IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

439

Global Scheduling for Flexible Transactions in
Heterogeneous Distributed Database Systems

Aidong Zhang, Marian Nodine, and Bharat Bhargava, Fellow, IEEE

Abstract—A heterogeneous distributed database environment integrates a set of autonomous database systems to provide global
database functions. A flexible transaction approach has been proposed for the heterogeneous distributed database environments. In
such an environment, flexible transactions can increase the failure resilience of global transactions by allowing alternate (but in some
sense equivalent) executions to be attempted when a local database system fails or some subtransactions of the global transaction
abort. In this paper, we study the impact of compensation, retry, and switching to alternative executions on global concurrency control
for the execution of flexible transactions. We propose a new concurrency control criterion for the execution of flexible and local
transactions, termed F-serializability, in the error-prone heterogeneous distributed database environments. We then present a
scheduling protocol that ensures F-serializability on global schedules. We also demonstrate that this scheduler avoids unnecessary

aborts and compensation.

Index Terms—Heterogeneous and autonomous database, transaction management, concurrency control, flexible transactions,

serializability.

1 INTRODUCTION

heterogeneous distributed database system (HDDBS)

integrates a set of autonomous database systems to
provide global database functions. In a HDDBS environ-
ment, transaction management is handled at both the global
and local levels. As a confederation of preexisting local
databases, the overriding concern of any HDDBS must be
the preservation of local autonomy [15], [12], [5], [21], [25],
[26]. This is accomplished through the superimposition of a
global transaction manager (GTM) upon a set of local
database systems (LDBSs). Global transactions are sub-
mitted to the global transaction manager, where they are
parsed into a set of global subtransactions to be individually
submitted to local transaction management systems at local
sites (LSs). At the same time, local transactions are directly
submitted to the local transaction management systems.
Each local transaction management system maintains the
correct execution of both local and global subtransactions at
its site. It is left to the global transaction manager to
maintain the correct execution of global transactions.

The preservation of the atomicity and isolation of
global transactions is fundamental in achieving the correct
execution of global transactions. Preserving the atomicity
or semantic atomicity [11] of global transactions in the
HDDBS systems has been recognized as an open and
difficult issue [24]. The traditional two-phase commit
protocol (2PC) developed in distributed database envir-
onments has been shown [16], [22], [18], [28] to be

o A. Zhang is with the Department of Computer Science, State University of
New York at Buffalo, Buffalo, NY 14260. E-mail: azhang@cs.buffalo.edu.

e M. Nodine is with MCC, 350 West Balcones Center Dr., Austin, TX
78159. E-mail: nodine@mcc.com

e B. Bhargava is with the Department of Computer Science, Purdue
University, West Lafayette, IN 47907. E-mail: bb@cs.purdue.edu.

Manuscript received 10 Oct. 1997; accepted 6 Nov. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 103675.

inadequate to the preservation of the atomicity of global
transactions in the HDDBS environment. For example,
some local database systems may not support a visible
prepare-to-commit state, in which a transaction has not
yet been committed but is guaranteed the ability to
commit. In such situations, a local database system that
participates in a HDDBS environment may unilaterally
abort a global subtransaction without agreement from the
global level. Moreover, even if the local database systems
are assumed to support a prepare-to-commit state (as in
traditional distributed database systems), the potential
blocking and long delays caused by such states severely
degrade the performance. The concept of compensation,
which was proposed [11] to address the semantic atom-
icity of long-running transactions, has been shown [16] to
be useful in the HDDBS environment. Using this
technique, the global subtransactions of a global transac-
tion may commit unilaterally at local sites. Semantic
atomicity guarantees that if all global subtransactions
commit, then the global transaction commits; otherwise,
all tentatively committed global subtransactions are
compensated.

Mehrotra et al. [20] have identified the class of global
transactions for which the semantic atomicity can be
maintained in the HDDBS environment. Each global
transaction contains a set of subtransactions which are
either compensatable, retriable, or pivot, and at most, one
subtransaction can be pivot. In [28], it was shown that this
class can be extended by specifying global transactions as
flexible transactions. Flexible transaction models, such as
ConTracts, Flex Transactions, S-transactions, and others [8],
[10], [1], increase the failure resilience of global transactions
by allowing alternate subtransactions to be executed when
an LDBS fails or a subtransaction aborts. In a nonflexible
transaction, a global subtransaction abort is followed either
by a global transaction abort decision or by a retry of the

1041-4347/01/$10.00 © 2001 IEEE

440 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

global subtransaction. With the flexible transaction model,
there is an additional option of switching to an alternate
global transaction execution. The following example is
illustrative:

Example 1. A client at bank b; wishes to withdraw $50 from
her savings account a; and deposit it in her friend’s
checking account a; in bank bs. If this is not possible, she
will deposit the $50 in her own checking account a3 in
bank b3. With flexible transactions, this is represented by
the following set of subtransactions:

e t;: Withdraw $50 from savings account a; inbank b;

e ¢y: Deposit $50 in checking account ay in bank b,

e ¢3: Deposit $50 in checking account a3 in bank bs.
In this global transaction, either {t¢1,ts} or {t¢1,t3} is
acceptable, with {t1,t,} preferred. If ¢, fails, ¢t3 may
replace t;. The entire global transaction thus may not
have to be aborted even if ¢, fails.

Flexibility allows a flexible transaction to adhere to a
weaker form of atomicity, which we term semiatomicity,
while still maintaining its correct execution in the HDDBS.
Semiatomicity allows a flexible transaction to commit as
long as a subset of its subtransactions that can represents
the execution of the entire flexible transaction commit. By
enforcing semiatomicity on flexible transactions, the class of
executable global transactions can be enlarged in a hetero-
geneous distributed database system [28]. The effect of
retrial and compensation methods were investigated to
preserve semiatomicity on flexible transactions. However,
the design of scheduling approaches to global concurrency
control for the execution of flexible transactions has not
been carefully investigated.

Global concurrency control considering the effect of
compensation with respect to traditional transaction model
has been extensively studied. In [14], a formal analysis is
presented of those situations in which a transaction may see
the partial effect of another transaction before these partial
effects are compensated. It is then proposed in [16] that, to
prevent an inconsistent database state from being seen in a
distributed database environment, a global transaction
should be unaffected by both aborted and committed
subtransactions of another global transaction. A concur-
rency control correctness criterion, termed serializability with
respect to compensation (SRC), is further proposed in [20] to
preserve database consistency in the HDDBS environment
throughout the execution of global transactions possessing
no value dependencies among their subtransactions. This
criterion prohibits any global transaction that is serialized
between a global transaction G; and its compensating
transaction CG; from accessing the local sites at which G;
aborts. All these proposed approaches are inadequate to a
situation in which value dependencies are present among
the subtransactions of a global transaction. Value depen-
dencies, which specify data flow among the global sub-
transactions of each global transaction, are important
characteristics of flexible transactions.

In this paper, we will propose a concurrency control
criterion for the execution of flexible and local transactions in
the HDDBS environment. We will carefully analyze the
effects of compensation, retry, and switching to alternate

executions on global concurrency control. We will propose a
specific correctness criterion for schedules of concurrent
flexible and local transactions, called F-serializability, in the
HDDBS environment. We will then demonstrate that an
F-serializable execution maintains global database consis-
tency. We will also present a graph-based scheduling
protocol for flexible transactions that ensures F-serizalibility.
This paper is organized as follows: Section 2 introduces
the system and flexible transaction models. In Section 3, we
discuss the issues relevant to global concurrency control on
the execution of flexible and local transactions. Section 4
proposes a global concurrency control criterion. In Section 5,
we offer a scheduling protocol to implement the proposed
criterion. Concluding remarks are presented in Section 6.

2 PRELIMINARIES

In this section, we shall introduce the system and transac-
tion models that will be used in the rest of the paper.

2.1 System Model

The system architecture under consideration is shown in
Fig. 1. A HDDBS consists of a set of {LDBS;,for 1 < i < m},
where each LDBS; is a preexisting autonomous database
management system on a set of data items D; at a local site
(LS;), superimposed on which is a global transaction
manager (GTM). We assume that there is no integrated
schema provided and users know the existence of local
database systems. The set of data items at a local site LS; is
partitioned into local data items, denoted LD;, and global
data items, denoted GD;, such that LD, NGD; =0 and
D; = LD; UGD,;. The set of all global data items is denoted
GD, GD = |J;*, GD;. Flexible transactions are submitted to
the GTM and then divided into a set of subtransactions
which are submitted to the LDBSs individually, while local
transactions are directly submitted to LDBSs. We assume
that the GTM submits flexible transaction operations to the
local databases through servers that are associated with
each LDBS.

In a HDDBS, global consistency means that no integrity
constraints among the data in the different local databases
are violated. As with transactions on a database, global and
flexible transactions on a HDDBS should be defined so that,
if executed in isolation, they would not violate the global
consistency of the HDDBS. The concurrency control proto-
col schedules the concurrent execution of the flexible
subtransactions in the HDDBS such that global consistency
is maintained. However, unlike monolithic databases where
all the data are strictly controlled by a single transaction
manager, HDDBSs submit transactions to autonomous local
databases. Thus, the HDDBS transaction manager cannot
ensure that transactions submitted independently to local
databases do not violate global integrity constraints.
Following the previous research commonly proposed in
the community [6], we assume that all local transactions do
not modify the global data items in G'D. Note that this will
not prevent the local transactions to read global data items,
as long as the execution of the local transaction maintains
local integrity constraints. Based on this assumption, local
transactions maintain both local and global integrity
constraints.

ZHANG ET AL.: GLOBAL SCHEDULING FOR FLEXIBLE TRANSACTIONS IN HETEROGENEOUS DISTRIBUTED DATABASE SYSTEMS 441

User
| Gi

[GTM interpreter]

Computer Network

GT™
Server 2

local
transactions

Fig. 1. The HDDBS system model.

2.2 Flexible Transaction Model

From a user’s point of view, a transaction is a sequence of
actions performed on data items in a database. In a HDDBS
environment, a global transaction is a set of subtransactions,
where each subtransaction is a transaction accessing the data
items at a single local site. The flexible transaction model
supports flexible execution control flow by specifying two
types of dependencies among the subtransactions of a
global transaction: 1) execution ordering dependencies
between two subtransactions and 2) alternative dependen-
cies between two subsets of subtransactions. A formal
model has been offered in [28]. Below, we shall provide a
brief introduction of this model.

Let T = {t,ts,...,t,} be a repertoire of subtransactions
and P(T) the collection of all subsets of 7. Let ¢;,t; € 7 and
T;,T; € P(T). We assume two types of control flow
relations to be defined on the subsets of 7 and on P(7),
respectively: 1) (precedence) ¢; < t; if ¢; precedes t; (i # j)
and 2) (preference) T; > T if T; is preferred to T; (i # j). If
T; > T}, we also say that 7} is an alternative to 7;.' Note that
T; and T; may not be disjoint. Both precedence and
preference relations are irreflexive and transitive. That is,
they define partial order relations. In other words, for each
tieT,-(t; <t;)and foreach T; € P(T), ~(T;, > T;). If t; < t;
and t; < t;, then ¢; < t;; if T; > T and T} > T}, then T; > T},

The precedence relation defines the correct parallel and
sequential execution ordering dependencies among the
subtransactions. The semantics of the precedence relation
refers to the execution order of subtransactions. t; < t»
implies that ¢; finishes its execution before t; does. Note
that ¢, may start before or after ¢; finishes. The preference
relation defines the priority dependencies among alternate
sets of subtransactions for selection in completing the
execution of 7. For instance, {t;}v> {t;,t;} implies that
either t; and ¢; must abort when ¢; commits or ¢; and ¢,

1. In general, the alternate relationship need not exist only between two
individual subtransactions; one subtransaction may be a semantic alter-
native of several subtransactions.

1

]

1]

t

I

:

i local
, e transactiops
1

1

1

Ll

1

1

1l

'

1

1

]
|
|
'
]
[
i
§
]
'

should not be executed if t; commits. In this situation, {¢;} is
of higher priority than {¢;,¢;} to be chosen for execution.
A flexible transaction is defined as follows:

Definition 1 (Flexible transaction). A flexible transaction T is
a set of related subtransactions in which the precedence (<)
and preference () relations are defined.

The execution of a flexible transaction may contain
several alternatives. Let 7, be a subset of 7, with a
precedence relation < defined on T;. It is defined that
(T3, <) is a partial order of subtransactions. (7;,<) is a
representative partial order, abbreviated as < -rpo, if the
execution of subtransactions in 7; represents the committed
execution of the entire flexible transaction 7. Clearly, if
(T;, <) is a < -rpo, then there are no subsets T;; and Tj, of T;
such that Tj; > Tjo.

The structure of a flexible transaction 7 can thus be
depicted as a set of <-tpos {(7},<),i=1,...,k} of
subtransactions, with |J',7; = 7.2 Note that 7 may
contain more than one subtransaction at a local site. Let
(T, <) be a < -rpo of 7. A partial order (1", <') is a prefix of
(T, <), denoted (T, <') < (T, <), if:

o T CT;
o for all ¢1,t, €T, t; <"ty in (T",<') if and only if
t; <ty in (T, <); and

e foreacht €T, all predecessors of ¢t in T are in T".

A partial order (17, <') is the prefix of (7', <) with respect
tot € T, denoted (1", <) < (T, <)(¢), if (T", <’) is a prefix of
(T, <) and T" contains only all predecessors of ¢t in T. A
partial order (1", <') is the suffix of (T, <) with respect to
t € T, denoted (T",<') > (T, <)(t), if, for all t;,t, € T",t; <’
ty in (177, <) if and only if ¢; < ¢, in (T, <) and 1" contains
only ¢ and all successors of ¢ in T

2. Note that when k=1, a flexible transaction becomes a traditional
global transaction.

442 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

We now use prefixes and suffixes to show how a flexible
transaction can switch from executing one < -rpo to
executing a lower-priority alternative. Intuitively, if
< -rpos (T;,<;) and (Tj,=<;) share some prefix and the
subtransactions 1, - - -, ¢; immediately following that prefix
in the execution of (T3, <;) fail, then (7}, <;) can continue
execution from the point where the shared prefix com-
pleted. In this case, the set of {t1,---,¢;} forms a switching
set, formally defined as follows:

Definition 2 (Switching set). Let ¢, - - -, t;, be subtransactions
in < -rpo (T, <) of a flexible transaction T, with respective
suffixes (T;,<i) > (T, <)(t;) for i=1,---,k {t1,...,ts}
forms a switching set of (T, <) if,

e thereis a < -rpo (T',<') of T such that (T — (T3 U
o UTy), <) is a prefix of (T",<'), and,
o (MMU..UT)>(T'—(T—-(ThU...UTy)).

A switching point is a subtransaction in a switching set
which relates one < -rpo to another < -rpo.

Let p1 = (T1,<1) and P2 = (T27<2) be two < -Ipos of
flexible transaction 7. We say that p; has higher priority
than p, in 7, denoted p; — po, if there are Ti; C T and
Ty; € T3 such that T; > Ty;. The preference relation defines
the preferred order over alternatives. We state that two
subsets T}, T}, C 7 have the same priority if thereisa T; C 7
such that T; > T; and T; > T}, but —(7; > T},) and —~(T}, > T}).

The execution of a flexible transaction 7" at any moment
must be uniquely determined. We say that a flexible
transaction 7 is unambiguous if the following conditions
are satisfied:

e For any switching set {t;,...,¢;} in a < -rpos (T, <)
of 7, (T4 U...UTy) where (T;,=<;) > (T, < 7)(t;), for
i=1,...,k, has no two alternatives with the same
priority.

e None of the <-rpo pi,...,p; of 7 are in a priority
cycle such that p;, — ... — p;, — p;, for a permuta-
tion 4q,...,9 of 1,... 1.

Note that the set of all < -rpos of a flexible transaction
may not be clearly ranked, even if it is unambiguous. The
aborting of subtransactions determines which alternative <
-rpos will be chosen. In the remainder of this paper, we
assume that all flexible transactions are unambiguous. The
following example is given in [28]:

Example 2. Consider a travel agent information system
arranging a travel schedule for a customer. Assume that a
flexible transaction 7 has the following subtransactions:

e ¢;: withdraw the plane fare from account ay;

e t: withdraw the plane fare from account a,;

e 3 reserve and pay for a nonrefundable plane

ticket;

e {4: rent a car from Avis;

e t5: book a limo seat to and from the hotel.
The following < -rpos are defined on the above sub-
transactions:

b1 = ({tlat37t4}7 <)ap? = ({tlat3at5}7<)7
b3 = ({tQat37t4}a <)7p4 = ({t25t3at5}7 <)7

where {t,} is the switching set of p; and {¢4} is the
switching set of both p; and p;. With these switching sets,
we have {t1,t3,t4} > {lo,t3,24} and {t4} > {t5}. Clearly,
the set of <,-rpos in this flexible transaction is unambig-
uous. Note that p; — p» and p; — p3, but py and p3
cannot be ranked in any preferred order.

In each < -rpo of subtransactions, the value dependencies
among operations in different subtransactions define data
flow among the subtransactions. Let (T', <) bea < -rpoand T’
have subtransactions ti,ty,---,t%,. We say that t; is value
dependentont;,,...,t; , (1 < ji,...,j < n)if the execution of
one or more operations in ¢, is determined by the values read
bytjl,-~-,tj,,]~

Each subtransaction is categorized as either retriable,
compensatable, or pivot. We say that a subtransaction ¢; is
retriable if it is guaranteed to commit after a finite number of
submissions when executed from any consistent database
state. The retriability of subtransactions is highly deter-
mined by implicit or explicit integrity constraints. For
instance, a bank account usually has no upper limit, so a
deposit action is retriable. However, it usually does have a
lower limit, so a withdrawal action is not retriable.

A subtransaction is compensatable if the effects of its
execution can be semantically undone after commitment by
executing a compensating subtransaction at its local site.
We assume that a compensating subtransaction ct; for a
subtransaction t; will commit successfully if persistently
retried.® ct; must also be independent of the transactions
that execute t; and ct;. Local database autonomy requires
that arbitrary local transactions be executable between the
time ¢; is committed and the time ct; is executed and these
local transactions must be able to both see and overwrite the
effects of t; during that time. For example, consider a
HDDBS that has account a in LS, and account b in LS,, with
the integrity constraints ¢ >0 and b> 0. Suppose a
transaction 7, transfers $100 from a to b. The withdrawal
subtransaction t; and LS; is compensatable, while the
deposit subtransaction t; at L.S; is not. The compensation of
to may violate the integrity constraint >0 if a local
transaction which is executed between ¢, and its compen-
sating subtransacton takes the amount of b. Note that both ¢;
and ¢, are compensatable in the traditional distributed
database environment, which ensures that the transactions
that are executed between t; and its compensating sub-
transaction cty are commutative with cty [14], [4].

A subtransaction t; is a pivot subtransaction if it is neither
retriable nor compensatable. For example, consider a
subtransaction which reserves and pays for a nonrefund-
able plane ticket. Clearly, this subtransaction is not
compensatable. This subtransaction is also not retriable,
since such a ticket might never be available.

The concept of semiatomicity was introduced in [28] for
the commitment of flexible transactions. The execution of a
flexible transaction 7 is committable if the property of
semiatomicity is preserved, which requires one of the
following two conditions to be satisfied:

3. This requirement, termed persistence of compensation, has been
discussed in the literature [11].

ZHANG ET AL.: GLOBAL SCHEDULING FOR FLEXIBLE TRANSACTIONS IN HETEROGENEOUS DISTRIBUTED DATABASE SYSTEMS 443

e All its subtransactions in one < -rpo commit and
all attempted subtransactions not in the committed
< -rpo are either aborted or have their effects
undone.

e No partial effects of its subtransactions remain
permanent in local databases.

We will now define the commit dependency relationships
between any two subtransactions of a flexible transaction
that should be obeyed in the commitment of these
subtransactions. We say that t; is commit dependent on t;,
denoted t; —t;, if the commitment of ¢, must precede
that of ¢; to preserve semiatomicity. Clearly, if t; < t; in
(Ti,<) (1<i<k), then t; —.t;, These dependencies,
which are determined by the execution control flow
among subtransactions, are termed e-commit dependencies.
To ensure that the execution of a < -rpo can terminate, the
commitment of compensatable subtransactions should
always precede that of pivot subtransactions, which in
turn should precede the commitment of retriable sub-
transactions. These dependencies are termed t-commit
dependencies. Also, for those subtransactions which are
retriable, value dependencies must be considered in
determining a commitment order. Each retriable subtran-
saction remains retriable without resulting in any database
inconsistency, as long as all other subtransactions that are
value dependent upon it have not committed. Such
dependencies are termed v-commit dependencies.

We say that a flexible transaction is well-formed if it is
committable. Well-formed flexible transactions have been
identified in [28] for which the semiatomicity can be
maintained. Well-formed global transactions have been
identified in [20] for which the semantic atomicity [11] can
be maintained. We assume, in this paper, that the flexible
transactions are well-formed for the discussion of global
concurrency control. We say that a database state is
consistent if it preserves database integrity constraints. As
defined for traditional transactions, the execution of a
flexible transaction as a single unit should map one
consistent HDDBS state to another. However, for flexible
transactions, this definition of consistency requires that the
execution of subtransactions in each < -rpo must map one
consistent HDDBS state to another.

In the above discussion, we have used banking and
travel agency as application examples. It has been recog-
nized that the concept of flexible transactions can be
extended to specify the activities involving the coordinated
execution of multiple tasks performed by different proces-
sing entities [23], [1]. For instance, in manufacturing
applications, flexible transactions are used to specify and
control the data flow between agile partner applications.
Typical inter-task dependencies include: 1) ordering de-
pendencies which define the parallel and sequential
executions among tasks, 2) trigger dependencies which
define the contingency executions among tasks, and 3) real-
time dependencies which define real-time constraints on
tasks e.g., a chronological dependency is defined by
specifying the start time and the expected completion time
of tasks. These dependencies can be realized using the
flexible transaction model. The extension of these depen-
dencies have also been recognized in the the concept of
workflow which has been used as a specification facility to

separate control and data flows in a multisystem applica-
tion from the rest of the application code [23], [1].

3 IssUES IN GLOBAL CONCURRENCY CONTROL

In this section, we will discuss various inconsistent
scenarios that may arise when compensation or retrial are
allowed. These observations are important input for the
establishment of a suitable global concurrency control
correctness criterion.

3.1 Global Serializability

Global serializability [5], [2] is an accepted correctness
criterion for the execution of (nonflexible) global and local
transactions in the HDDBS environment. A global schedule
S is globally serializable if the committed projection from S of
both global transactions in the HDDBS environment and
transactions that run independently at local sites is conflict-
equivalent to some serial execution of those transactions.* In
the traditional transaction model, it has been shown that a
global schedule S is globally serializable if and only if all .S},
(k=1,...,m) are serializable and there exists a total order
O on global transactions in S such that, for each local site
LSy (1 <k <m), the serialization order of global subtran-
sactions in Sy, is consistent with O [13], [19], [27]. Note that
each global transaction can have more than one subtransac-
tions at a local site, as long as their serialization order is
consistent with O. That is, if global transaction G, precedes
global transaction G3 and follows global transaction G; in
the serialization order, then the serialization order of all
subtransactions of G must precede that of all subtransac-
tions of G3 and follow that of all subtransactions of G; at
each local site.

Following the definition of semiatomicity on flexible
transactions, a committed flexible transaction can be
considered as a traditional global transaction that contains
only the subtransactions in its committed < -rpo. Some
subtransactions in the flexible transaction which do not
belong to the committed < -rpo may have committed and
their effects are compensated. In this discussion, we call
such subtransactions invalid subtransactions. Invalid sub-
transactions and their compensating transactions are
termed surplus transactions, as their effects are not visible
in the HDDBS once the flexible transaction has committed.

Let S be the global schedule containing the concurrent
executions of both the subtransactions (and compensating
subtransactions) of flexible transactions 7 ,...,7; and a set
of local transactions. Let S¢ be the projection from S of the
committed local transactions and the subtransactions of the
committed < -rpos of 7,...,7;. We extend global serial-
izability to treat surplus transactions as local transactions:

Definition 3 Global serializability. A global schedule S is
globally serializable if the projection of committed local,
flexible, and surplus transactions in S is conflict-equivalent
to some serial execution of these transactions.

In the rest of this paper, for the sake of similicity, we
assume that each global transaction has at most one

4. See [3] for the definitions of committed projection and conflict
equivalence.

444 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

subtransaction at each local site. However, all the theorems
can be directly applied to the general situation where
multiple subtransactions are permitted in each global
transaction. In the case of flexible transaction, we consider
that each < -rpo of a flexible transaction has at most one
subtransaction at a local site. Note that 7 may still contain
more than one subtransaction at a local site, provided that
they are in different < -rpos.

We denote 0, <g 0y if operation o, is executed before
operation o in S. Let ¢;i,...,t;, be the subtransactions at
local sites LS, ...LS,, in the committed < -rpo of flexible
transaction 7, and ¢, . .., t;, be the analogous subtransac-
tions in the committed < -rpo of flexible transaction 7. t;,
and tj, both are executed at local site LS,. Let —; be a
serialization ordering on transactions, with t¢;, —;t; in-
dicating that the execution of t;, must be serialized before
that of ¢;, on the LDBS on which they executed. Applying
the above global serializability theory in the execution of
flexible transactions, we have the following theorem:

Theorem 1. Let T4,...,7; be the well-formed flexible transac-
tions in global schedule S. Assume that all LDBSs maintain
serializability on the local transactions and subtransactions at
their sites. The global serializability of S is preserved if, for S¢,
there exists a permutation T,,,...,T; of T1,...,7; such
that, for any TimTi.yz e{T:,..., 7T}, tiyp =85 Lipyp for all
local sites LS, where j; < jo and 1 <p < m.

Several solutions have been proposed to enforce the
serializable execution of global transactions, including
forced local conflicts [13]. These approaches are readily
applicable to flexible transactions. However, globally serial-
izable schedules may no longer preserve database consis-
tency in the execution of flexible and local transactions,
because the global serializability criterion fails to consider
the constraints on the committed subtransactions which are
not a part of the committed <-rpos, and on their
compensating subtransactions. In fact, every commit pro-
tocol which uses compensation during the execution of
flexible transactions may face difficulties with the preserva-
tion of the consistency of globally serializable schedules.

3.2 Problematic Situations

We will now consider some scenarios that may arise if
compensation or retrial are allowed. Before discussing these
scenarios, we first introduce the concept of the serialization
point, which is similar to the existing notion of the
serialization event [9] and serialization function [19].
Definition 4 (Serialization point). Let t;, and t;, be two
subtransactions executed on local site LS,. Operation oy, of t;
is a serialization point of t;, in global schedule S if, for any
subtransaction tj,, there exists an operation o, of t;, such that
tip —s, tip if and only if oy <g, 0jp.

The determination of serialization points depends on the
concurrency control protocol of the LDBS. For instance, if
the local database system uses strict two-phase locking
(pessimistic concurrency control), then the serialization
point can fall anywhere between the moment when the
subtransaction takes its last lock and its commitment [19].
When local conflicts are forced, each subtransaction updates

a shared data item at the local site. The order of these
updates forms the serialization order. A detailed discussion
of this procedure can be found in [19]. Note that, in general,
any individual transaction may not have a serialization
point in the schedule. This is the case when serialization
graph testing [3] is used as the concurrency control
protocol. However, in enforcing globally serializable sche-
dules, we must determine the serialization orders of
subtransactions at local sites in order to deal with local
indirect conflicts [13], [19], [27]. Thus, we assume that the
serialization point of each subtransaction can be determined
at the local site. We also assume that, with the help of forced
local conflicts, we can ensure that the serialization point is
reached after the transaction begins, and before it commits
(the bounded serialization point assumption).
First, let us consider the following example:

Example 3. Consider a HDDBS that has data items a, b at
LS, and data item c at LS, ;. Let the integrity constraints
be a > cand b > c. Two flexible transactions 77 and 75 at
local site LS, are executed as follows:

e ¢y, which does b := b — 1, commits.

e ty, which does a:=b, executes its serialization
point, enforcing ¢, — ta,. t2, has read data item b
that was written by ty,.

® ti,41, which does ¢:=c—1, aborts; 7; makes a
global decision to abort.

e Compensating subtransaction ct;,, which does
b:=b+ 1, is executed.

In this example, all the effects of 7, are eventually
removed from the execution, including the effects of tj,.
Global serializability is preserved, because flexible transac-
tion 7, was aborted and correctly compensated for, even
though its effects were read by flexible transaction 7 5.
However, 7, proceeds based on the reading of the data
item that was updated by ¢, and, thus, may be inconsistent.
Consider an initial database state a =5,b=5,¢c = 4. The
resulting database state after the execution of ct;, would be
a =4,b=>5,¢c =4, which is inconsistent.

The concept of isolation of recovery [17], [16] states that a
global transaction should be unaffected by both the aborted
and the committed subtransactions of other global transac-
tions. In addition, the above example shows that, if a global
transaction is affected by a committed subtransaction which
must later be compensated, the task of constructing the
compensating subtransaction will be greatly complicated by
the need to restore database consistency. Such compensat-
ing subtransactions must be capable of undoing any effects
that may have been seen by other global transactions. For
example, in the above example, ct;, must restore not only
data item b but also data item a. However, it is also
undesirable for ct;, to have to check for reads by other
global subtransactions. Note that the effects of the compen-
sated subtransactions on local transactions need not be
considered if we assume that the execution of a
subtransaction transfers the local database from one
consistent state to another. This leads us to the following
observation:

Observation 1. A necessary condition for maintaining database
consistency in an execution containing concurrent flexible

ZHANG ET AL.: GLOBAL SCHEDULING FOR FLEXIBLE TRANSACTIONS IN HETEROGENEOUS DISTRIBUTED DATABASE SYSTEMS 445

transactions in which compensating subtransactions undo
only the effects of their corresponding compensatable sub-
transactions is that, for each compensatable subtransaction t;,
of T, at given local site LS, (1 < p < m), subtransactions that
are subsequently serialized at the local site must not read the
data items updated by t;, until either T; makes a global
decision to commit the < -rpo containing t; or the
compensating subtransaction for t;, has executed its serial-
ization point.

As a further complication, a compensating subtransac-
tion ct;, may still unilaterally abort and need to be retried.
Some conflicting subtransactions may have to be aborted to
ensure that they are serialized after ct;,. To avoid such
undesirable cascading aborts, we must delay the execution
of the serialization point of such conflicting subtransactions
until one of the following conditions holds for ¢;,:

e The flexible transaction containing ¢;, has made a
decision to commit the < -rpo which contains ¢;,.
e ctj, has committed.

The following example is also problematic:

Example 4. Two flexible transactions 77 and 7 at local site
LS, are executed as follows:

e T makes a global decision to commit.

e i, executes its serialization point.

e iy, executes its serialization point, enforcing
tip —s top-

e tj, which is retriable, unilaterally aborts.

e ty,, is resubmitted and reexecutes its serialization
point. Now, we have ty, — ti,, which contradicts
the order ¢, —, to, that was enforced.

At this point, if the serialization order is not consistent
with those at other local sites, t5, must be aborted.

To avoid cascading aborts, we make the following
observation:

Observation 2. A necessary condition for avoiding cascading
aborts when a subtransaction is retried is to ensure that a
subtransaction does not execute its serialization point until all
retriable subtransactions that precede it in the serialization
order of the execution and have not been aborted have
successfully committed.

If, in this situation, we do not avoid the cascading abort,
we also can allow a situation where compensation must be
cascaded:

e 7 makes a global decision to commit.

e 1y, executes its serialization point.

e iy, executesits serialization point, enforcing ¢y, — ta,.
Then, it commits.

e ty,, which is retriable, unilaterally aborts.

e ty, is resubmitted and reexecutes its serialization
point. Now, we have ¢y, — t1,, which contradicts
the order ¢, — ty, that was enforced.

In this case, 7, must backtrack to compensate for 5, so that
the correct serialization order can be attained at LS,.
Unfortunately, if t3, is not compensatable, this may be
impossible.

Whether or not the global transaction is flexible, using
either compensation or retrial to regain consistency leads to
blocking. Furthermore, for flexible transactions, switching
to an alternate < -rpo can also create problems. Let us
consider an alternate in flexible transaction 7. Let t;; <
t1; < ti,, be the preferred < -rpo, and let t;; < ¢;; be the
second alternate < -rpo. Note that ¢,; is at a different local
site than any subtransaction in the preferred < -rpo. We
then have the following example, where 7; should be
serialized before 75

Example 5. The executions of two flexible transactions 7
and 7, are given as follows:

e t;;, which is pivot, commits (therefore 7; makes a
global decision to commit).

t1; executes its serialization point.

to; executes its serialization point.

t1; unilaterally aborts.

7 chooses an alternate < -rpo and submits ¢;;. It
has yet to execute its serialization point, so we
now have ty; — t1;, which contradicts the serial-
ization order 77 — 7 that was enforced.

At this point, t5; must be aborted to maintain global

serializability.

Again, if the cascading abort is not avoided, we can also
allow a cascading compensation situation:

e ty,, which is compensatable, commits.

e 1y, which is pivot, commits (and 7, makes a global

decision to commit).

e T backtracks, issuing compensating subtransaction

Ctlp.

e T tries a different < -rpo, issuing subtransaction t’lp.

We now have t, —, t’lp, which contradicts the serial-
ization order 7 —4 7T,. Furthermore, since %y, is not
compensatable, the only way to regain global serializability
is to abort the entire flexible transaction 7.

We observe and later prove that if the cascading abort is
avoided, then the cascading compensation cannot occur. To
avoid cascading aborts in this situation, we have the
following observation:

Observation 3. A necessary condition for avoiding cascading
aborts when an alternate < -rpo is attempted is to ensure that,
at any local site, an LDBS does not execute the serialization
point of a subtransaction until, for all uncompleted flexible
transactions that precede it in the global serialization order, no
alternate subtransaction can possibly be initiated.

Observations 1, 2, and 3 indicate that some blocking of
the execution of subtransactions which reach their serial-
ization point early may be unavoidable with a concurrency
control algorithm designed to avoid cascading aborts. This
blocking will result in the delay of the commitment
operations of these subtransactions. Observations 1 and 2
relate directly to delays which are caused by compensation
or retrial and which cannot therefore be avoided by any
global transaction model that uses these techniques to
regain consistency after a subtransaction aborts.

Observation 3 concerns delays that arise only with
flexible transactions. There are conflicting considerations

446

here; the more flexible (and, therefore, more failure-
resilient) global transactions will be prone to greater
delays. Global transactions with less flexibility, which are
less resilient to failure, will have fewer delays. Conse-
quently, while the flexible transaction approach can
indeed extend the scope of global transactions, it does
cause more blocking than does the traditional transaction
model.

The observations we have made concerning concur-
rency control will play a dominant role in the design of
concurrency control algorithms for maintaining global
serializability on the execution of flexible and local
transactions. Following these observations, we see that
the execution of a flexible transaction may be greatly
affected by the concurrent execution of other flexible
transactions.

4 A GLOBAL SCHEDULING CRITERION

We will now propose a new concurrency control criterion
for the execution of flexible and local transactions. This
criterion, termed F-serializability, places restrictions on
global serializability. Thus, the set of F-serializable sche-
dules is a subset of globally serializable schedules. Follow-
ing Observations 1-3, we see that only Observation 1 has an
effect on the definition of such a criterion, while Observa-
tions 2 and 3 will impact on the design of a concurrency
control protocol.

4.1 Serializability with Flexible Transactions

Clearly, the database inconsistency that may be caused by
compensation can be prevented in a globally serializable
execution simply by requiring that, for each compensatable
subtransaction ¢; of 7; at given local site LS,(1 < p < m),
conflicting subtransactions that are subsequently serialized
at the local site do not execute their serialization points until
either 7; makes a global decision to commit the < -rpo
containing ¢; or the compensating subtransaction for ¢; has
executed its serialization point.

A less restrictive approach is also possible. By definition,
a compensating subtransaction ct; should be able to
compensate the effect of ¢; regardless of what transactions
execute between ¢; and ct;. However, such transactions may
propagate the effect of ¢; to other transactions and such
propagation cannot be statically considered in ct;. For
flexible transaction 7; following 7, in the global serial-
ization order, if subtransaction ¢; of 7; accesses (reads or
writes) the data items not written by ¢; of 7, t; will
definitely not propagate the effect of ¢; and can then be
serialized between ¢; and ct; in the same manner as any
local transaction. Only when t; accesses the data items
written by ¢; may database inconsistency result. Let AC(t)
denote the set of data items that ¢ accesses and commits,
RC(t) denote the set of data items that ¢ reads and commits,
and WC(t) denote the set of data items that ¢ writes and
commits. We define a compensation-interference free property
on global schedules as follows:

Definition 5 (Compensation-interference free). A global
schedule S is compensation-interference free if, for any
subtransaction t; which is serialized between a subtransac-
tion t; and its compensating transaction ct; in S,
WC(t;) NAC(t;) = 0.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

We now propose a new global concurrency control
criterion as follows:

Definiton 6 (F-serializability). Let S be a global schedule of a
set of well-formed flexible transactions and local transactions.
S is F-serializable if it is globally serializable and compensa-
tion-interference free.

Note that, in Definition 6, the execution of a well-
formed flexible transaction may result in both a com-
mitted flexible transaction and some surplus transactions.
Comparing the definition of F-serializable schedules given
above with that of global serializable schedules given in
Definition 3, we can easily see that the set of F-
serializable schedules is a subset of globally serializable
schedules. However, if we had followed the traditional
definition of global serializability in which all subtransac-
tions and their compensating subtransactions of a flexible
transaction at a local site are treated as a logically atomic
subtransaction, then the set of F-serializable schedules
would be a superset of globally serializable schedules. For
example, consider a committed flexible transaction 7
which has generated a surplus pair of subtransaction t;
and its compensating subtransaction ct;. Let another
flexible transaction 75 contain data items such that
RC(t1)NAC(T3) #0, but WC(t;)NAC(T,) =0. T, can
be F-serialized between t; and ct;, but cannot be globally
serialized between t; and ct;. In addition, since the
surplus pair of the subtransactions belong to a different
representative partial order from the committed one,
these subtransactions can be treated as a separate global
transaction.

Theorem 2 given below demonstrates that F-serial-
izability ensures global database consistency. We first
show that the compensation-interference free property in
an F-serializable global schedule is inherited in its conflict
equivalent schedule.

Lemma 1. Given an F-serializable global schedule S, any
schedule S’ that is conflict-equivalent to S is compensation-
interference free.

Proof. The proof proceeds by contradiction. Suppose we do
have a schedule S’ that is conflict-equivalent to S and is
not compensation-interference free. Then there exists a
subtransaction ¢; such that it is serialized between a
subtransaction t; and its compensating transaction ct; in
S’, and t; accesses some data item d written by ¢;. Since .S’
is conflict equivalent to S, t; must also access d written by
t; in S and is serialized between t; and ct; in S.
Consequently, S is not compensation-interference free,
contradicting the given condition. O

Without loss of generality, we assume that, in the
theorem below, all local, flexible, or surplus transactions
in S are committed. Thus, S is identical to S°.

Theorem 2. An F-serializable schedule S preserves global
database consistency.

Proof. Let S be an F-serializable schedule that transfers a
consistent database state DS? to a new database state
DS'. Let &' =T\T5...T, be its equivalent global serial
schedule, where T; (1 <i<n) is a committed local,

ZHANG ET AL.: GLOBAL SCHEDULING FOR FLEXIBLE TRANSACTIONS IN HETEROGENEOUS DISTRIBUTED DATABASE SYSTEMS 447

flexible, invalid or compensating (sub)transaction. By
Lemma 1, we know that S’ is compensation-interference
free. We now demonstrate that DS' is consistent.

We first prove that every local, flexible, or invalid
(sub)transaction reads consistent database state. The
proof proceeds by induction on the position of each
transaction in S’:

Basis. Obviously, T can only be either local, flexible
or invalid (sub)transaction. Since 7} reads from DS, it
reads consistent database state.

Induction. Assume that for all transactions T}, ¢ =
1,...,k—1 (k<mn), if T; is not a compensating sub-
transaction, then 7T} reads consistent state. Consider Tj}.
There are two cases:

e Tj is a local transaction. Since all transactions
Ti,...,Ty—1 preserve local database consistency,
T}, thus reads locally consistent database state.
e T, is an invalid subtransaction or a committed
flexible transaction.
Let D be the set of all data items existing in the global
database. Let D' be D — {the set of data items updated by
those invalid subtransactions appeared in Ti,...,7T};
but their compensating subtransactions appeared after
T} Since S’ is compensation-interference free, T}, reads
only the state of D'. Thus, T} reads only consistent
database state.

By the semantics of compensation, the partial effects
of invalid subtransactions in S’ are semantically com-
pensated by their compensating subtransactions. Since
no effects of invalid subtransactions are seen by other
transactions before they are compensated, any incon-
sistencies caused by these invalid subtransactions are
restored by their compensating subtransactions. Let 5"
be S’ restricted to those transactions that are neither
invalid subtransactions or their compensating subtran-
sactions. Thus, S” consists only the serial execution of
atomic local and flexible transactions. Since each transac-
tion in S” sees a consistent database state, then S”
preserves the global database consistency. Therefore,
DS? is consistent. O

4.2 Avoiding Cascading Aborts and
Compensations
Lemma 2. Let T; —, T j be maintained in global schedule S. The
following rules are mnecessary and sufficient for a flexible
transaction scheduler to follow in order to avoid cascading
aborts for serialization reasons:

e No subtransaction of flexible transaction T; can
execute its serialization point until all retriable
subtransactions of flexible transactions T; such that
T; — T have committed.

e No subtransaction of flexible transaction T; can
execute its serialization point until all alternative
subtransactions of flexible transactions T; such that
T; —4 T either have committed or can no longer
participate in T;’s committed < -rpo.

Proof. The necessary condition was shown in Observations 2
and 3.

The sufficient condition can be shown by the observa-
tion that cascading aborts really occur when some
subtransaction ¢; of some flexible transaction 7, is serial-
ized before a subtransaction ¢; of some flexible transaction
T; on the same local database, with 7; —, 7 ;. The above
conditions ensure that the serialization point of a
subtransaction, which fixes its place in the local database’s
serialization order, is not made until all subtransactions
that could precede it in the global serialization order are
either committed or decided against. Since no earlier
subtransaction can attempt to execute a new subtran-
saction on the local database, no cascading abort can
occur. a

Recall from Example 5 that cascading compensations can
occur when a subtransaction #; reads from some uncom-
mitted subtransaction ¢; and then commits. If ¢; later aborts,
to must be compensated for. We show the following
theorem with respect to cascading compensations:

Theorem 3. A flexible transaction scheduler avoids cascading
compensations if it avoids cascading aborts.

Proof. Assume that the scheduler avoids cascading aborts.
This means that it never needs to force the abort of an
uncommitted subtransaction ¢ because of the violation of
serialization. By Lemma 2, this is guaranteed by delaying
the execution of the serialization point of ¢ until all
subtransactions which must be serialized previously
have committed. Therefore, ¢ cannot have committed
before these subtransactions commit. Thus, ¢ need never
be compensated for. So cascading compensation is also
avoided. O

5 A SCcHEDULING PRoTOCOL

In this section, we present a GTM scheduling protocol that
ensures F-serializability on the execution of local and
flexible transactions, and avoids cascading aborts. This
protocol is based on the assumption that if the concurrency
control protocol of a local database does not allow the
HDDBS to determine the serialization point for each
subtransaction, a ticket scheme similar to [13] can be
implemented on the local database. Thus, the serialization
point for a subtransaction is always reached between the
time the subtransaction begins and the time it commits.
For the GTM scheduling protocol, we propose a execution
graph testing method to avoid the high overhead of keeping
track of serialization points, to ensure F-serializability, and to
avoid aborts. For scheduling purposes, we maintain a stored
subtransaction execution graph (SSEG) among subtransac-
tions to be scheduled. The SSEG is defined as follows:

Definition 7 (Stored Subtransaction Execution Graph). The
Stored Subtransaction Execution Graph (SSEG) of a set of
flexible transactions in global schedule S is a directed graph
whose nodes are global subtransactions and compensating
subtransactions for those flexible transactions, and whose
edges t; — t; indicate that t; must serialize before t; due to
preference, precedence, or conflict.

Global subtransaction nodes are labeled]} for flexible
transaction 7; running on local site p. If more than one

448 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

global subtransaction is defined for 7; on LS,, then the
nodes can be ordered by the > order of their < -rpos, and m
indicates this node’s position in that order. If ¢} is
compensatable, its compensating subtransaction’s node is
ct;y. We begin with a few definitions. A flexible transaction
commits once its pivot subtransaction commits. We say
that a flexible transaction robustly terminates once all
subtransactions in the committed < -rpo have committed
and all compensating subtransactions for committed
subtransactions not in the committed < -rpo have also
committed.

The GTM scheduling protocol assumes that each global
subtransaction and compensating subtransaction prede-
clares its read—and write—sets. It includes node and edge
insertion and deletion rules, and an operation submission
rule. All nodes and edges associated with a flexible
transaction are inserted as a unit. If some edge insertion
fails for flexible transaction 7;, no edges may be inserted for
subsequent flexible transaction 7 ; until either the insertion
succeeds or all edges for 7; have been deleted. Nodes and
edges for flexible transaction 7; are inserted into the SSEG
according to the following rules:

Node Insertion Rule: Insert a node for each subtransac-
tion defined for 7. For each compensatable subtransaction
insert a node ct].

Edge Insertion Rule: For subtransaction ¢!’

i»» Where edge
insertion does not cause a cycle:

1. For each previously-scheduled ¢, ,
tn— .

2. For each previously-scheduled ctj, h<i, if

WC(ty,) N AC(t]) # 0, insert edge ¢ — ctj.

If ¢} is compensatable, insert edge ct}) — t}7.

4. If tj) is (e, v-, or t-) commit-dependent on ¢}, insert
edge ;) — t},. ' ’

5. For all n<m, insert edge) — .
compensatable, insert edge ¢} — ct]..

h <1, insert edge

et

If ¢, is

The first two edge insertion cases ensure F-serializability.
The third rule ensures that in a surplus pair the invalid
subtransaction precedes its compensating transaction. The
rest of the cases ensure that, for all flexible transactions, the
resulting schedule is commit-dependency preserving and
all alternatives are attempted in > order.

Nodes and edges are deleted from the SSEG according to
the following rules:

Node Deletion Rule.

1. Upon completion of a flexible transaction back-
track, delete all nodes representing subtransactions
in the current switching set or its successors, as
well as the nodes representing their compensating
subtransactions.

2. Upon commitment of a subtransaction or compen-
sating subtransaction, delete its node.

3. Upon commitment of a pivot or a retriable sub-
transaction, delete all nodes representing its alter-
natives and their successors in the flexible
transaction, as well as the nodes representing the
compensating subtransactions of these deleted
nodes.

4. Upon robust termination of a flexible transaction,

delete its remaining nodes.

Edge Deletion Rule. Delete all edges incident on deleted
nodes.

The operations of a global subtransaction of 7; are
submitted to the local databases according to the following
rule.

Operation Submission Rule. Submit operations of a
subtransaction (including begin and commit) to its local
database only if its node in the SSEG has no outgoing edges.

The SSEG algorithm is defined based on the above rules.
Note that the implementation of the Operation Submission
Rule can vary depending on what concurrency control
mechanism is used at each local site. If each local DBMS
uses the strict two-phase locking as its concurrency control
mechanism, then the serialization point of a subtransaction
can be controlled by the GTM [19]. As a result, some
operations of a subtransaction ¢; of a flexible transaction
may be submitted before other subtransactions which are
serialized before t; reach their serialization points. How-
ever, for other concurrency control mechanisms, we
generally cannot have such gain from the local DBMSs.

We now show that the SSEG algorithm maintains global
consistency. We begin with a basic lemma on the restraints
the SSEG places on the execution, then apply that to the
scheduling algorithm.

Lemma 3. If there is an edge t;, — t;, in the SSEG, then if both
tip and tj, execute and commit, t;;, must serialize before t;,.

Proof. By the operation submission rule, no operation of ¢j,
(including begin and commit) can be executed until the
node tj, has no outgoing edges. Therefore, ¢;, cannot
begin (and consequently by the bounded serialization
point assumption cannot execute its serialization point)
until the edge tj, — t;, is deleted. By the edge deletion
rule, the edge is only deleted once the node t;, is deleted.
By the node deletion rule, the node ¢;, is only deleted
once the subtransaction commits. By the bounded
serialization point assumption, ¢;, must have executed
its serialization point before it commits. Therefore, t;,
must have executed its serialization point before ¢, could
possibly have executed its serialization point, so the two
subtransactions must serialize in the order that t;,
precedes t,. O

Note also that if there is an edge t;, — t;, in the SSEG, but
one of them does not commit, but either fails to execute or
aborts, then at most one of them is present in the
serialization order, so how they are actually executed is
unimportant.

Theorem 4. Consider two flexible transactions T; and T ;. T; is
F-serialized before T ; if the nodes and edges of T, are inserted
before those of T ;.

Proof. Since all nodes are inserted for 7; before any nodes
are inserted for 7 ;, we know by the edge insertion rule
that all edges between subtransactions of 7; and
subtransactions of 7; must be directed from some
subtransaction of 7; to some subtransaction of 7; in
the same local database. Consider some local site LS, at
which 7; and T ; conflict. By the first edge insertion rule,

ZHANG ET AL.: GLOBAL SCHEDULING FOR FLEXIBLE TRANSACTIONS IN HETEROGENEOUS DISTRIBUTED DATABASE SYSTEMS 449

there is an edge t;, — t;, in the SSEG. By Lemma 3 this
means that if both subtransactions execute and commit,
tip serializes before t; at LS,. If one of the two
subtransactions does not commit, then the two com-
mitted < -rpos of the flexible transactions may not both
have subtransactions at LS,,. In such a case, LS, will not
have any effect on the serialization order of 7; and 7 ;.

If t;, is executed and is later compensated for, and ¢;,
is also executed, we have the following two cases:

Case 1. The compensation-interference free condition
does not hold between the execution of ¢;, and ¢;,. By the
second edge insertion rule, there is an edge t;, — ct;, in
the SSEG, so the operations of ¢;, could not be submitted
until this edge is deleted. By Lemma 3, if both ¢;, and ct;,
execute and commit, this means that ct;, must serialize
before tj,.

Case 2. The compensation-interference free condition
does hold. There is then no edge t;, — ct;,, and t; may
be interleaved between t; and ct;. However, the
resulting schedule is still compensation-interference free.

Consequently, 7; is F-serialized before 7T ;.]

Following Theorem 4, we can see that the SSEG algorithm
maintains global consistency. We now also show that the
SSEG algorithm has the additional desirable property of
avoiding cascading aborts and cascading compensations.
We know by Theorem 3 that if it avoids cascading aborts,
then it avoids cascading compensations. Therefore, we
show the following:

Theorem 5. The SSEG protocol for scheduling flexible transac-
tions avoids cascading aborts.

Proof. By Lemma 3, we know that if, for subtransactions ¢;
and t;, there is an edge ¢; — t; and ¢;,t; commit, then ¢;
must serialize before t;. In fact, similar reasoning shows
us that if such an edge exists in the SSEG, then ¢; must
either commit, abort, or be removed from consideration
before t; can begin. Thus, for this proof, we merely need
to show that edges are inserted into the SSEG that are
sufficient to prevent a concurrent execution that allows
for a cascading abort.

The first condition for avoiding cascading aborts is
that no subtransaction of flexible transaction 7; can
execute its serialization point until all retriable subtran-
sactions of any 7; such that 7; —, 7; have committed.
The first case in the edge insertion rule enforces this by
inserting edges tj — ¢, for all previously-scheduled ¢,
The second condition for avoiding cascading aborts

is that no subtransaction of flexible transaction 7, can

execute its serialization point until all alternative
subtransactions of any flexible transaction 7; such that

T; —sT; either have committed or can no longer

participate in 7;’s committed < -rpo. The first case in

the edge insertion rule also enforces this.

Since the SSEG protocol ensures that both conditions
necessary for avoiding cascading aborts are enforced, the
theorem holds.]

Thus, we have shown that the SSEG algorithm
maintains global consistency. We have also shown that
the SSEG algorithm has the additional desirable property

of avoiding cascading aborts and cascading compensa-
tions. Based on the rules for insertion and deletion of
nodes and edges in SSEG as well as the operation
submission rule, the SSEG algorithm can be efficiently
implemented in the HDDBS environment.

6 CONCLUSIONS

This paper has proposed a new correctness criterion on the
execution of local and flexible transactions in the
HDDBS environment. We have advanced a theory which
facilitates the maintenance of F-serializability, a concur-
rency control criterion that is stricter than global serial-
izability in that it prevents the flexible transactions which
are serialized between a flexible transaction and its
compensating subtransactions to affect any data items that
have been updated by the flexible transaction. Conse-
quently, no effect of a compensatable subtransaction is
spread to other flexible transactions before it is compen-
sated. In order to prevent cascading aborts, the effects of
retrial and alternatives on concurrency control must also be
considered. These factors generate unavoidable blocking on
the execution of flexible transactions. Thus, trade-off
between flexibility of specifying global transactions and
high concurrency on the execution of flexible transactions
remains.

REFERENCES

[1] Y. Breitbart, A. Deacon, H.-J. Schek, A. Sheth, and G. Weikum,
“Application-Centric and Data-Centric Approaches to Support
Transaction-Oriented Multi-System Workflows,” Proc. SIGMOD
Record, vol. 22, no. 3, pp. 23-30, Sept. 1993.

[2] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz, “Overview of
Multidatabase Transaction Management,” Very Large Databases |.,
vol. 1, no. 2, pp. 181-239, Oct. 1992.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman., Concurrency
Control and Recovery in Databases Systems. Addison-Wesley
Publishing, 1987.

[4] B.R. Badrinath and K. Ramamritham, “Semantics-Based Concur-
rency Control: Beyond Commutativity,” ACM Trans. Database
Systems, vol. 17, no. 1, pp. 163-199, Mar. 1992.

[5] Y. Breitbart and A. Silberschatz, “Multidatabase Update Issues,”
Proc. ACM SIGMOD Conf. Management of Data, pp. 135-142, June
1988.

[6] Y. Breitbart, A. Silberschatz, and G. Thompson, “Reliable
Transaction Management in a Multidatabase System,” Proc.
ACM SIGMOD Conf. Management of Data,” pp. 215-224, May 1990.

[7] B. Bhargava and A. Zhang, “Scheduling with Compensation in
Multidatabase Systems,” Proc. Third Int’l Conf. System Integration,
1994.

[8] U.Dayal, M. Hsu, and R. Ladin, “A Transactional Model for Long-
Running Activities,” Proc. 17th Very Large Databases, pp. 113-122,
1991.

[9] A.Elmagarmid and W. Du, “A Paradigm for Concurrency Control
in Heterogeneous Distributed Database Systems,” Proc. Sixth Int’l
Conf. Data Eng., Feb. 1990.

[10] AK. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz, “A
Multidatabase Transaction Model for InterBase,” Proc. 16th Int’l
Conf. Very Large Data Bases, pp. 507-581, Aug. 1990.

[11] H. Garcia-Molina, “Using Semantic Knowledge for Transaction
Processing in a Distributed Database,” ACM Trans. Database
Systems,” vol. 8, no. 2, pp. 186-213, June 1983.

[12] H. Garcia-Molina and B. Kogan, “Node Autonomy in Distributed
Systems” Proc. First Int’l Symp. Databases for Parallel and Distributed
Systems, pp. 158-166, Dec. 1988.

[13] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth, “On Serial-
izability of Multidatabase Transactions through Forced Local
Conflicts,” Proc. Seventh Int’l. Conf. Data Eng., pp. 314-323, Apr.
1991.

450

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(23]

[26]

[27]

(28]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

H. Korth, E. Levy, and A. Silberschatz, “A Formal Approach to
Recovery by Compensating Transactions,” Proc. 16th Int’l Conf.
Very Large Data Bases, Aug. 1990.

W. Litwin, “A Multidatabase Interoperability,” IEEE Computer,
vol. 19, no. 12, pp. 10-18, Dec. 1986.

E. Levy, H. Korth, and A. Silberschatz, “A Theory of Relaxed
Atomicity,” Proc. ACM SIGACT-SIGOPS Symp. Principles of
Distributed Computing, Aug. 1991.

E. Levy, H. Korth, and A. Silberschatz, “An Optimistic Commit
Protocol for Distributed Transaction Management,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, May 1991.

P. Muth and T.C. Rakow, “Atomic Commitment for Integrated
Database Systems,” Proc Seventh Int’l Conf. Data Eng., pp. 296-304,
Apr. 1991.

S. Mehrotra, R. Rastogi, Y. Breitbart, H.F. Korth, and A.
Silberschatz, “The Concurrency Control Problem in Multidata-
bases: Characteristics and Solutions,” Proc. ACM SIGMOD Conf.
Management of Data, pp. 288-297, 1992.

S. Mehrotra, R. Rastogi, H.F. Korth, and A. Silberschatz, “A
Transaction Model for Multidatabase Systems,” Proc. Int'l Conf.
Distributed Computing Systems, June 1992.

C. Pu, “Superdatabases for Composition of Heterogeneous
Databases,” Proc. Int'l Conf. Data Eng., pp. 548-555, Feb. 1988.

N. Soparkar, H.F. Korth, and A. Siberschatz, “Failure-Resilient
Transaction Management in Multidatabases,” Computer, vol. 24,
no.12, pp. 28-36, Dec. 1991.

A. Sheth and M. Rusinkiewicz, “On Transaction Workflows,”
IEEE Data Eng. Bull., vol. 16, no. 2, 1993.

A. Silberschatz, M. Stonebraker, and J. Ullman, “Database
Systems: Achievements and Opportunities,” Comm. ACM, vol. 34,
no. 10, pp. 110-120, 1991.

J. Veijalainen, Transaction Concepts in Autonomous Database
Environments. R. Oldenbourg. Germany, Verlag. 1990.

J. Veijalainen and A. Wolski, “Prepare and Commit Certification
for Decentralized Transaction Management in Rigorous Hetero-
geneous Multidatabases,” Proc. Conf. Data Eng., 1992.

A. Zhang and A. Elmagarmid, “A Theory of Global Concurrency
Control in Multidatabase Systems,” Very Large Databases]., vol. 2
no. 3, pp. 331-359, July 1993.

A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres, “Atomicity
for Flexible Transactions in Multidatabase Systems,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 67-78, May 1994.

Aidong Zhang received the PhD degree in
computer science from Purdue University, West
Lafayette, Indiana, in 1994. She is an associate
professor in the Department of Computer
Science and Engineering, at State University of
New York at Buffalo. Her current research
interests include geographical information sys-
tems, distributed database systems, multimedia
database systems, educational digital libraries,

. and content-based image retrieval. She serves
on the edltorlal boards of the International Journal of Multimedia Tools
and Applications, International Journal of Distributed and Parallel
Databases, and ACM SIGMOD DiSC (Digital Symposium Collection).
She has also served on various conference program committees. Dr.
Zhang is a recipient of the National Science Foundation CAREER
award.

Marian Nodine received the SB and SM from
MIT in 1981 and the PhD from Brown University
in 1993. Prior to coming to MCC, she worked as
a postdoctoral research associate and an
adjunct assistant professor at Brown University.
She has been a member of the MCC InfoSleuth
project since 1996, and is one of its technical
leads. Her focus area is in agents for information
retrieval, and agent system architectures. Her
primary areas of interest included object-or-
iented query optimization and advanced database transaction models.
She also worked at BBN in data communication and internet monitoring
and management. She has published more than 15 papers in journals,
conferences, and books. She is a member of the ACM.

Bharat Bhargava (F’'96) received the BE from
Indiana Institute of Science, the MS and PhD
degrees in electrical engineering from Purdue
University. He is professor of computer science
at Purdue University. Dr. Bhargava’s research
involves both theoretical and experimental stu-
dies in transaction processing in distributed
systems. His research group has implemented
a robust and adaptable distributed database
system called RAID, to conduct experiments in
large scale distributed systems, communications, and adaptable video
conferencing system using the NV system from Xerox Parc. He is
conducting experiments with research issues in large scale commu-
nications networks to support emerging applications such as digital work
on a model for adaptability. Dr. Bhargava is on the editorial board of two
international journals. He founded and served on the committee of many
IEEE conferences. He is a fellow in the IEEE and IETE. He has been
awarded the Gold Core charter member distinction by the IEEE
Computer Society for his distinguished service. He received the
Outstanding Instructor award from the Purdue chapter of the ACM in
1996 and 1998. He received the IEEE Computer Society’s Technical
Achievement award in 1999.

> For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

