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1. INTRODUCTION 

SDD-1 is a prototype distributed database system being designed and imple- 
mented at Computer Corporation of America. The system is designed to support 
databases that can be physically distributed with arbitrary redundancy over a 
network of hundreds of sites, while keeping data distribution and data redundancy 
invisible to the user. A principal problem of implementing systems of this type is 
maintaining the consistency of the database while concurrent user transactions 
attempt to update it. The concurrency control mechanism that SDD-1 uses to 
overcome this problem is the subject of this paper. 

2. LITERATURE REVIEW 

The concurrency control problem in database systems has been a major research 
focus for some time. In centralized database management systems (DBMSs), the 
conventional method to control concurrent update activity is two-phase locking 
[9]. Two-phase locking requires that every transaction 
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(1) lock the data it reads and writes before it actually accesses them, and 
(2) not obtain any new locks after it has released a lock. 

Once a data item is locked, no other transaction may lock that data item until 
the owner of that lock releases it. Research into locking-based concurrency 
controls has analyzed deadlock problems, logical locks described by predicates 
(instead of by data item names), granularity of locks, and efficient locking 
algorithms [7, 9, 11, 13, 181. 

Locking methods have also been proposed for distributed DBMSs. One tech- 
nique, called primary-site, uses a central lock controller to manage the locks [l]. 
Alternatively, locks can be distributed with the data. In theprimary copy method, 
a primary copy of each redundantly stored file is designated, and only the primary 
copy is locked [23]. A centralized deadlock detector resolves distributed deadlock. 
Locks are also distributed in the method of [19, 221, but distributed deadlock 
detection is avoided by using timestamps to resolve locking conflicts. A method 
that avoids locks entirely is the majority consensus algorithm, in which sites 
“vote” on update requests to resolve conflicts [24]; however, the amount of 
concurrency attained here is the same as locking [6]. Another method, which 
uses timestamped versions, is described in [17]. A survey of distributed concur- 
rency control methods appears in [3]. 

These distributed locking approaches are quite similar to centralized concur- 
rency controls. However, these mechanisms do differ from centralized schemes in 
one respect-the possibility of asynchronous failures of sites and communication 
links while an update is in the midst of being processed. Many of the proposed 
distributed concurrency controls have concentrated on this problem of failure 
(e.g., [l, 15, 23, 241). 

The concurrency control mechanism of SDD-1 differs from all of the above 
mechanisms in at least one way. In SDD-1, information about how transactions 
can conflict is preanalyzed before the transactions are submitted. This preanalysis 
step determines the amount of run-time synchronization required; in many cases, 
preanalysis shows that very little run-time synchronization is needed. Preanalysis 
is the heart of the SDD-1 concurrency control and is the main topic of this paper. 
Also, the run-time synchronization mechanisms of SDD-1, which differ consid- 
erably from locking, are discussed. An early restricted version of the SDD-1 
concurrency control appears in [5]. 

This paper is organized in 15 sections. We begin, in Section 3, with a review of 
those aspects of SDD-1 architecture that impact concurrency control. Section 4 
defines correctness for a concurrency control mechanism. Then, in Sections 5 and 
6, we discuss two important techniques on which the SDD-1 concurrency control 
is based: timestamps and transaction classes. Sections 7 through 10 develop the 
preanalysis technique. An overview of the mathematics used in preanalysis has 
been isolated in Section 9 and can be skipped without loss of continuity. Sections 
11 and 13 describe implementation aspects of the mechanism, and Section 12 
describes a special protocol for transactions that would otherwise induce tremen- 
dous synchronization overhead. In Section 14 we discuss the reliability aspects of 
the implementation. We conclude in Section 15 with a summary of the advantages 
of our method. 

The concepts and mechanisms of SDD-1 concurrency control are complex, and 
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therefore their correctness is not obvious. In a companion paper [4], we produce 
a formal model of the concurrency control mechanism and prove that it does 
indeed work correctly. 

3. REVIEW OF SDD-1 ARCHITECTURE 

The architecture of SDD-1 is described in [20,21]. We review here those aspects 
of the architecture that are needed for understanding the concurrency control 
mechanism. 

A user of SDD-1 sees a conventional DBMS. The logical database is expressed 
in a relational data model which from the viewpoint of the user’s transaction is 
nonredundant and nondistributed. Issues that are consequences of physical data 
distribution and redundancy are entirely handled by the system and are visible 
to the user transaction only insofar as they affect performance. Transactions are 
expressed as a program written in a semiprocedural data manipulation language 
called Datalanguage [8]. 

Internally, SDD-1 consists of two types of modules, called transaction modules 
(TMs) and data modules (DMs). Each site can contain either one or both types 
of modules. DMs store physical data and behave much like conventional nondis- 
tributed DBMSs. TMs are responsible for supervising the execution of user 
transactions, translating from the user’s nondistributed view of the data to the 
realities of its distribution and redundancy. 

For purposes of concurrency control the important messages processed by DMs 
are READ and WRITE messages. A READ message is a request by a TM to 
read some of the data items stored at a DM and to store them in a local workspace 
at that DM on behalf of some transaction. A WRITE message is sent by a TM to 
a DM to report updates produced by a transaction which the TM supervised. 
Each DM performs READS and WRITES as atomic operations. This means, for 
example, that none of the data read by a READ message can be updated by any 
WRITE during the time the READ is being processed. 

The basic unit of user computation in SDD-1 is the transaction. A transaction 
essentially corresponds to a program in a high-level host language with several 
data manipulation language statements sprinkled within it. The execution of each 
transaction is supervised by a TM and proceeds in three phases called read, 
execute, and write. 

In the read phase, SDD-1 analyzes the transaction to determine which portions 
of the (logical) database it reads, called its read-set. Since the transaction is 
coded in terms of the logical database, and since the physical database in general 
has redundant copies of many logical data items, the TM must choose which 
copies of the read-set will be read. It reads this copy of the read-set into a private 
distributed workspace by sending READ messages to those DMs at which the 
selected copies are stored. When all READ messages have been processed (i.e., 
when the TM has received positive acknowledgments from all the DMs), the read 
phase is complete. 

During the read phase a TM sends at most one READ message to each DM on 
behalf of a single transaction. If, for example, a transaction reads data from two 
data items that reside at the same DM, then only one READ message is issued 
to read both data items. 

During the execute phase the TM supervises the execution of the transaction. 
ACM Transactions on Database Systems, Vol. 5. No. 1, March 1980. 
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This function of the TM is performed by the access planner and is described in 
[lo, 251. Since the concurrency control mechanism in the read phase guarantees 
that the physical read-set obtained by READ messages is internally consistent, 
the transaction will produce correct output. The output of this phase is a list of 
data items to be written into the database or displayed to the user. This output 
list is produced in a workspace, not the permanent database. When the output 
list is constructed and the transaction terminates, the execute phase is complete. 

In the write phase, the output list produced by the transaction is broadcast to 
the “relevant” DMs as WRITE messages. A DM is relevant if it contains a 
physical copy of some logical data item that is referenced in (i.e., updated by) the 
output list. So each update to a logical data item, say x, is sent to all DMs that 
have a stored copy of x. Aspects of resiliency to failure are handled in this phase. 

Since each transaction produces (at most) one output list, and since that output 
list is sent to each relevant DM as a single WRITE message, all of a transaction’s 
updates are performed atomically at each individual DM. Since each TM sends 
at most one READ message to each DM on behalf of a single transaction, this 
means that each READ message only reads data produced by complete trans- 
actions. It is the job of the concurrency control mechanism to guarantee (among 
other things) that READ messages which are sent on behalf of a single transaction 
and which are processed at different DMs all read data produced by the same set 
of complete transactions. 

4. CONCURRENT CORRECTNESS 

The system usually has many transactions in progress at any one time, both 
because there are multiple TMs operating concurrently within the system and 
because individual TMs are processing transactions concurrently. If the READS 
and WRITES that implement these transactions were arbitrarily interleaved, 
then serious problems of database consistency could result. The usual method of 
avoiding these consistency problems is by guaranteeing that the execution of 
transactions is serializable [9, 16, 191. 

We say that an interleaved execution of a set of transactions is serializable if 
it is “equivalent” to a history of operation in which each of the transactions runs 
alone to completion before the next one begins. Two executions are equivalent if 
in both executions each transaction produces the same output, thereby leading to 
the same final state of the database. That is, an interleaved execution is,serializ- 
able if it can be reproduced by a noninterleaved (i.e., serial) execution of the same 
set of transactions. Note that serializability requires only that there exist some 
serial order equivalent to the actual interleaved execution. There may in fact be 
several such equivalent serial brderings. 

The adoption of serializability as the criterion for concurrent correctness is 
based on the assumption that each user transaction will preserve database 
consistency if it runs atomically. That is, if only one transaction is allowed to 
execute at a time, and if the database state is initially consistent, then after 
executing a transaction the database state must still be consistent. So, a serial 
ordering of transaction executions will, by induction, result in a consistent 
database state. Since a serializable execution is equivalent to some serial one, a 
serializable execution results in a consistent database state as well. 

The issue of serializability arises because a system’s atomic actions are at a 
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finer granularity than its users’ atomic actions. In SDD-1, the users’ atomic 
actions are transactions, while the system’s atomic actions are the execution of 
READ and WRITE messages at the DMs. When a system allows the execution 
of several transactions at the same time, then the system’s operations correspond- 
ing to different transactions are interleaved. If the interleaving is not controlled, 
there is no guarantee that the behavior of such a system conforms to the user’s 
expectation that each transaction is processed as an indivisible computation. 

For example, assume there is a single copy of data item x, which initially has 
the value x = 0. There are two transactions in the system; transaction i sets 
x := x + 1, and transaction j sets x := x + 2. The following sequence of events 
occurs: 

transaction i reads x = 0; 
transaction j reads x = 0; 
transaction j sets x := 2; 
transaction i sets x := 1. 

Any serial execution of the two transactions, one after the other, would have 
resulted in setting x to 3. However, the result of this interleaved execution is to 
set x to 1, contrary to the user’s intention. This execution history is not serializ- 
able, since no serial processing of these transactions can produce the observed 
effects. 

To guarantee serializability in SDD-1, we apparently need to avoid undesirable 
interleavings of READ and WRITE messages-those that lead to nonserializable 
executions. We accomplish this goal using two mechanisms. First, we examine 
each transaction to determine if it is conceivable that it could participate in a 
nonserializable execution. As we will see, many transactions will never produce 
READS and WRITES that interleave badly with other transactions, and hence 
they can be run unsynchronized. Second, for those transactions that are deter- 
mined to be dangerous because they can participate in nonserializable executions, 
we synchronize their READ and WRITE messages using protocols that avoid 
undesirable interleavings. These protocols are based on a timestamping mecha- 
nism and are quite different from the locking protocols used in conventional 
centralized DBMSs. 

As we will see, most of the effort in distinguishing transactions that require no 
synchronization from the dangerous ones is done statically when the database is 
designed. When a transaction is actually submitted, a simple local table look-up 
is sufficient to determine how much, if any, synchronization is required. The run- 
time mechanism is the collection of protocols that must be invoked for those 
transactions that do require synchronization. 

Note that these two components of the concurrency control mechanism are 
independent. Our technique for analyzing transactions to determine sources of 
nonserializability could be used in conjunction with conventional locking proto- 
cols. Or we could run all transactions using our timestamp-based protocols and 
ignore the preanalysis step entirely, as in present systems that use locking without 
preanalysis. Together the two mechanisms provide a powerful technique for 
synchronizing concurrent transactions at low cost. 

Before describing the heart of the system-the method for determining the 
amount of synchronization required by each transaction and the protocols that 

ACM Transactions on Database Systems, Vol. 5, No. 1, March 1980. 



Concurrency Control in a System for Distributed Databases 23 

effect that synchronization-we must first describe two basic concepts that 
underlie much of the concurrency control mechanism. These concepts, time- 
stamps and transaction classes, are described in the next two sections. 

5. TIMESTAMPS 

Each transaction i executed by SDD-1 is assigned a globally unique timestamp, 
denoted TSi, by its TM before READ messages are broadcast on its behalf. 
Transaction timestamps serve a number of purposes for synchronizing READS 
and WRITES. To generate globally unique timestamps, a TM reads its local clock 
and appends its unique TM number as the low-order bits of the timestamps. By 
requiring that once a clock is read it cannot be read again until it has been 
incremented, we ensure that every timestamp is globally unique within the system 
r241. 

The clocks are actually maintained as part of the Reliable Network, the reliable 
communications facility of SDD-1. By using the clock synchronization method 
described in [14], the system behaves as if there were a single virtual clock 
available to all sites. 

One use of timestamps is in processing WRITE messages that arrive at a DM 
out of order. The problem is that the WRITE messages sent by two transactions 
that update the same logical data item may be processed in different orders at 
different DMs, thereby producing mutually inconsistent copies of the data item. 
One way to solve this problem is to attach the transaction’s timestamp to all of 
its WRITE messages and then require that WRITE messages be processed in 
timestamp order at all DMs. A better method that gives more flexibility to DMs 
in the processing of WRITE messages uses timestamped data items and is 
adopted in SDD-1 (this method was originally suggested in [24]). 

A transaction’s timestamp is carried on all of its WRITE messages. In addition, 
every physical data item at every DM has an associated timestamp. Note that 
timestamps are attached to physical data items; there may be many physical 
copies of a logical data item, and each one has its own attached timestamp. The 
timestamp of a data item is the timestamp of the last WRITE message that 
updated it. Each DM processes WRITE messages according to the following 
WRITE message rule: A data item is updated by a WRITE message if and only 
if the data item’s timestamp is less than the WRITE message’s timestamp. 
(Recall that a WRITE message contains the final values of data items, not 
computations to be performed on them.) So to process a data item in a WRITE 
message, the DM compares the timestamp of the WRITE message with the 
timestamp of its stored copy of the data item. If the timestamp of the WRITE 
message exceeds the timestamp of the stored data item, then the new value of 
the data item in the WRITE message is written into the stored data item along 
with the new timestamp. Otherwise, the update is not performed on that stored 
data item. This is a data item by data item check; some data items in the WRITE 
message may result in update operations, while others may not. 

Whenever a WRITE message for a recent transaction that updates some data 
item is processed at a DM before a WRITE message for an earlier (i.e., older) 
transaction that updates the same data item, the latter WRITE message will 
contain a data item update that is not performed. Such a situation is not an error. 
It is simply the way that the system reorders updates to occur in the same order 
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that their generating transactions executed. That is, the net effect of a set of 
WRITE messages processed at a DM in arbitrary order is the same as the effect 
of processing them in timestamp order without the WRITE message rule. 

The principal advantage of using the WRITE message rule is that WRITE 
messages can be processed as soon as they are received, thereby avoiding artificial 
queuing delays at the DMs. However, since later WRITES may be processed 
before earlier ones, a database copy may be temporarily inconsistent. As we will 
see, the concurrency control never permits a transaction to read such an incon- 
sistent state if this could lead to incorrect results. 

Note that the WRITE message rule reorders updates into timestamp order 
even if clocks in different TMs are not synchronized. All other timestamp-related 
mechanisms in SDD-1 also operate correctly with unsynchronized clocks. For 
reasons of efficiency, however, it is necessary to assume that clock values in 
different TMs are reasonably close to each other. 

A principal objection to timestamped data items is their cost. However, not all 
timestamps actually need to be stored. If the timestamp of a data item is earlier 
than the timestamp of any transaction whose WRITE messages have not yet 
been processed, then the data item’s timestamp is effectively zero. Any WRITE 
message that tries to update that data item will succeed, because the WRITE 
message will have a later timestamp than the data item. So we need only maintain 
the timestamps of recently updated data items. If a data item is not updated for 
a while (say a few minutes), then its timestamp can be assumed to be zero and 
therefore dropped. A caching mechanism for timestamps using differential files 
has been designed for this purpose. Using this mechanism, we judge that the 
overhead in maintaining timestamps will be small, since only a small portion of 
the data items will require their timestamps to be stored in the cache at any 
given time. 

6. TRANSACTION CLASSES 

A crucial aspect of the SDD-1 concurrency control mechanism is its ability to 
distinguish between transactions that require synchronization and those that do 
not. By examining the read-set and write-set of transactions, the system can 
determine which transactions conflict with each other. Intuitively, two transac- 
tions conflict if the read-set or write-set of one intersects the write-set of the 
other. Such conflicts can lead to nonserializability under certain interleavings of 
READS and WRITES. Such nonserializable interleavings are avoided in conven- 
tional DBMSs by locking data items so that two conflicting transactions never 
run concurrently. However, synchronizing all conflicting READS and WRITES 
is more than what is required to guarantee serializability. By analyzing a graph- 
theoretic representation of the transactions, called a conflict graph, the system 
can isolate the dangerous conflicts that can potentially lead to nonserializability. 
This analysis technique is described in detail later in the paper. 

Unfortunately, analyzing the conflict graph at run-time for all executing trans- 
actions is too time consuming. Also, since the transactions are distributed at run- 
time, assembling a conflict graph would require too much communication. So we 
transform this run-time analysis into a static analysis done only once at database 
design time by capitalizing on the predictability of transaction types in the 
following way. 
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Relation Schema: INVENTORY (ITEM#, DESCRIPTION, PRICE, 
QUANTITY) 

Class 1 
TM: TM1 
read-set: INVENTORY [ITEM#, PRICE] 
write-set: INVENTORY [PRICE] 
comments: transactions that update prices 

Class 2 
TM: TM2 
read-set: INVENTORY [ITEM#, QUANTITY] 

WHERE (PRICE > $100) 
write-set: INVENTORY [QUANTITY] 
comments: transactions that update quantities of 

high-priced items 

Class 3 
TM: TM2 
read-set: INVENTORY [ITEM#, DESCRIPTION, PRICE] 

WHERE (QUANTITY > 0) 
write-set: user’s terminal 
comments: transactions that display item information 

about items currently in stock 

Fig. 1. Class definitions using simple predicates. 

When designing the database, the database administrator establishes a static 
set of transaction classes. Formally, each transaction class is defined by a logical 
read-set and write-set and is assigned to run at a particular TM. A transaction 
fits in a class if the read-set and write-set of the transaction are contained 
(respectively) in the read-set and write-set of the class. Clearly, a transaction can 
fit in many classes. Read-set and write-set definitions are expressed using simple 
restrictions,’ so that class membership can be checked quickly (see Figure 1). 

Note that two classes at different TMs can have identical read-sets and write- 
sets. However, it is important that they be distinguished as separate classes, and 
that they be analyzed as separate classes during conflict graph analysis. 

The conflict graph analysis is now done on the statically defined transaction 
classes instead of on the transactions themselves. This analysis yields the type of 
synchronization, if any, required for each class. At run-time, when a transaction 
is submitted to a TM, the TM selects a class in which the transaction,fits and 
applies the type of synchronization specified by the analysis for that class. 

The utility of classes lies in the property that two transactions that run in 
different classes conflict only jf their classes conflict.2 Hence, conflicts between 
transactions can be determined by conflicts between classes. So an analysis of the 
classes at database design time is sufficient to determine potentially dangerous 
conflicts between transactions at run time. We believe that for many kinds of 
applications, the most frequent determination will be that the class participates 
in no dangerous conflicts and can therefore run with only local synchronization. 

’ A simple restriction is a Boolean expression whose clauses are of the form (attribute) (rel-op) 
(constant), where (rel-op) is =, #, <, >, etc. 
*Of course, transactions within a class may also conflict. Section 7 shows how to synchronize 
transactions within a class. 
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Do Forever; 
Wait for a transaction, T, to arrive; 
Find a class, C, in which T fits; 
If C cannot be processed locally 

then forward 2’ to a site that can process C 
else begin 

look up the synchronization rules for class C, 
send out appropriate READ messages on 

behalf of T, synchronizing where necessary; 
supervise the distributed execution of T; 
send out WRITE messages on behalf of T 
end 

end 

Fig. 2. How a TM processes a transaction. 

For a set of class definitions to be feasible, it must cover all transactions that 
might ever be submitted. It is not necessary that every TM have enough classes 
to accept all possible transactions, since a TM can forward a transaction to some 
other TM for execution. However, it is necessary that every possible transaction 
fit in a class supported by some TM. A sketch of how a transaction is routed and 
executed by TMs appears in Figure 2. 

7. SYNCHRONIZING TRANSACTIONS WITHIN A CLASS 

To ensure the serializability of transactions which execute in the same class, we 
require that conflicting transactions within a class be executed in timestamp 
order. To formalize this requirement, some notation is helpful. Let the processing 
of a READ message on behalf of transaction i at DM, be denoted Rb.3 Similarly, 
let the processing of a WRITE message on behalf of transaction i at DM, be 
denoted Wz. Then we can express the requirement that transactions within a 
class run serially as follows: 

Class Pipelining Rule. For each DM,, for each class i, and for each pair of 
transactions il and iz in i, if il reads some data item x at DM, and iZ writes into x 
at DM,, then Ri is processed before Wi if and only if TSi, < TSk (i.e., il has an 
earlier timestamp than i2). 

The class pipelining rule is sufficient to guarantee that the transactions within 
a single class are serializable. This follows from the fact that a serial execution of 
the transactions in a class in timestamp order is equivalent to an execution that 
obeys the class pipelining rule. 

The class pipelining rule, although stated in terms of DMs, is actually enforced 
by mechanisms at both TMs and DMs. For each class that a TM processes, the 
messages from that class are sent to each DM in an order that is consistent with 
the pipelining rule. The communications network (ARPANET, in our case) 
guarantees that messages are received in the order that they were sent, for any 
point-to-point communications channel. The DMs process messages within a 
class in the order in which they are received, thereby enforcing the pipelining 
rule. 

3 We use lowercase Greek letters to denote DMs. We use lowercase Roman letters i, j, k, . . . to denote 
transactions. We denote the class in which transaction i executes by i. 
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8. INTERCLASS INTERFERENCE 

8.1 An Example of Safe Interference 

We say that a set of transactions interferes if the system allows the transactions 
to be interleaved in a nonserializable manner. Given the class pipelining rule, we 
need not be concerned with interference among transactions in the same class. 
The problem now is to avoid interference among transactions in different classes. 
A critical aspect of our solution to this problem is isolating those cases where 
transactions in different classes never interfere with each other. This requires 
some subtlety, for even when transactions read and write the same data items, 
they may not interfere, as illustrated by the following simple example. 

Suppose we run two transactions, say i and j, in two different classes, i and j. 
Transaction i first finds the EMPLOYEE record whose NAME domain has the 
value “JAMES BOND,” and then writes a new value into the PHONE# domain 
of that record. Transaction j finds the EMPLOYEE record whose SOC-SEC# 
domain is 007 (which is JAMES BOND’s SOC-SEC#) and writes a new value 
into the PHONE# domain of that record, different from the PHONE# written 
by i. Naturally, the final value of JAMES BOND’s PHONE#, after both trans- 
actions execute, is dependent on the order in which their write operations were 
processed. However, no matter how their read and write operations are inter- 
leaved, the execution will be serializable. The transactions wilI always appear to 
have executed serially with the order of their writes determining the order of the 
transactions in the serialization; the first transaction that writes JAMES BOND’s 
PHONE# appears first in the serialization. Therefore, even though the transac- 
tions have overlapping write-sets-a situation that conventionally requires lock- 
ing-no synchronization is necessary. 

To exploit situations where no synchronization is required, we must determine 
if unsafe patterns of interleaved reads and writes are possible. This determination 
is accomplished by analyzing conflicts between transaction classes. For example, 
an analysis of classes i and j above would show that all patterns of interleaved 
reads and writes are serializable. This analysis is performed on a graph-theoretic 
representation of transaction conflicts and is the subject of the next section. 

8.2 Conflict Graphs 

As we observed in Section 6, two transactions from different classes conflict only 
if their classes conflict. To formalize this, we say that WRITE message WL 
conflicts with a READ message R’, iff transaction i’s write-set intersects trans- 
action j’s read-set. A WRITE message Wb conflicts with another WRITE message 
Wd iff transaction i’s write-set intersects transaction j’s write-set. It follows that if 
Rh conflicts with Wh, then the read-set of class i intersects the write-set of class 
j. By examining class conflicts, we can predict potential transaction conflicts, 
which are a primary component of the serializability problem. It will turn out 
that this examination of class conflict will lead us to our goal-a method for 
determining the amount of synchronization required by each transaction. 

The method begins with the construction of a conflict graph (see Figure 3). In 
the graph, each class, say i, is modeled by two nodes labeled r’ and wi. For each 
class i an edge (ri, wi), called a vertical edge, is drawn [Figure 3(a)]. When the 
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(b) 

Fig. 3. Conflict graph edges. (a) A vertical edge ia drawn between 
every (ri, w’) pair. (b) A horizontal edge is drawn between a 

(w’, WI) pair iff the write-sets of i and j intersect. (c) A diagonal 
edge ia drawn between an (ri, w’) pair iff the read-set of i 

intersects the write-set of j. 

write-sets of two classes, say i and j, intersect, then an edge (wit wj), called a 
horizontal edge, is drawn [Figure 3(b)]. Similarly, if the read-set of one class (say 
i), intersects the write-set of another class (say j), then an edge (ri, w’), called a 
diagonal edge, is drawn [Figure 3(c)]. 

For a given set of classes, C, we denote the conflict graph for C by CGc. A 
sample conflict graph appears in Figure 4. 

We will use the conflict graph to help us predict the amount of synchronization 
required by each transaction class. The connection between synchronization 
protocols and conflict graphs is developed in Section 9. Since this development is 
lengthy and may not be of interest to all readers, we summarize the principal 
results of Section 9 in Section 10. Hence, if desired, Section 9 can be skipped 
without loss of continuity. 

9. CONFLICT GRAPH ANALYSIS 

9.1 Serializing Logs 

Depending on the order in which READ and WRITE messages are processed by 
the system, an interleaved execution of transactions may or may not be serializ- 
able. To understand which message orderings are serializable, we need a notation 
that models these orderings. In our notation we represent the ordered processing 
of READ and WRITE messages at a DM by a log. A log is simply a string of R’s 
and W’s that have the same DM subscript. For example, R~W~W~R~W~R~ is a 
log describing the order in which READ and WRITE messages were processed 
at DM,. When we say, for example, that RL precedeswid (in DM,‘s log), we mean 
that Ri was processed before Wd at DM,. 

A log is a complete representation of the computations performed on the 
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Fig. 4. A sample conflict graph. 

database at a DM. If we were to be given the list of data items read by each 
READ message and written by each WRITE message, as well as the timestamps 
of transactions (so that we could correctly apply the WRITE message rule), then 
we would be able to reproduce the computation that was actually performed at 
the DM. So an “interleaved execution of transactions” in SDD-1 is modeled by 
a “collection of DM logs, one per DM.” We therefore use these two terms 
interchangeably. 

Suppose we are given an interleaved execution of N transactions, represented 
by a set of DM logs. Which of the N! possible serializations of the transactions is 
an equivalent serialization of the given logs? A serialization is equivalent to the 
given logs if that serial execution of the transactions on a nondistributed, 
nonredundant database (represented by the serialization) produces the same 
computation as the interleaved execution on the distributed, redundant database 
(represented by the DM logs). It is a theorem that if each transaction reads 
from a database that has had exactly the same write operations applied to it in 
the serialization as were applied to it in the given interleaved execution, then 
each transaction will perform the same computation in the serialization as it 
did in the given interleaved execution [16]. We can guarantee this condition by 
requiring that the serialization satisfy the following three rules. For each i, j, and 
DM,: 

(1) If WL precedes and conflicts with R’,, then i must precede j in the serialization. 
(2) If R$ precedes and conflicts with Wa, then j must precede i in the serialization. 
(3) If Wh conflicts with Wi, then i and j must appear in the serialization in their 

timestamp order. 

If the serialization obeys rules (1) and (2), then write operations in the 
serialization precede exactly the same read operations as they did in the given 
interleaved execution. However, this is not the same as saying that each trans- 
action reads from a database.that has had exactly the same write operations 
applied to it in the serialization as were applied to it in the given execution. The 
reason is that owing to the WRITE message rule, the order in which WRITE 
messages are processed is not the same as the effective order in which the write 
operations are applied to the database; indeed, some write operations are not 
applied at all. To understand this distinction is to understand the need for 
rule (3). 

In the logs, the WRITE message rule prevents certain write operations from 
being applied; this occurs when a WRITE message with an early timestamp 
arrives after a WRITE message with a later timestamp and both WRITE 
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messages write into a common data item. The WRITE message rule is an artifact 
of the distributed execution of SDD-1 and would not have been applied if the 
transaction were executed serially on a nondistributed, nonredundant database. 
In essence, this means that the serialization must produce the same computation 
without the WRITE message rule that the given logs produced with the WRITE 
message rule. Rules (1) and (2) alone are not strong enough to make this 
guarantee. 

For example, suppose the log for DM, contains the subsequence WLW’,Rk 
where j has an earlier timestamp than i and the three messages either write or 
read only data item 3~. The WRITE message rule prevents Wd from overwriting 
x, so Rk reads x from WL. We want the same relative ordering ofR! and WL to 
appear in the serialization. So transaction j must either precede transaction i or 
follow transaction k in the serialization. However, the serialization [i, j, k] would 
be permitted by the rules (1) and (2) alone; this is incorrect because transaction 
k would read x from j (not i) in this serialization. 

Rule (3) guarantees that write operations in the serialization are applied in the 
same relative order as they are applied in the given logs. It “factors out” the 
WRITE message rule from the serialization by requiring the write operations to 
appear in the order in which they were effectively applied, rather than the order 
in which they were processed. 

By developing rules (l)-(3), we have related the order of conflicting READ 
and WRITE messages in DM logs to the order of transactions in serializations. 
As we know, not all interleaved executions are serializable. So, as we would 
expect, there are DM logs that have no serialization obeying rules (l)-(3). In 
principle, we could schedule READ and WRITE messages by continually check- 
ing rules (l)-(3) at run time so that the order in which READ and WRITE 
messages are processed can always be serialized. However this would be very 
costly in computation time and communication traffic. Instead, we use the conflict 
graph model of transaction conflicts to guide us in synchronizing READ and 
WRITE messages so that a serialization obeying rules (l)-(3) is always possible. 

The conflict graph is used to determine potentially nonserializable executions 
of conflicting transactions. Diagonal and horizontal edges can be used to deter- 
mine if READ and WRITE messages may conflict, leading to the following 
extension of rules (l)-(3). For each i (in i), j (in j), and DM,: 

(1’) If (wi, r’) is a diagonal edge of CG and Wb precedes Rd in DM,‘s log, then i 
must precede j in any serialization. 

(2’) If (ri, w’) is a diagonal edge of CG and RL precedes Wi in DM,‘s log, then i 
must precede j in any serialization. 

(3’) If (wi, wj) is a horizontal edge of CG, then i and j must appear in the 
serialization in their timestamp order. 

Since two transactions conflict only if their classes conflict, any serialization 
that satisfies rules (l’)-(3’) will satisfy rules (l)-(3) as well. The advantage to 
using rules (l’)-(3’) in place of rules (l)-(3) is that the former are stated entirely 
in terms of class conflicts, which are known in advance. 

In SDD-1 there is always a serialization of the executed transactions that 
satisfies rules (1’)~(3’). The mechanisms that are used to guarantee that such a 
serialization always exists are called protocols. 
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9.2 Protocol Pl and the Acyclicity Theorem 

To understand why we need protocols, let us consider a system consisting of two 
classes, say i and j, such that only one transaction is processed in each class, say 
transactions i and j. Under what conditions will these two transactions be 
serializable? If there are no horizontal or diagonal edges connecting i and j in the 
conflict graph, then rules (l’)-(3’) are trivially satisfied. In this case i and j are 
serializable; in fact, either serialization will do. What if i and j are connected by 
some edge? 

If ( wi, wj) appears in CG, and if Wl and Wi are processed (for some DM,), 
then according to rule (3’) i and j must be serialized in timestamp order. If this is 
the only edge connecting i and j, then the transactions are surely serializable. For 
example, suppose TSi < TSj; then no matter how many DMs process WRITE 
messages from both transactions, each DM will apply the WRITE message rule, 
thereby making it look as if i was processed before j. Therefore, applying rule (3’) 
at all DMs will yield the same requirement that i and j be serialized in the same 
timestamp order. The only way we could get into trouble is if one DM believes i 
should precede j in the serialization while another believes j should precede i-a 
clear impossibility using rule (3’). So if ( wi, w’) is the only edge connecting i and 
j, we are safe. 

If (ri, wj) appears in CG, then we have a potential problem. Suppose Wj, 
precedes and conflicts with Ra and Rk precedes and conflicts with Wg. Rule (1’) 
applied at DM, says that j should precede i, while rule (2’) applied at DMB says 
that i should precede j. Since both cannot be simultaneously satisfied, we have a 
nonserializable interleaving. Apparently, we must introduce some synchronization 
mechanism to avoid this problem produced by the diagonal edge. 

Protocol Pl is the mechanism used to synchronize diagonal edge conflicts. The 
effect of running transaction i under protocol Pl against transaction j is that the 
relative ordering of READ messages from i and WRITE messages from j are the 
same at all DMs where both appear and conflict. If for every diagonal edge 
(ri, wj), transaction i in i obeyed Pl against j in j, and if each class ran only a 
single transaction (and then became permanently inactive), then the nonserial- 
izable situation due to the opposite serializations consistent with rules (1’) and 
(2’) could not occur. 

However, this effect of Pl is insufficient to synchronize a diagonal edge when 
multiple transactions run in each class. To illustrate the potential problem, 
suppose i and i’ run in class i, j and j’ run in class j, and (ri, w’) is in the conflict 
graph. Consider an execution history in which 

(a) Wb precedes Rb at DM,; 
(b) Rg precedes Wi at DM,; 
(c) TSi < TS?, and W\ and WY execute at DM,; 
(d) TSj,, < TSj, and WA and WJ’ execute at DMs. 

These four properties of the execution tell us that in any serialization j must 
precede i (by property (a) and rule (l’)), i must precede i’ (by property (c) and 
rule (3’)), i’ must precede j’ (by property (b) and rule (2’)), and j’ must precede j 
(by property (d) and rule (3’)). However, this implies that j both precedes and 
follows j’ in the seriaIiza6on which is an impossibility. 
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To avoid nonserializable executions due to a diagonal edge when many trans- 
actions run in each class, we use the following definition of Pl. Transactions in 
i obey protocol PI with respect to transactions in j if for any i, i’ in i, and j, j’ in 
j, whenever Wl precedes and conflicts with Rb at DM,, and R$ precedes and 
conflicts with W$ at DMp, and either TSi < T&, or i = i’, then TSj < TSj,. We 
require that if (ri, wj) is an edge in CG, then transactions in i must obey Pl with 
respect to transactions in j. This is sufficient to prevent rules (1’) and (2’) from 
ever leading to opposite serializations of transactions in i and j, even when 
multiple transactions execute in each class [4]. 

The above observations regarding single edge conflicts between two classes 
generalize directly to paths of conflicts. Suppose there is a single edge conflict 
between i and k, and another one between k and j. Assume again that one 
transaction runs in each class, say i, j, and k. Rules (l’)-(3’) only restrict the 
order of serialization between pairs of conflicting transactions. They will either 
require that i and j have a defined relative ordering (i.e., either i precedes k and 
k precedes j, or i follows k and k follows j) or that they have no special required 
order (i.e., either i precedes k and j precedes k, or i follows k and j follows k). In 
either case the three transactions are serializable. 

The only way the transactions might not be serializable is if there were two 
differentpaths from i to j. Then one path could lead to i preceding j according to 
rules (l’)-(3’), while the other path could lead to i following j. If this occurred, 
then the execution would be nonserializable. But note that it can only occur if 
there are two distinct paths. Two distinct paths that link i to j constitute a cycle. 
So as long as there are no cycles in the conflict graph and each class runs one 
transaction, Pl is sufficient to guarantee serializability. 

The class pipelining rule guarantees that transactions within a single class are 
serializable. So the above statement about acyclic conflict graphs generalizes to 
the case of multiple transactions per class. (A proof of this fact is nontrivial and 
appears in [4].) 

Our observations in this section can now be stated more formally as follows: 

Acyclicity Theorem. For a given set of transaction classes C, if 

(1) CGc has no cycles, 
(2) all classes in C obey the class pipelining rule, and 
(3) for each diagonal edge (ri, w’) in CGc, transactions in i obey Pl with respect 

to transactions in j, 

then all possible interleaving; of transactions in classes in C are serializable. 
To make the acyclicity theorem effective, we need to demonstrate an imple- 

mentation for Pl. This we will do in Section 11. First, however, we will show how 
to synchronize nonserializable situations caused by cycles. 

9.3 Cycles, P3, and the Serializability Theorem 

We have shown that if no cycles exist in the conflict graph and if Pl is properly 
applied, then all possible interleaved executions of transactions are serializable. 
We have also observed that cycles in the conflict graph can cause a nonserializable 
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Fig. 5. A nonserializable execution caused by a cycle. Classes i and j 
have data item x in their read-sets and write-sets. (a) The conflict graph. 

(b) A nonserializable log of transactions from classes i and j. 

execution. If two distinct paths exist between two classes i and j, then the paths 
may lead to opposite serializations of transactions i in i and j in j according to 
rules (l’)-(3’)-a nonserializable situation. To eliminate this possibility, we 
introduce a protocol that forces any two paths between i and j to always lead to 
the same relative ordering of i and j in all serializations. To illustrate the problem 
and the protocol that solves it, let us consider another example. 

This time suppose that the database has one data item x stored at DM,. Classes 
i and j both read from and write into X; for example, they both run transactions 
that increment x. The conflict. graph of these classes contains two distinct edge?, 
(ri, wj) and ( wi, r’), connecting i and j. These two edges together with ( ri, w’) 
and (rj, w’) constitute a cycle (see Figure 5). The problem is that the diagonal 
edges may force opposite serializations of transactions in i and j. 

Consider, for instance, transactions i in i and j in j which execute their READ 
and WRITE messages in the following order: RbRdWh Wd (cf. example in Section 
4). Notice that Pl is trivially obeyed. Since RL precedes and conflicts with Wi , 
rule (2’) implies that i must be serialized before j. SinceR’, precedes and conflicts 
with Wb, the same rule implies that j must be serialized before i. Since both 
cannot be simultaneously satisfied, the execution is nonserializable. This occurs 
because the edges between i and j lead to opposite serializations. 

Protocol P3 prevents executions such as this one by making the following 
guarantee: If two transactions belong to two classes connected by a diagonal 
edge in a cycle, then the timestamp order of the two transactions is the same as 
the relative ordering dictated by rules (1’) or (2’) applied to the messages that 
correspond to the edge. Before examining how P3 accomplishes this task, let us 
first see how P3 corrects the above example. 

Since (r’,wj), (wj, lj), (rj, wi), (wi, r’) comprise a cycle, P3 applies to transac- 
tions i and j. Suppose the timestamp of i is smaller than the timestamp of j. We 
have observed that rule (2’) requires that i be serialized before j because RL 
precedes Wd, and that j be serialized before i because Ra precedes W b. But the 
latter requirement violates P3. Since (rj, w’) is in a cycle, protocol P3 implies 
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that rule (2’) applied to Rh and Wk must lead to the serialization of i and j in 
timestamp order. However, the opposite occurs. What P3 must do, therefore, is 
make sure that WL precedes Ri. Then both edges will lead to the serialization of 
i and j in timestamp order, and the nonserializability problem goes away. 

Formally we define protocol P3 as follows. Transactions in i obey protocol P3 
with respect to transactions in j if for each i in i, j in j, and each DM, at which 
Rk and Wh both appear and conflict, Rs and W’, are processed in timestamp 
order. We require that for each diagonal edge (ri, w’) in a cycle, transactions in 
i must obey P3 with respect to transactions in j. 

Protocol P3 synchronizes multiclass cycles as well as the simple two-class cycle 
just illustrated. In a cycle consisting of several diagonal and horizontal edges, P3 
requires that each conflict due to a diagonal edge lead to the pair of transactions 
being serialized in timestamp order. Rule (3’) makes the very same requirement 
for horizontal edges. So insofar as this cycle is concerned, if rules (l’)-(3’) say 
anything about the relative ordering of two transactions whose classes are on the 
cycle, then the requirement must be that the transactions be serialized in 
timestamp order. Since there is only one timestamp ordering of transactions, 
conflicting serialization orderings are impossible. Generalizing this observation 
for the case of multiple transactions per class as we did for the acyclic&y theorem 
leads to the correctness theorem for the SDD-1 concurrency control [4]. 

Serializability Theorem. For a given set of transaction classes C, if 

(1) all classes in C obey the class pipelining rule, and 
(2) for each diagonal edge ( ri, wj) in CGc, transactions in i obey Pl with respect 

to transactions in j, and 
(3) for each diagonal edge (ri, wj) in a cycle in CGc, transactions in i obey P3 

with respect to transactions in j, 

then all possible interleavings of transactions in classes in C are serializable. 

9.4 P2: A Faster Protocol for Read-Only Transactions 

While P3 is sufficient for synchronizing all diagonal edges in a cycle, we can do 
somewhat better with those transactions that intersect the cycle only with their 
r-nodes. These read-only transactions contribute to nonserializability only be- 
cause they may observe certain WRITE messages being processed in reverse 
timestamp order.“ Protocol P2 is a weaker version of P3 that prevents this 
situation and thereby provides a less expensive alternative for synchronizing such 
transactions. 

Let us begin by taking a slightly different view of P3. Suppose transactions i 
and j execute in classes i and j (respectively) and that i and j lie on a cycle. P3 
attains serializability by guaranteeing that i and j can be serialized in timestamp 
order. It accomplishes this by requiring that for each diagonal edge in the cycle, 
the READ and WRITE messages corresponding to the edge’s endpoints are 
processed in timestamp order. In essence, each diagonal edge in the cycle is 
individually synchronized. However, we can relax the synchronization require- 
ments somewhat, synchronizing certain pairs of edges as a unit. 

4 Strictly speaking, these transactions need not be read-only. It is just that their write operations, if 
they have any, do not participate in a conflict graph cycle. 
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To illustrate, suppose the edges (wj, r’) and (ri, wk) lie on a cycle. Since j and 
k are also connected by some other path, we must ensure that executions of reads 
and writes corresponding to this two-edge path are consistent with serializing 
transactions in j and k in timestamp order. This two-edge path will prevent a 
timestamp ordered serialization only if transaction i observes WRITE messages 
from j and k in reverse timestamp order. For example, suppose TSj < TSk. IfRb 
precedes and conflicts with Wh and Ra follows and conflicts with Wi, then from 
i’s viewpoint and according to rules (1’) and (2’), k must be serialized before i, 
which must be serialized before j. If either Rk had followed Wj, or Ri had 
preceded Ws, j and k could have been serialized in timestamp order. Protocol P2 
is designed to make precisely this guarantee, without requiring that the edge be 
synchronized as strongly as by P3. 

Transactions in i obey protocol P2 with respect to transactions in j and k if 
for any i in i, j in j, k in k, and for any (Y 

(1) if Rb precedes and conflicts with Wd and TSk > TSj, then Rb precedes Wi at 
every DM, where they both appear and conflict, and 

(2) if Rh follows and conflicts with Wd and TSj > TSk, then Rh follows Wi at 
every DMB where they both appear and conflict. 

That is, if TSj < TSk, then transaction i observes a WRITE message from 
transaction k only if it has observed all WRITE messages from transaction j, and 
conversely if TSk < TSj. Protocol P2 prevents i from observing a WRITE message 
from the later transaction unless it has observed all WRITE messages from the 
earlier one. 

Protocol P2 is strictly weaker than P3 in that if i obeys P3 with respect to j and 
k, then it obeys P2 with respect to j and k (but not conversely). Yet we can use 
it correctly for synchronizing classes which only intersect cycles with their 
r-nodes. Stated precisely, if [(w’, r’), (ri, wk)] is a subpath of a cycle, and if we 
require that transactions in i obey P2 with respect to transactions in j and k, 
then we need not synchronize these two diagonal edges using P3. That is, if we 
use P2 to synchronize edge combinations [ (wj, ri), ( ri, wk)] in cycles and use P3 
to synchronize all other diagonal edges in cycles, then the serializability theorem 
in the last section still holds. 

10. A SUMMARY OF THE PROTOCOL SELECTION RULES 

In Section 9 we have described the three basic protocols for synchronizing 
transactions and the conflict graph topologies that require the use of the protocols. 
While the analysis that leads to the protocols is somewhat complex, the rules for 
selecting the protocols are not. It is these protocol selection rules that completely 
govern the concurrency control mechanism of SDD-1. We present these rules 
here in order to summarize and encapsulate the results of Section 9 and to 
incorporate a few more details to make the statement of the rules precise. 

First, let us restate each of the three protocols. 

Protocol Pl. Transactions in i obey protocol Pl with respect to transactions in 
j if for any i, i’ in i and j, j’ in j, whenever Wi precedes Rh at DM,, and Rg 
precedes WL at DMB, and either TSi c TSi,, or i = i’, then TSj < TSj*. 
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(a) (b) 

(d 

Fig. 6. Protocol selection rules. (a) Transactions in i must obey PI with respect to 
transactions in j. (b) Transactions in i must obey P2 with respect to transactions in j 

and k. (c) Transactions in i must obey P3 with respect to transactions in j. 

Protocol P2. Transactions in i obey protocol P2 with respect to transactions in 
j and k if for any i in i, j in j, k in k, and any DMa 

(1) if Ri is processed before and conflicts with Wd and TSk > TSj, then Rb is 
processed before Wi at every DMB where they both appear and conflict, and 

(2) if Rb is processed after and conflicts with W$ and T& < TSj, then Rb is 
processed after Wi at every DMB where they both appear and conflict. 

Protocol P3. Transactions in i obey protocol P3 with respect to transactions in 
j if for each i in i, j in j, and each DM, at which Ra and Wh both appear and 
conflict, RL and Wl, are processed in timestamp order. 

Briefly, these protocols serve the following purposes: 

Pl Prevents READ messages from one transaction that conflict with WRITE 
messages from another transaction from being processed in different relative 
orders at different DMs. 

P2 Prevents a READ message from seeing WRITE messages from two other 
transactions in reverse timestamp order. 

P3 Prevents two transactions that read each other’s output from both reading 
before either writes, i.e., prevents a classical race condition. 

The protocol selection rules state which protocols should be invoked by which 
transactions. They are as follows. 

I. For all classes in i and j such that ( ri, w’) is in the conflict graph, transactions 
in i must obey protocol Pl with respect to transactions in j [see Figure 6(a)]. 

II. For each cycle in the conflict graph the following hold: 
(a) for all distinct classes i, j, k, if edges (ri, w’) and (r’, wk) lie on the cycle, 

then transactions in i must obey P2 with respect to transactions in j and 
k [see Figure 6(b)]; and 
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(b) for all distinct classes i and j such that (ri, w’) and (ri, w’) lie on the 
cycle, then transactions in i must obey P3 with respect to transactions in 
j [see Figure 6(c)]. 

The protocol selection rules are easily transformed into an algorithm that 
analyzes the conflict graph and produces the protocols that each class must obey. 
However, the definitions of the protocols are not algorithmic. To make the 
protocols effective, we now show how TMs and DMs can enforce the relative 
orderings of READ and WRITE messages required by the protocols. 

11. IMPLEMENTING THE PROTOCOLS 

11 .l Implementing Protocol Pl 

Each protocol demands that certain relative orderings of READ and WRITE 
messages be obeyed. These orderings are enforced by synchronization information 
that is carried entirely by the READ messages from i in the form of read 
conditions. 

A read condition is attached to a READ message and specifies which WRITE 
messages from certain other classes must be processed before the READ message 
can be correctly processed. The read condition includes a timestamp, say TS, and 
one or more classes, say {ji, . . . , j,}. The DM can only process the READ 
message when the attached read condition is satisfied. Read condition (TS, (jl, 
. , , , j,} ) is satisfied when all WRITE messages from classes {jl, . . . , j,} with 
timestamps earlier than TS have been processed and no WRITE messages from 
classes {jl, . . . , j,} with timestamps later than TS have been processed. Then 
the READ message can be processed. If a READ message contains multiple read 
conditions, then all of them must be simultaneously satisfied when the DM 
processes the READ. 

Before discussing the implementation of read conditions at DMs, let us first 
show how read conditions implement protocol Pl. Suppose transactions in i must 
obey Pl with respect to transactions in j. To process a transaction i in i, we select 
a timestamp TS! (not necessarily equal to the transaction’s timestamp) and 
require that the read condition (TSI, (j) ) be attached to each READ message 
sent on behalf of i to each DM at which conflicting WRITE messages from j are 
processed. In addition, we require that for any il, iZ in i, if ii has an earlier 
timestamp than iz, TSI, for i, must be earlier than TS/, for iZ. 

To see why this implementation is correct, recall the definition of Pl: Trans- 
actions in i obey Pl withrespect to transactions in j if for any i,, iz in i, and ji, j, 
in j, whenever (1) W$ precedes and conflicts withR2 at DM,, and (2) R$ precedes 
and conflicts with W$ at DMB, and (3) either TSi, < TSi, or ii = iz, then 
TSj, < TSj,. So, suppose we have ii, iZ, ji, and j, satisfying (l), (2), and (3). Let 
TS;, and TSiZ be the timestamps used on read conditions for ii and iZ. By (1) and 
read condition (TSI,, {j) ) attached to R& we have TSj, < TSI,. By (3) and the 
implementation of Pl, we have TS!, 5 TSG2. By (2) and read condition (TSL, 
{j} ), we have TS[* < TSj,. So by transitivity, TSj, < TSj, as desired. 

To effectively implement read conditions, we need a mechanism that allows a 
DM to determine when it has received all WRITE messages with timestamps 
earlier than some TS from a specified set of classes and none with later time- 
stamps from these classes. The mechanism we use is called WRITE pipelining. 
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WRITE pipelining requires that WRITE messages from each class must be 
processed in timestamp order at all DMs. That is, for each class i, for each DM,, 
and for any pair of transactions i1 and is in i, Wi is processed before Wk at DM, 
only if TSi, < TSi,. WRITE pipelining can be implemented in the same way as 
the class pipelining rule (cf. Section 7); each class sends its WRITE messages to 
all DMs in timestamp order, the network ensures messages are received in the 
order sent, and DMs process messages from each class in the order in which they 
were received. 

Given that WRITE pipelining is used, a DM can determine when a read 
condition (TS, {j} ) is satisfied. Since WRITE messages from any given class are 
processed in timestamp order at every DM, as soon as the DM receives a WRITE 
message timestamped later than TS, it knows it must hold it and process the 
READ message first. Of course, if a WRITE message from j with timestamp later 
than TS has been processed before the read condition is received, then the read 
condition cannot be satisfied without backing out the WRITE message. In 
SDD-1, no WRITE message is backed out for concurrency control reasons. So in 
this case the READ message would have to be rejected, and the originating class 
must resubmit it with a later timestamp. Notice that all READ messages on 
behalf of transaction i have to be resubmitted with a new transaction timestamp, 
since their read conditions are now obsolete. WRITE messages from the resub- 
mitted transaction carry the new timestamp. 

There is some danger that a transaction may be continually rejected. This can 
be avoided by choosing a timestamp for the resubmitted transaction such that 
the difference between the transaction timestamp and that of the previously 
submitted transaction grows with each resubmission. Eventually, the READ 
messages for the transaction will be received at all DMs before any earlier 
timestamped WRITE messages from conflicting classes. Since a DM never 
processes a WRITE message which would force the rejection of an already 
received READ message, the transaction will not be rejected in this case. In 
practice, however, choosing transaction timestamps equal to the local clock times 
will keep the number of rejections very small, as long as clocks at different sites 
are reasonably well synchronized. 

An important optimization is used when transactions in i only conflict with 
transactions in j at one DM, say DM,. In this case we avoid read conditions 
entirely by using READpipelining: READ messages from i to DM, are processed 
in order of transaction timestamps. That is, if ii has an earlier timestamp than is, 
then R: is processed before Ri. The implementation of READ pipelining is 
exactly analogous to WRITE pipelining. If transactions in i use READ pipelining 
at DM, and transactions in j use WRITE pipelining at DM,, then Pl of i with 
respect to j is obeyed. To see this, suppose Wj,l precedes and conflicts with 
R$, R$ precedes and conflicts with W$, and TSi, < TSi,. By READ pipelining, 
R$ is processed before R? and, hence, Wi is processed before Wt. Now, by 
WRITE pipelining, we have TSj, < TSj,, thereby satisfying Pl. We expect that 
most diagonal edges will correspond to single DM conflicts, SO this optimization 
will usually apply. 

When read conditions are used, a problem arises when class j is idle because it 
has no transactions to process. In this case the DM will wait for a long time until 
a WRITE message timestamped later than TS arrives. One way to solve this 
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Fig. 7. A conflict graph illustrating PI 

problem is to have idle classes periodically send NULLWRITE messages.5 A 
NULLWRITE message specifies the originating class and a timestamp and is 
interpreted as an empty WRITE message from that class with that timestamp. 
When a DM receives such a NULLWRITE message, it can be sure that it has 
received all WRITE messages from the indicated class through the given time- 
stamp. If a DM chooses not to wait passively for a WRITE or NULLWRITE 
message from j, it can request a NULLWRITE by sending a SENDNULL 
message to j. 

The choice of timestamps for read conditions and the rate at which NULL- 
WRITES are sent are important tuning parameters to avoid the frequent use of 
SENDNULLs. In addition, the choice of timestamp for read conditions a affect 

how long a READ message has to wait for conflicting WRITE messages to be 
processed. Essentially, the timestamp should be as small as possible without 
actually forcing the read condition to be rejected. 

To illustrate the operation of protocol Pl, let us consider a database that 
consists of two data items, x and y, where x is stored at DM, and y is stored at 
DMB. Class j writes both x and y, and class i reads both x and y. For definiteness, 
suppose class i runs at TMi and j runs at TMj. The conflict graph for this situation 
is shown in Figure 7. The edge (ri, w’) implies transactions in i must obey Pl 
with respect to transactions in j. 

For TMi to process a transaction, say i, it must send READ messages Rh to 
DM, and Rb to DMB. By Pl, both messages must have a read condition (TSf, 
{j} ) attached. DM, will not process Rk to read x until it has received (but not 
processed) a WRITE message or a NULLWRITE for TM1 on behalf of j with 
timestamp later than TS. DMB will behave the same way. SoRb will wait for (i.e., 
will be processed after) WRITE messages from the same set of transactions in j 
as Rb wiIl wait for. Hence, for each j in j, rules (1’) and (2’) will require the same 
serialization order for i and j at both DM, and DMB, and the result will be 
serializable. The nonserializable situation of Rh preceding Wj, but Rb following 
Wb cannot occur. 

11.2 Implementing Protocol P3 

The same read condition mechanism that we described for implementing Pl is 
sufficient for implementing P3 as well. For transaction i to obey P3 with respect 
to transactions j at DM,, Rb must be processed after all Wi with earlier 
timestamps and before all Wh with later timestamps. Attaching the read condition 
(TSi, {j} ) to Rk will force DM, to processRL according to P3; DM, will wait for 

“The use of periodic NULLWRITE messages can be avoided by use of special protocols that are 
tailored for low-frequency classes. However, their description is beyond the scope of this paper. 
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exactly those Wi with TSj < TSi. Rejected READ messages are handled exactly 
as per Pl. 

From this implementation we see immediately that protocol P3 is strictly 
stronger than protocol Pl. If transactions in i obey P3 with respect to transactions 
in j at DM,, then they obey Pl with respect to transactions in j at DM,. The 
difference between Pl and P3 is that Pl allows any timestamp to appear in the 
read condition while P3 requires that timestamp to be TSi. Also note that the 
class pipelining rule is essentially an implementation of P3; class pipelining has 
the effect of i’s obeying P3 with respect to i. 

Our earlier remarks about NULLWRITEs and SENDNULLs apply here as 
well. We noted under Pl that choosing a timestamp for the read condition was 
important to avoid lengthy delays. Since the read condition timestamp is the 
transaction’s timestamp in P3, we must be careful to run the P3 transaction as 
early as possible-early enough so that READ messages need not wait for many 
WRITE messages, but not so early as to require its being rejected. 

11.3 Implementing Prctocol P2 

As with the other protocols, P2 is implemented using read conditions. If trans- 
action i must obey P2 with respect to transactions in j and k, then it must attach 
a read condition (TS, {j, k} ) to each of its READ messages that are sent to a 
DM that processes conflicting WRITE messages from j or k. As in Pl, any 
timestamp for the read condition will do. Since some DMs will only process 
conflicting WRITE messages for either j or k (but not both), these DMs will only 
use one of the two classes in the second read condition parameter. 

If i conflicts with WRITE messages from j and k at only one DM, an interesting 
optimization is possible. Rather than specifying the timestamp TS in the read 
condition, the DM can select the timestamp itself. As long as there is some time 
TS such that all earlier WRITE messages and no later WRITE messages from j 
and k have been processed, P2 will be obeyed. However, if two or more DMs are 
involved, the timestamp must be fixed in advance because all DMs must use the 
same timestamp; they cannot choose timestamps independently. 

12. P4: A CYCLE-BREAKING PROTOCOL 

Although Pl, P2, and P3 are sufficient to guarantee serializability, from an 
efficiency standpoint these protocols have a very serious problem. The problem 
is that a single class can cause many cycles and thereby force many classes to use 
P2 and P3, even though very few transactions are ever run in that class. 

While we expect that the vast majority of transactions that we wish to execute 
are predictable and belong to predefined classes, we still want to be able to 
execute an unexpected transaction that does not fit into any of our class defini- 
tions. One way to accomplish this is to define a “very large” class, call it itoM, that 
has a read-set and write-set that include the entire logical database. Every 
conceivable transaction can fit into itotal, so this apparently solves the problem, 
But the cost is enormous, for iti,,d induces a two-class cycle with every other class 
in the system. So every class has to run P3 against itotal, and itotal has to run P3 
against every other class. Since P3 is the most expensive protocol (measured by 
the delay of the transaction obeying it), this is an unfortunate state of affairs. It 
is especially unfortunate because transactions will rarely need to execute in itotal, 
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since most transactions fit into other less expensive classes. So itotal introduces 
considerable synchronization overhead for synchronizing against a class that will 
rarely run a transaction. 

In general, any class in which transactions are only infrequently run, but which 
creates many cycles in the conflict graph, exhibits this phenomenon. Although 
the problem of proliferation of cycles is especially acute in itotal, other classes with 
smaller read-sets and write-sets may manifest the same problem. 

To alleviate these problems, we introduce a new protocol called P4, the purpose 
of which is to “break” cycles in the conflict graph. That is, if a class runs P4, then 
other classes that are in a.cycle with the P4 class can behave as if the cycle did 
not exist. 

One way to implement P4 is to shut off the system when a P4 transaction is 
introduced. No new transactions are processed, and the system works until all 
outstanding WRITE messages from transactions already in progress have been 
processed. When the system has finally quiesced, we can safely run the P4 
transaction serially. After all of the P4 transaction’s WRITE messages are 
processed, we can safely permit the system to process trailsactions again. Since 
the execution before and after the P4 transaction ran was serializable (by the 
serializability theorem) and since the P4 transaction ran serially, the entire 
execution is serializable. 

We can state the desired effect of P4 more formally as follows: Transactions in 
i obey P4 with respect to transactions in {jl, . . . , j,} if for each transaction i in 
i, j, in j,, and j, in j, (1 5 u, v % p), 

(a) if j, must precede j, in any serialization satisfying rules (l’)-(3’) and TSi 5 
TSj,,6 then TSi < TSj,; and 

(b) if j, must precede j, in any serialization satisfying rules (l’)-(3’) and TSi 2 
TSj,, then TSi > TSj,. 

To “break a cycle” in which i lies, transactions in i must obey P4 with respect 
to all classes on the cycle (including i). In this case the remaining transactions in 
the cycle need not obey P2 and P3 as would normally be required. Note that one 
need not break all cycles on which i lies; one can use P4 to break some of i’s 
cycles and use {Pl, P2, P3) as usual to synchronize the others. 

The key property of protocol P4 is summarized as follows. If transaction i obeys 
P4 with respect to transactions in {jl, . . . , j,} , then there is a serialization such 
that for each transaction j processed in one of jl, . . . , jp, j precedes i‘ in the 
serialization if and only if j’s timestamp is smaller than i’s timestamp. Thus, 
processing i under P4 has the same effect as shutting off the system when i is 
submitted, executing i, and then returning to normal operation. To see why P4 
guarantees the above property, suppose TSj < TSi but j must follow i in all 
serializations according to rules (l’)-(3’). Substituting i for j, and j for j, in part 
(a) of the definition of P4, we see that TSj > TSi, which is a contradiction. The 
inverse situation is handled by part (b) of P4. 

Implementing P4 by shutting off the system-even temporarily-is likely to be 
unacceptable because of a severe performance degradation. We can improve this 
implementation considerably by exploiting two observations. First, a P4 trans- 

’ It is possible that TSi = Tj, This occurs when i = ju and i = j, . 
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action need only synchronize against classes that lie on a cycle that includes the 
P4 class, since only classes on cycles can cause nonserializability. Second, even 
these classes need not quiesce completely before running a P4 transaction. Only 
conflicting WRITE messages must be completed before the P4 transaction 
executes and subsequently allows the other classes to resume processing. WRITE 
messages that do not conflict with READS in the same cycle cannot affect the 
ordering of transactions in the serialization according to rules (1%(3’1, and 
therefore they do not require synchronization under the definition of P4. 

The implementation of P4 differs structurally from the other protocols in two 
ways. First, P4 requires some direct communication between TMs. By this 
communication the TM supervising the P4 class requests that certain other TMs 
perform synchronization to avoid interfering with the P4 transaction.- Second, 
P4 requires an augmented form of read condition. Recall that a standard 
read condition is a pair of the form (timestamp, {classes} ). For P4, the timestamp 
may be interpreted as a “minimum time,” i.e., (mintime = timestamp, 
{classes} ). This condition is satisfied if all WRITE messages from {classes} 
timestamped less than “timestamp” have been processed. It does not require that 
no messages from {classes} timestamped greater than “timestamp” be processed 
(as in standard read conditions). The utility of mintime read conditions is 
explained shortly. 

To implement P4, we use three additional types of messages that are sent from 
TMs to TMs (not from TMs to DMs). A P4-ALERT message is sent from a TM 
supervising a P4 class to a TM supervising some other class. A P4-ALERT 
message includes the name of the P4 class and the timestamp of the P4 transaction 
as its parameters. A class responds to a P4-ALERT with either a PCACCEPT or 
a P4-REJECT. 

To run a transaction i in the P4 class i with respect to some cycle CYC, one 
performs the following P4 algorithm: 

(1) Choose a timestamp for i, say TSi. 
(2) For every class that lies on CYC, send a message P4-ALERT(i, TSi) to the 

TM supervising that class. 
(3) Wait for the P4-ACCEPTS to be received from all classes to which a P4- 

ALERT was sent. If a P4-REJECT is received, then restart the protocol from 
step (1). 

(4) Construct the READ messages for i. For each DM, and class j such that (r’, 
w’) lies on CYC and j sends WRITE messages to DM, that can conflict with 
Ri, attach the read condition (TSi, {j} ) to RL . 

When a TM receives a PCALERT(i, TSi) for a particular class, j, it performs 
the following P6ALERT algorithm: 

(1) If the TM has run or begun running a transaction in j with a timestamp 
greater than TSi, then respond to the TM supervising i by sending P4- 
REJECT. Otherwise, send P4-ACCEPT and do not run another transaction 
in j timestamped earlier than TSi. 

(2) For each DM, to which j sends a READ message and for each class k which 
sends WRITE messages to DM, and for which (r’, wk) lies on CYC, the frst 
transaction in j with timestamp greater than TSi which issues a READ 
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message to DM, must attach the read condition (mintime = TSi, (k} ) to 
Ri. These conditions are in addition to those normally carried byRb. (Note: 
Only do this step for the first transaction in j with timestamp later than TSi 
which sends a READ message to DM,.) 

The combination of P4-ALERT and the read conditions in step (4) of the P4 
algorithm are enough to guarantee that P4 is obeyed. Step (4) of the P4 algorithm 
guarantees that WRITE messages from conflicting transactions in CYC with 
timestamps earlier than i are processed before i’s READ messages. Step (2) of 
the P4-ALERT algorithm guarantees that WRITE messages from transactions 
conflicting with classes on CYC other than i and with timestamps earlier than 
TSi are processed before READ messages from conflicting transactions with 
timestamps later than TSi. This ensures that the transactions sending the WRITE 
messages can be serialized before i. P4-REJECT messages are needed in case the 
first transaction in j with timestamp later than TSi is already in progress, for 
then it is too late to attach the read condition required by step (2) of the P4- 
ALERT algorithm. The mintime read condition is sufficient because only conflict- 
ing transactions with earlier timestamps need to be processed before the first 
transaction in j; later ones can be safely processed. Together; the rules guarantee 
that transactions with earlier timestamps can be serialized before i and those with 
later timestamps can be serialized after i. 

13. THE CONCURRENCY MONITOR 

The implementation of the run-time concurrency control mechanism primarily 
lies in a software module at the DMs called the concurrency monitor. The 
concurrency monitor at a DM accepts READ, WRITE, and NULLWRITE 
messages from TMs and schedules their execution at the DM. In essence, it is 
responsible for determining the ordering of events for local DM logs. In this 
section we describe the operation of the concurrency monitor. As we will see, the 
mechanism is quite simple. 

The concurrency monitor accepts and schedules messages of three types: 

WRITE(TS, CLASS, UPDATES) 
TS is the timestamp of the transaction issuing the WRITE, and CLASS is its transaction class. 
UPDATES is a list of data item identifiers and values. When a WRITE is processed, the indicated 
data items are updated to the specified values according to the WRITE message rule (see Section 5). 

NULLWRITE(TS, CLASS) 
This message indicates that all future messages in CLASS will have timestamp greater than TS. 
Processing the NULLWRITE simply involves taking note of this fact in the internal tables of the 
concurrency monitor. 

READ(TS, CLASS, READSET, CONDITIONS) 
TS and CLASS are the timestamp and transaction class of the transaction issuing the READ message. 
CONDITIONS is a list of read conditions associated with the READ message. Processing a READ 
involves reading the current values for data specified by READSET into a local transaction workspace. 

The read conditions have the following format: 

(TYPE, CLASSES, TS) 
CLASSES is a list of transaction classes. TS is either a timestamp or is blank, dependiig on TYPE. 
If TYPE is “normal,” then the read condition is satisfied when all WRITE messages from the listed 
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classes with timestamps less than TS have been processed, but no WRITE messages from those 
classes with greater timestamps have been processed. “Normal” read conditions are used in all four 
protocols. If TYPE is “DMchoice,” then the TS specification is blank; the read condition is satisfied 
when the condition for “normal” read conditions can be satisfied for some selected value for TS. 
“DMchoice” read conditions are used in the single-DM optimized version of protocol P2. If TYPE is 
“mintime,” then the read condition is satisfied when all WRITE messages from the listed classes with 
timestamps less than TS have been processed. “Mintime” read conditions are used in the P4 protocol. 
The TS specification in a read condition must always be less than the transaction TS specified in the 
READ message itself (to prevent a deadlock within the concurrency monitor). 

The DM returns an ACCEPT-READ message when all the read conditions on 
a READ message have been satisfied and the READ has been processed. If the 
read conditions cannot be satisfied, even by waiting for new WRITE messages to 
be processed, then a REJECT-READ message is returned to the originator of 
the READ. 

The function of the concurrency monitor is to schedule the processing of READ 
and WRITE messages under the constraints imposed by read conditions. A 
READ message can be processed as soon as its read conditions are satisfied. 
While WRITE messages should be processed without unnecessary delay, a 
WRITE message will be delayed if its immediate processing causes the rejection 
of a pending READ message. When a READ message is received, it is checked 
to see if it is immediately rejectable. If it is not, then the READ will eventually 
be satisfied because the concurrency monitor will not process any WRITE 
messages that will cause it to be rejected. 

The concurrency table, shown in Table I, contains the information needed by 
the concurrency monitor to resolve the status of read conditions. For each class 
it holds a timestamp associated with the most recently processed WRITE or 
NULLWRITE message and a pointer to a queue of pending messages from that 
class to be processed. Messages are ordered on the queue by their arrival order. 
To avoid violating any of the pipelining rules, the concurrency monitor schedules 
the messages on each queue in the order in which they appear (with one exception, 
noted below). The message at the head of the queue is said to be immediately 
pending. 

The concurrency monitor chooses the next message to be processed from 
among those immediately pending. Process any pending NULLWRITE. If there 
are none, process any immediately pending WRITE, as long as this does not 
cause any pending READ to be rejected. If there are no such WRITES, process 
any immediately pending READS whose read conditions are satisfied. 

It is important that the concurrency monitor not postpone indefinitely the 
processing of any immediately pending message either because of timing anom- 
alies or deadlock. One way to guarantee this would be to schedule immediately 
pending messages according to the following priority rule. The priority of an 
immediately pending NULLWRITE or WRITE message is the TS parameter in 
the message; for a READ message it is the lowest timestamp in an unsatisfied 
read condition in the READ. The concurrency monitor schedules lowest priority 
first. 

Unfortunately, this scheduling mechanism still has a potential deadlock. As an 
example, suppose the immediately pending message for i is a READ with a P3 
read condition (TSi, {j} ) and the immediately pending message for j is a READ 
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Table I. Concurrency Table 
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Class 

Timestamp of Timestamp of 
most recently most recently 

processed processed Pointer to pending 
WRITE NULLWRITE message queue 

i 425179 425221 

with read condition (TSj, {i} ) where TSi < TSj. Furthermore, suppose no 
WRITE or NULLWRITE message from i timestamped later than TSj has been 
received and that none from j timestamped later than TSi has been received- 
that is, neither read condition is satisfied. If j has no more WRITE messages to 
send with timestamp earlier than TSj, then the concurrency monitor is dead- 
locked, waiting for nonexistent WRITE messages from each of the classes. 

To avoid this type of deadlock, we need one more scheduling rule: If the 
immediately pending message with smallest priority is a READ whose lowest 
priority unsatisfied read condition is (TS, (j} ), and if j’s immediately pending 
message is a READ, then a SENDNULL message must be sent to j’s TM, 
requesting a NULLWRITE with timestamp greater than TS. If j’s TM does not 
respond with a NULLWRITE, then a WRITE with the appropriate timestamp 
must be on the way (eventually). When it arrives, it must be processed ahead of 
j’s pending READ to break the deadlock. Note that this cannot violate class 
pipelining because the WRITE message’s timestamp is earlier than that of j’s 
pending READ. 

Given this deadlock prevention rule, we can now show the lowest-priority-first 
scheduler to be deadlock free. Let M be the message with lowest priority. If M is 
a NULLWRITE, it can be processed immediately. If M is a WRITE, then it will 
be held up only if there is an immediately pending READ with a read condition 
that has a timestamp smaller than M’s. But then the READ would have a lower 
priority than M, contradicting the choice of M. So the WRITE can be immediately 
processed. Suppose that M is a READ. If all its read conditions are satisfied, it 
can be immediately processed and we are done. So assume not and that (TSR, 
{j, . . .} ) is its unsatisfied read condition with smallest timestamp. Let M’ be the 
immediately pending message on j ‘s queue. If the queue is empty, then a WRITE 
or NULLWRITE message with timestamp greater than TSR wiIl eventually 
appear on j’s queue, since there are only a finite number of timestamps smaller 
than TSR. If M’ is a WRITE, then M’ must have a timestamp greater than TSR 
(by choice of M); and since j obeys WRITE pipelining, the READ condition is 
already satisfied, which is a contradiction. Similarly, M’ cannot be a NULL- 
WRITE. If M’ is a READ, then the deadlock prevention rule is invoked, and M 
will eventualIy be processed. Finally, since there are only a finite number of 
timestamps less than any priority, this also argues for proper termination, since 
every message will eventually be the one with the lowest priority. 

It may not be wise to follow this priority rule strictly, since a lowest priority 
READ may wait a considerable period of time for all the necessary WRITES to 
arrive. This would unnecessarily create a large backlog of other unprocessed 
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messages. However, the above argument demonstrates feasibility; of course, any 
more efficient variation which never indefinitely postpones is also acceptable. 

14. RELIABILITY CONSIDERATIONS7 

14.1 Overview 

The reliability mechanisms of SDD-1 provide two kinds of protection. First, the 
system must continue to operate correctly in the face of site and communication 
failures. That is, the serializability guarantee must be maintained. Second, the 
procedures by which this is done must not force protocols to wait for failed sites 
to recover before they can safely proceed. Otherwise, transactions at nonfailed 
sites could experience arbitrarily long delays before being allowed to continue. 

Details of the reliability mechanism are described in a separate companion 
paper [12]. That paper centers around the description of an extended communi- 
cations facility called the reliability network or RelNet. In that paper we show 
how the concurrency control mechanisms described here are made robust by use 
of the RelNet’s capabilities. 

For our present purposes, the RelNet can be modeled as a virtual machine 
with the following properties: 

(1) The RelNet never fails8 
(2) Between any sender-receiver pair, messages are received in the order that 

they are sent. 
(3) Messages may be buffered within the RelNet. This implies that delivery is 

guaranteed as soon as the message is accepted by the RelNet; the message 
need not arrive at its final destination for delivery to be assured. In particular, 
messages may be sent to a failed site and will be delivered upon its recovery. 

(4) WRITE messages are not processed by a DM until a COMMIT message is 
received. Alternatively, uncommitted WRITES may be canceled by an 
ABORT message. For each transaction a single COMMIT command is issued 
to the RelNet, which then guarantees that all of the DMs participating in the 
transaction will receive COMMIT messages from the RelNet. When a TM 
crashes, the RelNet sends an ABORT message to those DMs participating in 
its uncommitted transactions. 

(5) The RelNet maintains the clock used in assigning timestamps for concurrency 
control. The system behaves as if there were a single global clock accessible 
to all sites. 

(6) The RelNet monitors site status. In addition to reporting status as up/down, 
the RelNet indicates a global clock time for which that status is valid. 

(7) The RelNet may be queried as to whether all messages sent from a given site 
prior to a given time have been received. This may be used, for example, to 
ensure that all messages sent from a failed site prior to its failure have been 
received. 

’ The mechanisms reported in this section were developed by M. M. Hammer and D. W. Shipman. 
s Of course, since 100 percent reliability is impossible to achieve, the actual ReNet may in fact fail. 
We consider this to be a “catastrophe” for which manual procedures may be required to repair any 
damage done. 
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A more detailed specification of the RelNet interface, as well as a description 
of its internal design, is given in [12]. Since the most difficult design issues have 
been relegated to the RelNet, what is required here is to describe the ways these 
facilities are used in providing reliable and timely protocol implementations. 

We are principally concerned with failures affecting the read phase’ of a 
transaction. During the execute phase, the status of participating DMs is moni- 
tored by the TM, which will abort the transaction on a DM failure. Failures of 
the controlling TM during the execute phase result in transaction abortion by 
the RelNet. During the write phase, if the controlling TM fails before all WRITE 
messages have been sent and the transaction committed, then the RelNet aborts 
the transaction. If the controlling TM fails after the transaction is committed, 
then all WRITES are guaranteed safe delivery to their destinations and committed 
by the RelNet. 

We need to consider three issues arising in the read phase: 

(1) The possibility that some data item in the read-set is not available. 
(2) The possibility that the concurrency monitor, in order to validate a read 

condition, must wait for additional WRITE or NULLWRITE messages from 
a failed site. Since the site may take arbitrarily long to recover, the concur- 
rency monitor must be able to proceed in resolving the read condition without 
waiting for additional messages from that site. 

(3) The possibility that an ACCEPT/REJECT response to a P4-ALERT mes- 
sage is required from a failed TM. Here again it is unacceptable to wait for 
the failed site to recover in order for it to make the ACCEPT/REJECT 
decision. 

The next three subsections deal with these issues. 

14.2 Data Item Not Available 

If all physical copies of a data item are unavailable because the DMs at which 
they are stored have failed,” then the transaction cannot proceed. It is aborted 
and the user is informed. 

It may happen that the originally chosen physical copy of the data item is 
unavailable, but that another copy of a data item is available at a different DM. 
In this case the other copy is used for reading instead. It should be noted that the 
choice of physical copy to be read does not affect the protocols which must be 
run. This is because the protocol requirements are expressed solely in terms of 
logical data item conflicts. 

14.3 Read Conditions 

When the timestamp on a read condition against a class is greater than the 
timestamp on any WRITE or NULLWRITE message which has been received 
from that class, it is necessary to wait for the arrival of a WRITE or NULLWRITE 

’ Recall that the three phases of a transaction’s execution are called read, execute, and write (cf. 
Section 3). 
I0 If all physical copies are unavailable because of communication failures, then a RelNet catastrophe 
has occurred. Approaches for dealing with such catastrophes are discussed in [12]. 
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message from that class which has a greater timestamp than that of the read 
condition. When the class in question runs at a TM which has failed, it might 
appear that the concurrency monitor would have to wait for that TM to recover 
in order to receive the needed message. 

The problem is easily solved assuming the existence of a global clock facility. 
Upon encountering a read condition which requires waiting for messages from a 
failed site, the concurrency monitor, after processing all WRITES which the site 
had sent prior to its failure, simply accepts the read condition. This is sound for 
the following reason, Upon recovery, all new transactions at the TM in question 
will have a timestamp greater than that of the read condition. This follows from 
the fact that the read condition timestamp is less than or equal to the timestamp 
of the transaction which issued it, that all transaction timestamps are obtained 
from the global clock, and that the global clock will have necessarily advanced 
past the timestamp of the reading transaction by the time the failed site recovers. 
Therefore, it is not possible for a WRITE message to arrive after the failed site’s 
recovery, such that the WRITE message has a timestamp less than that specified 
in the read condition; it is thus safe to accept the read condition immediately. 

14.4 Protocol P4 

Protocol P4 calls for issuing a set of P4-ALERT messages to a number of TMs 
and awaiting ACCEPT/REJECT responses. If a TM is down, of course, it cannot 
respond and the P4 transaction might appear to have to wait until the failed TM 
recovers. 

Again, our solution to this problem is based on the global clock facility. An 
ACCEPT response is assumed from any TM which was down at the time of the 
P4 transaction. Upon recovery and before starting any new transactions, the 
recovering TM reads all P4-ALERT messages which were sent to it while it was 
down (these have been buffered in the RelNet). These P4-ALERTS are accepted. 
This is because no transactions will have been processed at the recovering TM 
with timestamp greater than that of the P4 transaction (the TM was down at the 
time of the P4), and all new transactions after the receipt of the P4-ALERT have 
a timestamp greater than that of the P4 transaction. These are exactly the 
conditions necessary for accepting a P4-ALERT. 

15. ADVANTAGES OF THE SDD-1 CONCURRENCY CONTROL MECHANISM 

The SDD-1 approach to concurrency control is in many ways quite different from 
other proposed mechanisms. We see many strengths in the approach. Unfortu- 
nately, there are few analytic methods for verifying these strengths, say by 
comparing the relative performance of our mechanism to other database concur- 
rency controls. Furthermore, most of the proposed mechanisms are not yet 
implemented, so empirical comparisons are not possible either. Hence, the anal- 
ysis of our mechanism must necessarily be more intuitive than analytical or 
empirical. And comparisons to other specific mechanisms are avoided for lack of 
objective evidence. The specific criteria on which we base our performance 
include the amount of communication required to synchronize transactions, the 
average delay incurred by a transaction due to concurrency control, the amount 
of concurrency among transactions allowed by the concurrency control, and the 
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overhead involved in making the mechanism resilient to communications and 
node failures. 

At the architectural level the SDD-1 concurrency control mechanism has two 
important properties. First, the architecture makes a strong separation between 
concurrency control issues and those of query processing and reliability. From a 
project management standpoint, this separation has allowed us to attack the 
concurrency control problem independently from and in parallel with query 
processing and reliability problems. From a software engineering standpoint, this 
division of labor has led naturally to a division of function in software components. 
The concurrency control mechanisms are isolated in a small number of modules, 
making them easily modifiable and tunable. 

Second, the architecture fully distributes the concurrency control. While each 
transaction is controlled from a single site, different sites are concurrently 
supervising the synchronization of many different transactions. No one site is in 
charge of any system-wide activity. The main advantage of this full distribution 
is enhanced reliability. A site failure only affects those transactions executing 
and/or using data at that site. 

However, it is in the specific synchronization mechanisms that the most 
important advantages lie: conflict graph analysis and the timestamp-based pro- 
tocols. We believe the technique of conflict graph analysis to be our most 
important contribution. By preanalysis of transaction conflicts, the number of 
transactions that need to be synchronized is drastically reduced. This has a 
beneficial effect on all aspects of concurrency control performance. It allows more 
concurrency among transactions; and for those transactions that require little or 
no synchronization, it cuts delay, communications overhead, and costs associated 
with resiliency mechanisms. As shown in [6], the technique is quite general and 
can be used with a variety of synchronization protocols, including conventional 
locking. In principle, every proposed concurrency control mechanism could be 
improved by adding conflict graph analysis as a preprocessing step to eliminate 
run-time synchronization for some transactions. 

The timestamp-based protocols {Pl, P2, P3, P4) also offer important advan- 
tages over other proposed concurrency controls. First, all of the protocols are 
deadlock-free. This avoids the communication overhead of distributed deadlock 
detection, which is required by many locking systems (e.g., [23]). Second, the 
protocols synchronize transactions, only against named transaction classes. Even 
if two transaction classes must be synchronized relative to certain data, other 
classes can concurrently access those data; in fact, other classes can independently 
be synchronized against those very same data without affecting the first two 
classes at all. This is in contrast to locking protocols, which set blanket locks that 
apply to all transactions that access the shared data. Third, SDD-1 offers a range 
of synchronization protocols. Protocol P2 is a fast synchronization protocol for 
read-only transactions that can afford to read an old, but consistent copy of the 
database. While with a locking strategy read-only transactions’ could choose not 
to lock the data they read, the unlocked data may be inconsistent. Protocol P4 
allows infrequently executed transactions to take a larger share of the synchro- 
nization burden. By running such transactions under P4, other frequently exe- 
cuted transactions can run Pl with less delay and more concurrency than they 
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would obtain if they ran P2 or P3 as otherwise required. The P4 capability is 
currently unique to the SDD-1 mechanism. 

Quantitative comparisons among reliability mechanisms are not yet within the 
state of the art. However, as indicated in the previous section, SDD-1 has 
incorporated recovery mechanisms that insulate it from the effects of network 
and node failure. The mechanisms are an example of a general approach to 
resiliency discussed in [12]. 
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