (u(R) - H)| = 1.

To prove in the opposite direction, assume that the sets /, H exist in R. Let

vy={G|G € Rand u(R) - HC G}, H=uR) - H,
and construct set
§=(R-vy-{H})U {H]}.

We can check that CT(S, A, u(R)) is defined and yields R. Simply notice that,
by Lemma 4.2(iii), all the groups G in v must be of the form H U {a}, with a € H.
With this in mind, we can see that the groups in y are exactly the groups in the set
8 produced by CT. Also, since |y | = 1, | S| < | R{. The last thing to check is that
S'is an ND coterie. Since all groups in S except H were in ND coterie R, we only
have to verify that 7 in S does not create problems.

H cannot be a subset of a J € S because any such J would be in v and not in S.
A J € S cannot be a subset of H, or else J N H = @ and R is not a coterie. A must
interest each J € S, for else J C H. Thus, S is a coterie.

To show that .S is ND, assume the contrary. Let J be the group guaranteed by
Theorem 2.1. There are two cases to consider:

Case 1: J 2 H. In this case we can use J directly to prove that R is dominated
(a contradiction). We omit this part of the proof since it is straightforward.

Case 2: J 2 H. Here, J is not useful for showing R dominated. However,
we can construct a new set for this. Say « is the node in I — A, and construct
K =J - {a} (a € H). It is easy to see that K is not equal to or a superset of any R
group, including H. But now we must check that X still has the interesection
property in R.

Since J N H is nonempty and not equal to {a}, K N H has the same properties.
Hence, K intersects all of the new groups (of the form H U {c}). Since H C J and
|H| = 2, J and H have at least two common elements, and thus K N H # &.
Finally, take an L € S and R. We know that J N L # O, but suppose that
K N L = @. This means that L is made up of a plus nodes in H. Since there is a
set I = {a} U H in R, and L cannot be a subset of it, L = I. But then L would
notbein S. [

LEMMA 4.5. If R is a ND coterie with 2 < u(R) < 5, then there exist groups I,
HERsuchthat HC I, |H| =2, and |I— H| =1 (where H= u(R) — H).
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PrOOF. We do not have to consider coteries with a single-node group because
they must be of the form {{a}} and u(R) < 2. If R only has groups with two nodes,
it must be of the form {{a, b}, {a, c}, {b, c}}, and the sets I, H clearly exist. If R
has a group {a, b, ¢, d}, u(R) must be 5 (else it would be dominated) and {a, e}
must be in R (Lemma 4.2). Again, I and H exist. Also, R can never have a group
{a, b, c, d, e}.

Thus, the only “interesting” case is when R has at least one 3-group, say
{a, b, ¢}, and possibly some 2-groups. If u(R) = 4, {a, d} must be in R too
(Lemma 4.2), and we have found I and H. So, assume that u(R) = 5. We make
H = {a, b, ¢} and we will find an I satisfying the properties. By Lemma 4.2,
we must have in R groups J, K, L such that a € J, b € K, ¢ € L, and
JCid e a}, KC{d e b}, L C{d, e, c}. If one of these groups contains d and e,
then it is the I we are looking for. But, suppose none of them have both d and e.
Without loss of generality, say, J = {d, a}. Then K = {d, b} and L = {4, c} (to
intersect J). Now, the set containing e (and there must be one since u(R) = 5)
must have a, b, ¢ as elements, so it is a superset of H, a contradiction. Therefore,
one of the groups J, K, L has three nodes and 7 exists. O

THEOREM 4.4. If | = i < 5, p-enum(i) is a total enumeration under
{ai, aa, . .., ai}. (Recall that p-enum(i) is computed by the algorithm of Figure 1.)

PrROOF. Since the partial enumeration algorithm explicitly removes isomorphic
coteries, we only have to show that every ND coterie R or one isomorphic to it is
in p-enum(i) (Definition 4.2). We do this by induction on j, the number of groups
in R. The algorithm always generates coteries {}, {{a;}}, and all ND coteries with
j = 0 or 1 are isomorphic to these. Now, assume that the algorithm generates all
ND coteries (or isomorphic ones) with j < m (m = 2).

Take ND coterie R with j = m. By Lemmas 4.4 and 4.5, there exists an ND
coterie S, | S| < m; such that S can be transformed into R. Since either S or a
coterie isomorphic to it is in p-enum(i), the algorithm will generate R, or an
isomorphic coterie. [

THEOREM 4.5. For i = 6, p-enum(i) is not a total enumeration under {a,, a,
ey ai}.

ProoOF. Take the ND coterie S of Theorem 3.1. By Lemma 4.3, S (or an
isomorphic coterie) must be in any total enumeration under {ay, . . ., a;}. However,
there are no two sets H, I in S satisfying the properties of Lemma 4.4, so .S will
never be in p-enum(i). O

5. Vote Assignments Revisited

If we try to find equivalent vote assignments for the ND coteries for systems with
five or fewer nodes (Figure 2), we discover that every single one has an assignment.
(To find an assignment, pose linear equations as was done in Theorem 3.1.) This
raises some intriguing questions. Do all coteries in p-enum(i), i = 6, also have a
corresponding vote assignment? Or are all coteries with ND vote assignments in
p-enum(i)? Answers to these questions will shed light on the relationship between
coteries and assignments, and could give us a way to generate coteries with vote
assignments. In this section we answer these questions.

In the following two lemmas, we show that every ND coterie with a vote
assignment can be obtained from a smaller coterie, also with an assignment,
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through our coterie transformation CT. An example that illustrates how to con-
struct the smaller coterie follows the lemma.

LEMMA 5.1. Let R be an ND coterie with vote assignment v, and let MAJ(v) be
its majority. Suppose that there is a node ¢ € u(R) that only participates in groups
of R that have strictly more votes than MAJ(v). Then we can find a similar vote
assignment w where this is not the case. That is, the coterie corresponding to w will
be R and node c will be a member of a group G € R with exactly MAJ(w) votes.

PrROOF. Let us assume that TOT(v) is odd. (If it is not, we convert v to a similar
odd assignment using Theorem 3.3.) Let G € R be the group that contains ¢ and
has the least number of votes, say MAJ(v) + k(k = 1). Transform v into a new
assignment w by subtracting 2k — 1 votes from c¢. The new assignment will have
TOT(w) = TOT(v) — (2k — 1) and MAJ(w) = MAJ(v) — (k — 1). Note that every
group in R will continue to have a majority under w. This is clearly true for groups
that do not contain ¢ and thus lost no votes. Groups containing ¢ had at least &
votes to spare, lost (2k — 1), but still have a majority because MAJ(w) is (k — 1)
votes less than MAJ (v). Since all R groups still have a majority, w either dominates
v or is similar. Since R is ND, w must be equivalent to v. Finally, observe that
under w, group G, containing c, has exactly MAJ(w) votes. O

LEMMA 5.2. Let R be an ND coterie (different from the singleton coterie) with
a corresponding vote assignment. There exists an ND coterie S with corresponding
vote assignment such that | S| < | R| and CT transforms S into R.

PrROOF. We proceed to construct the desired coterie. Let ¢ be a node with the
least number of votes in the assignment corresponding to R. If necessary, use
Lemma 5.1 to convert the assignment into one where ¢ participates in a group H
with an exact majority. If the resulting assignment has an even number of votes,
add one vote to any node in H (Theorem 3.3), so that H continues to have an
exact majority. Let v be this resulting assignment and let A = u(R) — H. Say
| H| = nand | H| = m. (Note that ¢ continues to be a node with the least number
of votes.) We now transform v into the desired assignment w in two steps:

(1) multiply the votes of each node under v by f=2 nm — 1. 3
(2) subtract m votes from each node in H, and add # votes to each node in H.

Let S be the coterie defined by this new vote assignment. Note that

MA () — TOT(zv) 1
TOT(w) = f TOT(v),
MAJ(w) = % — FMAI(Y) — (nm — 1),

Since f'is odd, TOT (w) will be also odd and hence S will be ND.
We will now show that

R=S—-{H}U {H} U B,
where
B=1{HU {a}|a € H}

and the_refore that S is the ND coterie we are searching for: | S| < |R]| and
CT(S, H, n(R)) = R.



Votes in a Distributed System 857

Note that group H has MAJ(v) votes in R, f MAJ(v) votes after step (1) and
fMAIJ(v) — nm votes after step (2). Thus, it is not in S. Similarly, group H is not
in R but is in S since it has f(MAJ(v) — 1) + nm = MAJ(w) votes. (| 8] = |
because A U {c} must be in S.) Furthermore, groups in 8 will not be in .S but will
be in R. However, note that groups of the form H U {a} a € H, will not appear in
S. Such groups do have a majority under w, but have an unnecessary node, mainly
node c¢. (Under w, H is just one vote under the majority. Since ¢ had the least
number of votes in v, and in the transformation ¢ lost and a gained votes, then
w(a) — w(c) =z 1.) To show that there are no additional differences between S and
R, note that any group in R or S not containing H or H will not change its majority
status in the transformation. That is, a loss or gain of nm votes is necessary to lose
or gain a majority, and only groups containing H or H are in this situation. O

To illustrate the transformations of the lemmas, consider the vote assignment
vi(a) = 6, vi(b) = 3, vi(c) =3, vi({d) = 3,
(TOT (»1) = 15, MAJ(v) = 8),
corresponding to ND coterie
R = {{a, b}, la, ¢}, {a, d}, {b, c, d}}.

Let us use node ¢ as our node with minimum votes. Since there are no exact
majority groups, we transform v;, by subtracting 2 (1) — 1 votes from c¢. Since the
new total is even, we add one vote to, say, d to obtain

v@)=6, wmbd)=3, wnl)=2, »nd) =4,
(TOT(v;) = 15, MAJ(v,) = 8),

still corresponding to R.

Applying the transformation of Lemma 5.2, we choose, for instance, H = {a, c}
and multiply v, by 2(2) — 1. Subtracting 2 votes from q and c, and adding 2 to b
and d, we get

vi(a) = 16, vi(b) =11, vi(c) = 4, vi(d) = 14,
(TOT (ws) = 45, MAJ (w;) = 23).
This corresponds to
S = Ha, b}, {a, d}, {b, d}}.
It is easy to check that CT(S, {b, d}, {a, b, c, d}} gives us back R.

THEOREM 5.1. If R is the coterie corresponding to ND vote assignment v (under
{a\, ..., ai}), then R or an isomorphic coterie will be in p-enum(i).

PrOOF. The proof is similar to the one for Theorem 4.4. Lemma 4.4 and 5.2
tell us that any such R (or an isomorphic one) can be obtained from a lower order
ND coterie that also has a vote assignment and it is thus generated by the partial
enumeration algorithm. [

THEOREM 5.2. Not all coteries generated by the partial enumeration algorithm
have a corresponding vote assignment.

PrOOF (by example). Start with coterie
Rl = “a9 ba c}’ {a9 d3 e}s {ba d}, {C, d}: {by (&) e}}9
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ﬁ:b vote  assignments

Fic. 3. Venn diagram.

which is in p-enum(5). Using G = {b, d}, U= {a, b, ¢, d, e, f}, transform R, into

R, = {{a, b, ¢}, {a, d, ¢}, {c, d}, {b, ¢, e},
{a, ¢, e, [}, {b, d, a}, {b, d, e}, {b, d, f}}

(R, still has a vote assignment). Now, using G = {a, b, ¢}, U as before, we obtain

R; = {{a, d, elic, d}, {b, ¢, e}, {a, c, e, [}, {b, d, a},
(b, d, e}, {b, d, f},1d, e, [}, {a, b, ¢, f}}.

R; still has a vote assignment. One more transformation will yield the coterie we
are after. Using G = {b, d, e}, U= {a, b, ¢, d, ¢, [, g}, we get

Ri={a, d, el{c, d}, {b, ¢, e}, {a, ¢, e, f}, {b, d, a}, {b, d, ),
{d, e, f} ta, b, c. f}, {a, ¢, f, &}, (b, d, e, g}}.

If we set up the inequalities corresponding to this coteric we get a contra-
diction. For instance, since {b, ¢, e} € Ry, v(b) + v(c) + v(e) = MAJ(v). Since
ib, d, e} & R4, then v(b) + v(d) + v(e) < MAJ(v); so therefore v(d) < v(c).
Now, since {b, d, f} € R4, v(b) + v(d) + v(f) = MAJ(v), and we see that
v(c) + v(b) + v(f) = MAJ(v). This implies that a is not needed in group
{a, b, c, f}, a contradiction. O

The Venn diagram of Figure 3 summarizes the findings of this section.
One last question arises: How large is the subclass of coteries that have a
corresponding vote assignment? To bound the number of different vote assign-
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{5} {a,b}

FiG. 4. The two-dimensional hypercube.

{e} {a}

ments, we can view the possible subsets of the universe of nodes as the vertices of
the n-dimensional unit hypercube. An n dimensional vector represents a hyperplane
that cuts the cube in two halves, and each vote assignment corresponds to one such
hyperplane. In Figure 4, we illustrate the two-dimensional hypercube and a vector
that corresponds to the assignment that gives each of the two nodes a vote. In this
case, the hypercube nodes on the right side of the vector (i.e., {a, b}) represent the
groups of nodes that have a majority. The nodes on the left are the groups (e.g.,
{a}, {b}, D) without a majority. Of course, not all of the hyperplanes represent vote
assignments (e.g., the hyperplane that leaves all four nodes on one side does not
correspond to a vote assignment). If we move a hyperplane as much as possible
without crossing any vertex, it will end up sitting on # vertices. We can use this
argument to establish the following:

;FHEOREM 5.3 (M. Yannakakis, personal communication). There are at most
2" different vote assignments.

PrOOF. There are (%) < 2" choices for the sets of vertices of the hypercube in
which to rest hyperplanes, hence the result follows. O

As we can see, vote assignments yield only a very small portion of the ND coteries,
so there is a large number of ND coteries without a corresponding vote assignment.

6. Conclusions

In this paper we have studied vote assignments and sets of groups (coteries) used
for mutual exclusion in a failure-prone distributed system. As we have discovered,
the choice of mechanism as well as the selection of votes or coteries very much
depends on the special number five:

If the system has five or fewer nodes (and we believe this will be by far the most
common case), vote assignments and coteries are equivalent (at least if we ignore
dominated assignments and coteries). We may wish to think in terms of coteries
since the groups that can be formed are explicitly stated, but at implementation
time we will probably opt for votes. They take less space to represent and are easier
to implement. (Adding votes and checking for a majority is also faster than checking
if a group of nodes is in a coterie, but, for five or fewer nodes, the improvement is
negligible.)

Also, with five or fewer nodes, the number of choices for ND vote assignments
or coteries is surprisingly small (as seen in Figure 2). Thus, the system designers
can actually inspect a// choices and select the one that yields the best reliability for
the given hardware.

For systems with more than five nodes, the story is very different. In this case,
coteries are more powerful, in the sense that there are coteries that cannot be
represented by votes. However, from a practical point of view, it may be difficult
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to take advantage of this. For more than five nodes, the number of coteries is huge.
As a matter of fact, just the coteries generated by the partial enumeration algorithm
is very large. Thus, we will need heuristics to trim down the number of choices,
and considering vote assignments only seems one practical way to do this. (Of
course, there are other possible heuristics.) Furthermore, it is very easy to tell
whether a vote assignment is ND (Theorem 3.2 and 3.3), but for six or more nodes,
just checking if a coterie is ND (Theorem 2.1) can be very time consuming.
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