
Transaction Processing and Consistency
Control of Replicated Copies during
Failures in Distributed Databases

BHARAT BHARGAVA

BHARAT BHARGAVA is an Associate Professor of Computer Sciences at Purdue
University. He received his Ph.D. degree from Purdue University in 1974. He
joined the Department of Computer Sciences at Purdue University in 1984. His
research involves concurrency control and reliability issues in distributed database
systems and software fault-tolerance. He is at present implementing a robust and
adaptable distributed database system called RAID. He is the founder of the IEEE
Computer Society's Symposium on Reliability in Distributed Software and Database
Systems, and he organized the IEEE workshop on Design Principles for Experimen-
tal Distributed Systems in October 1986.

Dr. Bhargava has published in IEEE Transactions on Software Engineering, IEEE
Transactions on Computers, Journal of Systems and Software, Information Science,
and other journals. He has edited a monograph Concurrency Control and Reliability
in Distributed Systems, published by Van Nostrand Reinhold in 1987.

ABSTRACT: Consistency of replicated copies is difficult to maintain and recover
during multiple failures of sites and network communication in a distributed data-
base system. Transaction processing must continue as long as a single copy is
available. But in a multiple failure environment, each operational site must make
correct decisions about which copy to update and which one will be updated by the
recovery system. This requires refreshing the copies on failed sites that missed the
updates and doing this correctly while other transactions are updating and some
more sites are either failing or recovering. This problem has been classified as the
"replicated copy control problem." In this paper, we present several ideas that are
necessary to attack and manage this problem. We introduce the ideas of session
numbers, nominal session vectors, fail locks, and view serializability and discuss
their role in transaction processing on operational, recovering, and partitioned sites.
We have experimented with many of these ideas in a prototype system called RAID
and we present the implementation issues. There is little overhead associated with
our approach if no failures occur.

This research has been supported by a grant from Sperry Corporation and the National
Aeronautics and Space Administration.

This paper was presented at the conference on Current Issues in Database Systems,
Rutgers University, Newark, May 27, 1986. By permission.

Journal of Management Information SystemslFall 1987, Vol. 4. No. 2

94 BHARAT BHARGAVA

KEY WORDS AND PHRASES: RepHcated copy control problem, multiple site failures,
consisteticy control of replicated copies, distributed database system.

1. Introduction

IN A DISTRIBUTED DATABASE SYSTEM, replicated copies of data are stored at
different sites to increase availability. Due to a hardware/software crash, a site may
fail and stop processing. Similarly due to the communications system failure, sites
may partition into different groups that are unable to access data and exchange
messages. The system is not able to control the event of failure or partition, but has
the responsibility for continued transaction processing and maintenance of the repli-
cated copies of the database in a consistent manner. These two tasks require special
attention when a site is recovering and integrating back to the operational system.
For transaction processing, three classes of transactions must be considered in such
an environment:

(a) transactions that arrive and finish while the status of the up and down sites does
not change in the meantime;

(b) transactions that arrive when a particular site is up and finish after this site has
failed or network partition has occurred;

(c) transactions that arrive when a particular site is down/partitioned and finish
when such a site is recovering or the network is merging.

For transactions of type (a), our research shows that the failed site can be ignored
until its recovery. Transactions of type (b) should be aborted to avoid the overhead of
additional rounds of messages if at each round a new failure is detected. Transac-
tions of type (c) require either that the recovering site be treated as failed or else that
careful coordination of the events at the operational and recovering sites be carried
out for successful commitment. This research is an attempt to increase database
availability, and our protocols allow transaction processing if even a single copy is
available and also maintain the consistency of the database. A weighted voting
approach was suggested in [7] where the read quorum and the write quorum must
overlap by at least one site. This approach requires establishing the size of the
quorum at the beginning of the transaction. Even though the transaction can succeed
even if some sites fail, the sum of the read quorum and the write quorum must equal
the initial quorum.

Although the read availability is increased by data replication, the write availabil-
ity is decreased. For example, under the strict write-to-all scheme, write operations
to the logical data items are interpreted as writing to all replicated physical copies. If
one of the replicated copies is unavailable due to a site failure, the transaction is
aborted (or blocked until the failed site is operational). An attempt to increase write
availability can result in inconsistent data. Hence the site recovery problem plays a
key role in replicated distributed database systems.

The use of multiple reliable message spoolers [8] is one practical solution to this
problem. All update messages addressed to an unavailable site are saved reliably (in
multiple spoolers), and the recovering site processes all its missed messages before

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 95

resuming its normal operations. This method is not suitable for systems in which
sites may be down for a long time, and this solution does not take advantage of data
replication. We use the spoolers only for a short duration at a critical time in the
recovery process.

There are few solutions to identify out-of-date copies at the recovering site. It is
possible to renovate data items at the recovering site by utilizing up-to-date copies
available at other sites rather than redoing all missed operations. It is not a good idea
to copy the whole database from an operational site to the recovering site. An
approach was proposed by [1] where, briefly, the copies at the new site are brought
up to date after they are written by user transactions or by copier transactions that
get the data from copies at operational sites. The solution is based on the fact that a
distributed database system must run a correct concurrency control algorithm and
relies on the concurrency control algorithm to handle all synchronization for recov-
ery and transaction processing. This solution is not suitable for the site recovery
problem if sites are up and down dynamically and if one likes to isolate the concur-
rency control problems from the recovery problem. Below we show two problems
that can occur if care is not taken during site recovery.

1.1. Examples of Replicated Copy Control Problems

A recovery algorithm depends on the computational model, especially the semantics
of logical operations in the presence of failures. Without a clear specification of the
computational model, a recovery algorithm cannot be proven to be correct. For
example, if a logical read operation is interpreted as reading from any available copy,
and a logical write operation as writing to all currently available copies, even when
failure or recovery are in progress, the following scenario may result in an inconsis-
tent status of the database and the recovery performed by the algorithm given in [1]
will have problems.

Example 1: Incorrect History

Transaction Ta reads X and writes Y\ transaction Ti, reads Yand writes X. Both X and
yhave two copies at Site 1 and Site 2, called xi, X2 for (X) and yi, y2 for (Y),
respectively. A copier transaction reads an up-to-date copy and writes the copy on
the recovery site. A history

Ralxi]Rb\yi] (site 1 crashes) Wa\y2Wblx2\

can be accepted by a concurrency control protocol. Since both Ta and Tb have
written to all currently available copies, they can assume that they are done. When
Site 1 recovers, ;ci and yi may be updated by copier transactions Tc and Ta and the
history continues as follows:

(site 1 recovers)

96 BHARAT BHARGAVA

The copier transaction T^ has the same effect as if Tb writes to Xi, and Ta has the
effect as if Ta writes to yi. Therefore, the effect of the above history is equivalent to
the effect of the history

Unfortunately this is a nonserializable history.

Example 2: Missing Update

Let Ta and Tb be as in Example 1. Let logical items X and Y have copies at both Site
1 and Site 2 as before.

Site 2 crashes and then recovers during the history execution. The copier transac-
tion Tc reads the copy xx at Site 1 and writes the copy X2 at Site 2.

A history as shown as follows is allowed to occur.

H = (site 2 crashes) ro[A:i]ri[)'i]Wo[.xi] (site 2 recovers) rc[j:i]M'c[;c2]vi'i[j:i]

The copy X2 refiects the update due to H^aW, but the update Wb[X\ is lost,
whereas the copy on Site 1 refiects the updates due to both Wa[X\ and Wb[X]. This
will cause the two copies to be inconsistent.

We classify the problems discussed above as falling under the subject of replicat-
ed copy control. When there are no failures, replicated copy problems can be
handled by distributed concurrency control algorithms [11]. Since we consider
replicated copy control only when site failures and network partitions occur, this is a
substantially new research topic. The problems under study here are different from
the stable storage and crash recovery problems which deal with ensuring that updates
of a committed transaction are flushed correctly on the disk or the transaction is
rolled back using logs and audit trails and other means. The protocols used for
processing transactions during a network partition [6] assume the detection of a
partition, and all read and write actions must occur while the partitions exist. Our
research ideas can take into account the problems that occur when a partition occurs
or merges during the life of a particular transaction. Finally, replicated copy control
is different from the commit and termination protocols [12, 13] although it works in
conjunction with them. Such protocols deal with the correct commitment and abor-
tion of a transaction rather than the consistent updating of the replicated copies.
Since a site upon recovery must commit or abort the transactions which were being
processed when the site crashed, consistent with the decisions made by operational
sites, the goal of the commit/termination protocols is to ensure that the recovering
site makes consistent decisions. We deal with the events at the recovering site while
the operational sites do very little for the recovery protocol and process transactions
as under normal conditions.

1.2. Focus of the Paper

In this paper, three ideas are introduced. These ideas are useful for transaction

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 97

processing when failures of site or network communication occur and provide
solutions for recovering the consistency of the database at the failed site. Together
they give insight and a protocol for replicated copy control.

(a) Protocol Design for Site Recovery Problems

A protocol for site recovery problems has been presented in [5] where details and
proofs of correctness are given. Here we will outline the basic ideas. These ideas
help in discussing and clarifying the fail lock concept.

(b) Fail Locks

Fail locks are used to identify and update out-of-date copies. The fail locks are set
when an update is made to a copy while another copy is unavailable. They represent
the notion that update to a certain copy has failed.

(c) View Serializability and Network Partitioning

View serializability is an extension of the serializability theory for concurrency
control. View serializability [14] allows correct views to the read-only transaction
even if this view may not be most current. We will use this notion for the continued
processing of the read-only transactions during network partitioning.

2. Protocol Design for Site Recovery Problems

SITE RECOVERY IS THE PROBLEM of integrating a site into a distributed database
system (DDBS) when the site restarts after a failure. There are two different problems
and approaches under the term "site recovery" in the literature. The first concerns
the resolution of transactions at all the sites. That is, upon recovery, the failed site
should commit or abort the transactions that were being processed when the failure
occurred, consistent with the decision made by other operational sites in the system.
Commit, termination, and recovery protocols make it possible for the recovering
site to make correct decisions on these transactions [13].

In this paper, first we briefiy present the ideas that allow normal transaction
processing at the operational sites and next address the second problem in depth,
which deals with the consistent recovery of the database. In our approach the failed/
recovering site is relieved about ongoing transactions except that it should get a
consistent copy of the database before any transaction processing. When a failed site
recovers and integrates with the system, the consistency of the entire database is
threatened because the data items at the recovering site may have missed some
updates. The recovery algorithm should enable the recovering site to start processing
transactions as soon as possible, which requires update copies of all data items.
Research ideas are further discussed in section 3 under fail locks. The recovery
procedure allows the recovering site to resume its normal operations on certain data

98 BHARAT BHARGAVA

items immediately and on all others via incoming updates on the operational sites or
by demanding a current copy as the need arises.

The basic idea used for correct transaction execution at the operational sites is to
maintain a consistent view of the status (up or down) of all sites. The view need not
be the exact status of other sites, but is the status as perceived at each site. The
session number is used to represent the state of a site, while the nominal session
number is used for the session number as perceived by other sites. The nominal
session numbers are maintained consistently by control transactions, which run
concurrently with user transactions.

2.1 Background

In this paper, the users' view of an object is called a logical data item, or a data item,
denoted X. A data item is stored in the DDBS as a set of physical copies or copies. The
copy of X stored at site k is denoted x^, and the fact that X has a copy at site k is
denoted xi^ e X. The users manipulate the database via transactions. To process a
transaction on multiple copies of data items, the strict read-one/write-all (ROWA)

strategy can be described as

READ(X) =V

WRITE(X) = A

where OP = V {op} means that OP is interpreted as at least one of the op's, and OP
fails if no op succeeds; and OP — A {op} means that OP is interpreted as all the op's
and OP fails if any one of the op's fails.

In a system using the strict ROWA scheme, all other copies become available for
update and hence site failures never result in inconsistent data. Consequently, site
recovery (in the sense of the consistent recovery of the database) is unnecessary.
However, the degraded availability for write operations makes the strict ROWA
scheme impractical. An alternative to this scheme is the read-one/write-all-avail-
able (ROW A A) protocol. Intuitively, if a transaction knows that site k is down, it
should not try to read a copy from site k, or send an update to site k. ROWAA not only
saves the time otherwise wasted because of waiting for responses from an unavail-
able site, but also reduces the possibility of aborting or blocking transactions.

2.2. Session Numbers and Nominal Session Numbers

As far as recovery is concerned, a site has three distinguishable states. We say a site
is down if no DDBS activity is going on at the site. A site is recovering if it is in an
early stage of its recovery procedure. The site is operational or, simply, up if all
database copies are available for reading and writing. In some situations a site may

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 99

be considered up and transaction processing may be allowed on some identifiable
consistent data items while other copies are being renovated. We say a site is not
operational, when the site is either down or cannot do any transaction processing.

An operational session of a site is a time period in which the site is up. Each
operational session of a site is designated with an integer, session number, which is
unique in the site's history, but not necessarily unique systemwide. If a site is not in
an operational session, its session number is undefined. For simplicity of descrip-
tion, however, we say that the site has session number 0 if it is not operational
(assuming 0 is never used as a session number for an operational session). The
session number of site k is denoted as as[k].

Because sites are up and down dynamically, it is not always possible for a site to
have precise knowledge about the session number of another site. In order to have a
consistent view of the session number of a particular site i in the system, we augment
the database with additional data items, called nominal session numbers. We use the
notation NS[k] for the data item indicating the nominal session number of site k, and
NS for the vector composing NS[l], . . ., NS[n]. Note that the nominal session
number of the site k may differ from the actual session number as[k], but the
difference should be kept tolerable as far as possible. The copy of NS[k] at site i is
denoted nsi[k]. In the ROWAA scheme, if a transaction, initiated at site i, reads the
nominal session vector nsi, its logical operations are interpreted by the site i as:

READ(X) = Y {read(A:fc), x^ e X and nsi[k] it 0},

WRITE(.X) = A {write(j:fc), x^ e X and nsi[k] ^ 0}.

Each request for reading or writing a physical copy at site k carries nsi[k], the session
number of site k perceived by the transaction. The site k first checks this number
against its actual session number, as[k]. If they are not equal, the request is rejected
or, during recovery, it can be placed in a buffer. Otherwise, the request is carried out.

2.3. Copier Transactions

A copier transaction is responsible for refreshing a particular unreadable data copy.
It reads (a copy of) the nominal session number, locates a readable copy (with the
help of fail locks), and uses its content to renovate the unreadable copy. A copier
transaction is run at the recovering site whenever a request for an unreadable data
item is made. The values of the unreadable data items are inconsistent with the values
of the copies on the operational sites.

2.4. Control Transactions

The transition of nominal session numbers is done by a special kind of transaction.

100 BHARAT BHARGAVA

called control transactions. There are two types of control transactions. A control
transaction of type 1 claims that a site is nominally up. It can only be initiated by the
recovering site when it is ready to change its state from down to recovering. It
updates the session vector of all operational sites with the recovering site's new
session number and obtains a copy ofthe session vector for the recovering site. A
control transaction of type 2 claims that one or more sites are down. This claim is
usually made when a site attempts and fails to access a data item on another site. Any
site can initiate this type of transaction as long as it is sure that the sites being claimed
down are actually down. A transaction of this type reads a copy (likely the local
copy) ofthe nominal session vector and writes 0 to all available copies ofthe nominal
session numbers that correspond to the sites to be claimed down. Control transac-
tions, like all other transactions, follow the concurrency control protocol and the
commit protocol used by the DDBS.

These concepts are also used in the section on fail locks. The implementation of
these ideas is discussed in [5].

3. Fail Locks

IN THE PROTOCOLS for replicated copy control during failures, the system must
keep track of copies that have missed updates due to a failure. If a copy is written
while another one is down, the site ofthe updated copy must do the tracking. This
requires knowing about a failure in the middle ofthe transaction's execution. This
automatically requires an extra round of information exchange among sites to know
who got the update and who did not. Since this was not done in examples given in the
introduction, problems of nonserializability and lost update occur.

We suggest the notion of a fail lock for this task. This idea is adopted from the
concept of a lock in concurrency control algorithms where a lock on a data item
represents the fact to all other transactions that the locked item is being used by a
transaction. In a similar manner, a fail lock is used in a replicated copy control
algorithm to represent the fact that a copy of the data item is being updated while
some other copies are unavailable due to site failure or network partitioning. For
example, when an operational site knows that a particular site is down while updat-
ing a data item that has a copy at the down site, it sets a fail lock on behalf of that site.
When the failed site is recovering, it collects the fail locks that were set during its
failure and marks its copies of the fail-locked items as unreadable.

The basic concept of fail lock is summarized as follows.
Set Fail Lock Operation: A fail lock is set on the copy that is being updated while

another copy is not available for update due to a failure. A separate fail lock is set for
each known failed site. Thus, if Sites 1 and 3 are down. Site 2 will have two separate
fail locks on its copy. Note that the information about another copy not being
available due to a failure is present in the session vector (sites for which the session
vector has an entry of 0).

Semantics of Fail Lock: Items that are fail locked can be read and written by all

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 101

transactions on operational sites. Fail locks can be set repeatedly by incoming
updates as long as another site is perceived to be down, but only one fail lock per site
is maintained on a copy.

Note that this semantics is different from that used in concurrency control where a
locked item cannot be accessed by other transactions unless all transactions were
doing reads only.

Release Fail Lock Operation: A fail lock on the copy that was updated is released
when an out-of-date copy on a recovering site has been identified and marked. All
fail locks for a site are released when a site has marked all data items that are
inconsistent with the operational sites. No fail locks exist if all sites are operational.

Note that the transmission of the latest values for a copy from the operational site
to the recovering site can be done using the copier transaction [1] or using an update
transaction that writes on both copies. The fail lock can also be released as part of the
copier transaction or the update transaction.

Now we outline the procedure for processing transactions at the operational sites
and the recovering process at the failed site.

3.1. Transaction Processing at the Operational Sites

If all sites are operational, that is, there are no entries in any session vector with a
value of zero, all updates on the replicated copies will be successful, subject to the
concurrency control. Except for reading the session vector, there is no overhead for
the implementation of the above concepts.

There are two implementation choices for posting the updates when no new
failures occur, and they both require the participation of the operational sites in two
rounds. Note that, if a site has a zero entry in the session vector at the start of a
transaction, fail locks are set on the updated copy for the operational sites but no
update is sent to the failed copy. In the first choice the updates are sent to all
operational sites and in the next round they are committed if no new failures occur.
During the first round the other sites can keep the update in a working buffer. In case
of further failure, either the second round requests the discarding of the updates sent
in the first round or no messages are sent and the updates are discarded based on a
time-out mechanism. The second choice involves, first, a round of verification that
all operational sites will be able to post the update, and then during the second round
the update is sent and committed. This works in the same manner as the two-phase
commit protocol [13]. Note that the fail locks for the known failed sites are included
with the updates. If a physical write on a copy for the transaction is rejected due to a
new failure, a type 2 control transaction is initiated by the processing site and the
update for the transaction is aborted.

This protocol can be extended such that a transaction is not aborted due to a new
failure. Since fail locks must be set for each failed site along with the update, new
failures will generate new fail locks and the process cannot terminate unless there
are two consecutive rounds when no new failures occur. In a sense, the updates are

102 BHARAT BHARGAVA

committed in the last round and all previous rounds will be spent in determining the
set of failed sites and the fail locks for them. It is a question for the application and
the implementation to determine the choice between aborting the transaction or
continuing with further rounds.

The responsibility for using the fail lock and releasing it is up to the recovering
sites.

3.2. Recovery Process at the Failed Site

As the first step toward becoming operational, the failed site announces that it is
ready to process transactions by issuing the control transaction type 1 and thereby
updating the session vector of other operational sites with its new session number
[5]. The actual session number "as[k]" {k being the site identification—ID) ofthe
recovering site still has a value of zero. Next the recovering site must identify the
data items that are available to transactions arriving at this site and mark the others as
out of date. This marking process can be included in the control transaction type 1.
Various cases are discussed in the following paragraph.

If the database is partially replicated, it is possible that the recovering site has the
only copy of a data item. Obviously this copy is current and hence is made available
to be accessed by any transaction. Next the recovering site collects the set of data
items that are fail locked on each operational site and marks them as unreadable on
its own site. If a copy of a data item is not available due to the failure of some other
site (say site X), it is also unavailable for reading and is marked as before. However,
any transaction can write on these marked data items and set the fail locks for site X.
However, if a site with the only copy for an item fails, such an item will become
unavailable and no recovery for this data item will be necessary. Consider the case
when there are k sites with copies of a data item and the k-th site goes down while the
other (k-l) sites are already down. If the k-th site recovers before any ofthe other
sites (and it can determine this fact), its copy is immediately available. However, if
any of the other sites recover, they will assume that the k-th copy may have been
updated and hence the copy is not available for reading but as in the previous case
will be marked. Once again these copies are available for writing. The data items on
the recovering site that are not marked are considered current and not updated while
the site was down. These data items can be read and written by all transactions
arriving on the site.

On the other hand if the database is fully replicated, all the fail locks can be
obtained from any site.

It is important to note that, during the interval between the reading of fail
locks on operational sites and the marking of them on the recovering site, no
new fail locks should be set on the operational sites. Essentially the fail locks
during recovery should be frozen on the operational sites. This is possible
by setting up a buffer for accepting updates arriving at the recovering site
during this interval. This buffer should be in stable storage to avoid losing this

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 103

Site is up
Site is up (all fail locks for this site released)

All data items
are available

Continued recovery, copies on failed
site marked and fail-locks are released

Partial recovery unmarked
data-objects are available

'Site is down
Control transaction 1 running

None of the data
items are available

Figure 1. States in Site Recovery and Availability of Data Items for Transaction Processing

information in case of a crash during the recovery.
After the fail locks have been used to mark the copies on the recovering site, the

actual session number' 'as[k]'' is updated with the new session number. Note that the
operational sites can release the fail locks for this site as soon as the recovering site
has collected all the fail locks. The updates from the buffer are posted and the
recovery is almost complete. All that is left for complete recovery is to get the
marked data items renovated. Such items can be updated and the marks removed by
future user transactions or by forcing a copier transaction that reads all marked data
items and writes on them. An immediate copier transaction will also provide robust-
ness against failures of operational sites.

Figure 1 illustrates the process of site recovery and availability on data items. The
site recovery procedure is summarized as follows.

1. When a site k starts, it loads its actual session number as[k] with 0, meaning
that the site is ready to process control transactions but not user transactions.

2. Next, the site initiates a control transaction of type 1. It reads an available copy
of the nominal session vector and refreshes its own copy. Next this control transac-
tion writes a newly chosen session number into nsi[k] for all operational sites /
including itself, but not as[k] as yet.

3. Using the fail locks on the operational site, the recovering site marks the data
copies that have missed updates since the site failed. Note that steps 2 and 3 can be
combined.

4. Ifthe control transaction in step 2 commits, the site is nominally up. The site
converts its state from recovering to operational by loading the new session number
into as[k]. If step 2 fails due to a crash of another site, the recovering site must
initiate a control transaction of type 2 to exclude the newly crashed site, and then
must try step 2 and 3 again. Note that the recovery procedure is delayed by the
failure of another site, but the algorithm is robust as long as there is at least one
operational site coordinating the transaction in the system.

104 BHARAT BHARGAVA

The proof of correctness of this procedure is in [5].

3.3. Setting Fail Locks on All Replicated Copies

Since an update on a data item will write on all operational copies, a natural choice is
to set fail locks on all updated copies. This choice has one advantage and one
disadvantage. The disadvantage is that the recovering site must go to all sites since
several updates may be in progress, and the recovering site may find itself collecting
duplicate information about the fail lock on each data item. In addition, the release
of fail locks must access all copies.

On the other hand, if multiple sites fail concurrently even if a single site is
operational, the rest of the system can be recovered by using the fail locks. However,
data items for which all copies are simultaneously down cannot be recovered unless
we can store the fail locks on stable storage and identify and wait for the last site to
recover that went down with a good copy.

3.4. Comments on the Implementation of Fail Locks

A site failure server has been implemented in the experimental system RAID [4].
RAID is a prototype distributed database system and is a collection of autonomous
servers connected by a communication system. Each site runs servers that imple-
ment access management with stable storage, transaction execution, concurrency
control, recovery management, and other services for transaction processing.

The communication system can run either UDP/IP (user datagram protocol/inter-
net protocol) datagrams or a high-speed ethernet protocol that we are building.
High-level calls exist for services such as reliable multicast necessary for distributed
transaction commitment. A name server has been implemented to provide location
dependent addressing for various servers. This server keeps track of failure/recov-
ery of sites and the integration of new sites to the system. The communication system
automatically caches the addresses of all servers and contacts the name server only
when the cache must be refreshed.

We have learned the following details about implementations in this work.
After a recovering site has issued a control transaction of type 1, it has informed

the other sites that it is ready to accept the updates from them. However, while the
recovering site is collecting fail locks, its actual session number should be assigned a
value of zero. Only after a site has collected the fail locks successfully should it load
its actual session number with the value saved in the stable storage. As discussed
earlier, the updates received during recovery should be saved on stable storage in a
buffer. This protects the recovery process from failure of other sites [5]. Note that a
crash during recovery will only postpone the recovery procedure.

In implementation, it may not be feasible to place the fail lock bits as part of the
data item structure. For example the following obvious choice may not be feasible

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 105

Fail-lock Table

Pointer set when
site 1 failed

Site Table

Sitel

Site 2

Site 3

Site Max

Site ID

•

Pointer set when
site 3 failed

Updated
dataitem ID

Fail lock
bit

Figure 2. Implementation of Fail Lock Table on Each Operational Site

because this information is needed in memory for processing.

data item fail lock with failed site ID

The next choice is to implement a fail lock table similar to a lock table that is kept in
memory for concurrency control. We need three pieces of information in this table.

(a) Fail lock bit
(b) Site-ID bit
(c) Time stamp when the fail lock was set

A possible implementation that we are experimenting with is shown in Figure 2.
The "fail lock table" entries are made when one or more sites are down. This

table grows as updates are posted. Each update creates an entry in this table. There is
a "site table" that contains a pointer to the fail lock table. This pointer is set
when a site fails. When a site recovers, all fail lock table entries from its pointer
to the last entry in the table or up to the pointer for another site are considered
as fail locked by this site only and deleted assuming there is no failed site pointing
to an earlier entry. When all sites recover, the fail lock table entry is empty. The
only disadvantage of this structure is the redundant entries in the fail lock table. But
such replication can be processed along with the redundant fail lock information
from other sites.

106 BHARAT BHARGAVA

3.5. Missing Lists

Another practical implementation [5] is to use a missing list (ML). Conceptually, a
missing list is a two-dimensional array ML: {item} x {site} — {1, 0}, where
ML[X, i] = 1 means xi has missed updates. In order to save storage space, an ML can
be implemented in various ways, for example, as a list of pairs (X, i) for non-zero
elements in the ML. The elements of the ML can be seen as data items that are
augmented to the database, but need be stored in volatile storage only. Access to
elements should be under concurrency control. Each site maintains an ML. Unlike
NS, MLS at different sites are considered as different data items, rather than
copies of the same logical data. A pair (X, k) in ML at site / means that x,- e X,
Xk e X, and jTfc has missed an update which is done to jc;. Our algorithm can work with
MLS as follows. A write operation WRITE(X) writes to x,- for all J e Z such that site i
is nominally up. It removes (X, i), if any, from the MLS at the sites to which it
writes a copy of X successfully, and it adds (X,f} into these MLS for a l l ; such that
xj e X and site j is not available for the transaction. When site i is recovering,
it looks up the MLS at all operational sites. If (X, i) appears in an ML, site i
removes the entry (X, i) from all MLS of nominally operational sites and marks its
own copy x,- as unreadable. Site i also forms its own ML using the entries (.X̂ , f),
i ^ j , seen in the MLS at other operational sites. It should be noted that, under
this mechanism, as along as a site has an up-to-date copy of a data item, the ML
of this site has the precise information on where the copies of the data item have
missed updates.

3.6. Network Partition Merging

The ideas presented in the previous sections deal with the problem of failed site
integration with the operational sites. We believe that the solution to the site failure
problem and the concept of nominal session numbers are applicable to the merging
of network partitions. Full details have not been worked out but the direction of
research is outlined as follows.

The distinction between the problems of network partition and site failure is clear.
In a site failure problem, the operational sites in the system can assume that
no activity occurs at the failed site. Thus the failed site needs to integrate
with the rest of the system and obtain updates missed during its failure. This
means that integration is required only in one direction (from the failed site to
the operational sites). In a network partition problem, the system may allow up-
dates on different data items in different partitions. For example, updates can
be allowed on data items holding true-copy tokens [10]. When two partitions merge,
each partition needs to obtain missed updates from the other partition. This
can be accomplished by integrating the sites of a partition one by one with the other
partition. When a site obtains all updates from another partition, it is con-
sidered integrated in one direction. A site is fully integrated with another par-
tition if integration in both directions has been completed. Two partitions are fully

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 107

integrated when all sites in each partition have fully integrated. Integration
in either direction follows a protocol similar to a failed site recovery protocol
discussed in this paper. The granularity at which the integration takes place is up to
the implementation.

4. View Serializability for Processing in Network Partitioning

SERIALIZABILITY HAS BEEN USED as a criterion for correct concurrency control
[11]. Basically a conflict graph that contains the transactions as nodes and read-write
or write-write conflicts as edges is created. If this graph is acyclic, the transactions
are serializable; otherwise, not.

When a network partition occurs, if processing is allowed in both partitions, only
acyclic partial conflict graphs are allowed in each partition. However, when
merged, a global conflict graph may contain a cycle and hence the processing in each
partition must be further restricted. A survey [6] contains various techniques to deal
with network partitions.

In applications such as banks, airline reservations, and battle management sys-
tems, there are many user transactions that like to just read the database values. In
other words, the users like to get a view of a correct database state. In network
partition environment, even if the current view is not available, an earlier version
may be acceptable to users. For example, if I call a bank to find the balance in my
account, the following answer may be acceptable: your balance is this amount;
however, some checks may not have been processed. The cause of unprocessed
checks may be delay due to a failure of some part ofthe system or network partition.
Of course, when I actually go to withdraw the funds, my transaction becomes an
update and could be rejected. Another example is a situation in which one calls an
airline to check if certain seats are available versus the situation when one actually
makes reservations.

This leads us into a correctness criterion called ' 'view serializability" for concur-
rency control where read-only transactions are treated differently from the update
transaction. We have learned of this notion from work on update serializability in
locking [14]. It may have similar features as the notion of weak-serializability
discussed in the literature.

The correctness criterion based on view serializability requires the following two
conditions:

1. The update transactions do not create a cycle in the conflict graph, and
2. the read-only transactions considered one at a time in the conflict graph do not

create a cycle.
This notion has been used for locking based concurrency control in hierarchi-

cally structured database systems [14]. Interestingly, this notion also contrib-
utes toward freedom in allowing read-only transactions during network par-
titions. The basic idea of a protocol based on this notion is as stated in sections 4.1
and 4.2.

108 BHARAT BHARGAVA

4.1. Update Transactions

During network partitioning, update transactions have to be restricted so that the
global conflict graph does not produce a cycle. For example, a token can be associat-
ed with each data item [10] to achieve this. This token is resident on, at most, one
copy, for example, the copy where the last update took place.

All data items needed by an update transaction have to be in the partition in which
the transaction wants to execute. Thus, no data item can be updated in two partitions,
causing a conflict. This will ensure condition (1) for serializability.

4.2. Read-Only Transactions

A read-only transaction is allowed in each partition as long as it does not create a
cycle with the update transactions in that partition. This processing does not require
information about what is going on in the other partition and hence can go on freely.

We illustrate the above protocol via the following example.
Let there be two data items X and Y. Assume they are fully replicated on two sites

A and B. At the time of partition, let site A contain the token for X and let site B
contain the token for Y.

Let there be five update transactions Ti,T2,T3,T4, and Ts. Let Ti and T4 execute
on site A, T3 and Ts execute on site B, and T̂ execute on both sites.

The versions of Xdue to updates are represented asX', X", X'", and so on, and
the versions of y are represented as Y', Y", Y'", and so on. The processing of
transaction proceeds as follows:

Site A . . .connected. . . Site B

Data items
(Initial versions)

Tl

(updates X)

T2
(updates X and Y)

T3
(updates Y)

—. .

XY

X' Y

X"Y'

X" Y"

.Network Partition. . .
(site A has token for X and site B has

7-4
(arrives on site A

and updates Y)
Ts

(arrives on site B
and updates Y)

if.

X'" Y"

X

X'

X"

X"

—
token for Y)

X"

X"

Y

Y

Y'

Y"

Y'''

Y'''

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 109

(arrives on site B (un-

and reads X and Y) changed)

Ty X'" Y"

(arrives on site A (un-

changed)

and reads X and JO

- . . .Communication Established. . . -

(Network Merges)

At the time of network partition, the conflict graph on each site is as follows

Tl - T2- Ts

After the processing of T4 and Ts, the conflict graph on each site is as follows

Site A Site B

Tl - T2- Ts- T4 T1-T2-TS- Ts

The global conflict graph is

l - T2-

Since T4 and Ts cannot conflict, there are no edges between T4 and ^5.
Since T^ is a read-only transaction, the conflict graph on site B contains an edge

^5 - Te.
Similarity Ty is a read-only transaction causing an edge T4 — Ty. Obviously there

cannot be a conflict due to these edges since there are no edges going back from T^
and Tj.

In the global conflict graph, after the partition merges, we must include edges
Te — T4, since Te read X before T4.

Similarly the edge Ty — Ts exists since Ty read 7 before Ts. These edges are
known only after the partition merges. The global conflict graph after the establish-
ment of communication is as follows:

Obviously there is a cycle in this graph and in the protocol based on conventional
serializability. However, if only Ty or Te is considered along with Ti to Ts, the
conflict graph is acyclic. Hence the conflict graph satisfies the conditions for view
serializability. Essentially what it means is that Tj sees the view produced by the

110 BHARAT BHARGAVA

history T1T2T3T4, and Te sees the view produced by the history T1T2T3T5. Since
both T1T2T3T4 and T1T2T3TS are serializable independently and jointly, they both
see a consistent state of the database even though it may not be current.

4.3. Assertion

If a read-only transaction does not create a cycle with the partial confiict graph
during partition, it will not create a cycle in the global graph involving update
transactions from all partitions.

Proof. Let Ti ^n be the transactions processed before the partition occurs.
Obviously transactions Ti, . . . ,Tn are serializable and their graph does not contain
a cycle. Let Tut and T^i be the update and the read-only transactions that arrive in
partition 1, and Tu2 and 7V2 be the update and read-only transactions that arrive in
partition 2. For Tri to be successful, it cannot have a cycle with Ti, . . . , ! „ . Let us
assume it serializes after Tn. Since Tri cannot see the update of Tu2, in case of a
conflict, it must precede it in any serialization order. Thus an edge Tri — Tu2 is
possible in the global confiict graph but not vice versa. In addition since T^i and Tu2
are allowed during the partition (say using the tokens) only if they do not conflict,
there are no edges between them. Thus there is no edge/path starting from any of the
updates (r«2) occurring in partition 2 to any of the read-only transactions (r^i) either
directly or via any of the updates iT^i) occurring in partition 1. Hence Tri cannot
have a cycle involving T^i and Tu2- Thus, T^i, Tu2, and Tri cannot create a cycle in
the global confiict graph.

In this proof, we have considered only the cycles that can occur during the
partition and this is sufficient. The other transactions are serializable due to the
correct concurrency control and do not have incident edges coming from the transac-
tions processed after the partition.

5. Conclusions

FROM THIS STUDY, we find that, although single failures may be easy to handle,
multiple site and network partition failures require further research. Increasing of
the availability of the database implies additional bookkeeping and requires several
new notions such as session numbers, fail locks, and view serializability. The real
problem with a distributed database system is that no site can be fully sure about the
status of another site, but at the same time it would like to continue processing
transactions. This requires the notion of nominal view of the status of all sites and
leads us into nominal session vectors. The implementation, maintenance, and utility
of such data structures and notions is yet to be fully explored. An experimental study
[3] reports overheads due to fail lock maintenance, control transactions, and copier
transactions. It also discusses the data availability on a recovering site.

We find that these are real problems. For example, in an army, platoons and

TRANSACTION PROCESSING AND CONSISTENCY CONTROL 111

companies within a division may be isolated or captured. The decision making must
go on and whoever can communicate with the commander must provide him with
status information which must be consistent even if not current. The status of other
platoons or companies may be perceived but the operations must be done autono-
mously and bookkeeping should be carried out for others so that they can integrate or
recover to a consistent state.

Another example is a computer science or business department of a college where
faculty are equivalent to sites and students act as transactions. Though each student
needs the same four faculty on his committee to be around from the time he/she starts
the Ph.D. and finishes it, the status (leaves, sabbaticals, change of jobs, denial of
promotions, not around) of a faculty is difficult to predict. Students use nominal
session numbers and are always asking other faculty about the status of other faculty
and at the same time continuing their progress toward their Ph.D. Faculty members
use fail locks to update the absent faculty members about the events that happened
when they were away. The chairman ofthe department likes to get a correct view of
the status of faculty and students and can use view serializability. I do not know of
any student who did not finish his/her Ph.D. because the status of faculty in his/her
committee was changing or even because a committee member left the university.

REFERENCES

1. Attar, R.; Bernstein, P. A.; and Goodman, N. Site initialization, recovery, and backup
in a distributed database system. IEEE Transactions in Software Engineering, SE-10 6
(November 1984), 645-650.

2. Bernstein, P. A., and Goodman, N. An algorithm for concurrency control and recov-
ery in replicated distributed databases. ACM Transactions in Database Systems, 9,4 (Decem-
ber 1984), 596-615.

3. Bhargava, B., and Noll, P. An experimental analysis of replicated copy control during
site failure and recovery. Technical report, CSD-TR-692. Purdue University, May 1987.

4. Bhargava, B., and Riedl, J. The design of an adaptable distributed system. IEEE
COMF-SAC Conference (October 1986), 114-122. (Current version available as Purdue
University technical report CSD-TR-691, July 1987.)

5. Bhargava, B., and Ruan, Z. Site recovery in replicated distributed database systems.
Sixth IEEE International Conference on Distributed Computing Systems (May 1986) 621-
627.

6. Davidson, S. Consistency in partitioned networks. ACM Computing Surveys 17 3
(September 1985), 341-370.

7. Gifford, D. Weighted voting for replicated data. Proceedings ofthe Seventh ACM
Symposium on Operating System Principles (December 1979), 150-161.

8. Hammer, M. M., and Shipman, D. W. Reliability mechanism for SDD-1: A system for
distributed databases. ACM Transactions in Database Systems, 5, 4 (December 1980) 431-
466.

9. Lampson, B., and Sturgis, H. Crash recovery in a distributed data storage system.
Xerox PARC report. Palo Alto, CA, April 1976.

10. Minoura, T., and Wiederhold, G. Resilient extended true-copy token scheme for a
distributed database system. IEEE Transactions in Software Engineering, SE-8, 3 (May
1982), 173-188.

11. Papadimitrou, C. H. Serializability of concurrent updates. JACM, 26 (October 1979),

112 BHARAT BHARGAVA

631-653.
12. Skeen, D. Nonblocking commit protocols. Proceedings of the 1981 ACM-SIGMOD

Conference on Management of Data, New York (1981), 133-147.
13. Skeen, D., and Stonebraker, M. A formal model of crash recovery in distributed

system. IEEE Transactions in Software Engineering, SE-9, 3 (May 1983), 219-227.
14. Yannakakis, M. Serializability by locking. JACM, 31 (April 1984), 227-244.

