
IEEE TRANSACTIONS ON RELIABILITY, VOL. R-32, NO. 5, DECEMBER 1983 437

Resilient Concurrency Control in
Distributed Database Systems

Bharat Bhargava, Member IEEE neither be fully proven correct or tested for all possible
Purdue University, West Lafayette cases, incorrect transactions are a reality. The transaction

correctness control (PCC) subsystem can ensure the cor-
rect execution of a transaction.

Key Words-Concurrency control, Distributed database, Site c. Incomplete transaction execution. It might not be
failure, Network partitioning, Lost message, Conflict graph. possible to complete the execution of a transaction due to

many reasons. For example, a hardware failure, deadlock
Reader Aids- problem, or violation of database security can cause the

Purpose: Widen state-of-the-art system to abort a transaction in the middle of its execution.Special math needed for explanations: Discrete math, graph theory The transaction atomicity control (PAC) subsystem can
Special math needed to use results: Same
Results useful to: Software engineers, researchers ensure that either none or all updates of a transaction are

executed.
Abstract-This paper presents the resiliency features of the opti- d. Incorrect concurrency control. Several transactions

mistic approach to concurrency control and demonstrates how it lends can run in parallel and not maintain consistency. For ex-
itself to a design of a reliable distributed database system. The validation an run

maread not data onsitein e
of concurrency control, integrity control, and atomicity control has been ample, they may read incorrect data or write in the
integrated. This integration provides a high degree of concurrency and database in an incorrect order. The concurrency control
continuity of operations in spite of failures of transactions, processors, (CC) subsystem can provide consistency via enforcement
and communication system. of serializability of concurrent transactions.

e. Sitefailure. A particular processor can cease opera-
tions due to software or hardware problems. The contents

1. INTRODUCTION of the memory of the system can be lost or even contents of
secondary storage can be affected. A site failure could be

To provide continuity of operations in automated local to the transaction or it could be remote. A local site
systems, we need to investigate principles that can provide failure will halt the transaction processing. A remote site
robustness. Many systems such as used in space program, can affect the completion of the transaction because a data
air traffic control, nuclear plant monitors, and ballistic value to be updated by the transaction resides on that site.
missile defense demand nonstop operation. Recently, f. Communication system failure. If the communica-
research efforts have focused on the design and implemen- tion links between two sites are broken, they no longer
tation of distributed systems in such applications [1]. communicate. In addition due to malfunction of the com-

A distributed system consists of a set of computers munication facility, messages can be lost or delivered in
located in different sites connected by a communication wrong order. Maintenance of database consistency in spite
network. Different programs can run on each of these of site crashes and system partitions can be the task of the
computers and the programs can access local or remote site crash/partition treatment (SCPT) subsystem.
resources such as databases. The programs can be viewed Included in the above list is one more subsystem, call-
as transactions which consist of a sequence of atomic ed internal data integrity control (IDIC) that can check in-
operations. The resources can be partially replicated or tegrity of database before its use by a transaction, and/or
partitioned. check periodically or on demand the integrity of the cur-

Though it has become feasible for computers to com- rent database state. Complete discussion on the design of a
municate at high speed with each other and share their reliability control system are in [2-3].
resources, a failure can occur in a distributed system. Some This paper presents a framework that can help com-
of these causes also exist in a centralized environment but bine the functions of each of these subsystems. This
for completeness, we present them as follows. framework is based on the optimistic approach that re-

a. Incorrect input data. There are two sources of in- quires transaction validation as compared to locking as its
correct data: accidents, such as mistyping of input by the basis for concurrency control. Some components of this
user or incorrect output from sensory devices or in- approach have already been discussed (4-6].
struments (such as terminals). If incorrect data are input
into the system, they can easily contaminate the database. 2. BASIC TERMINOLOGY AND CONCEPTS
The external data integrity control (XDIC) subsystem can
provide a barrier against incorrect input data. The distributed database is modeled by a set of logical

b. Incorrect transaction. Since transactions are execu- database entities which can have one or more physical
tions of programs written by users and the programs can copies at different sites.

0018-9529/83/1200-0437$O1 .OO© 1983 IEEE

438 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-32, NO. 5, DECEMBER 1983

A distributed database is consistent if it satisfies some Proposition 2-1. If hi - * g' for all j E N, then h g.
predefined assertions on the data values. For a replicated Proof: The proof is in [5].
distributed database, the physical copies of the same Definition 2-7. A serial history is one in which each
database entity on different sites must be identical. transaction runs to completion before the next one starts.

The user operations on a distributed database consist Definition 2-8. A history h is serializable if and only if
of a sequence of atomic operations. there exists a serial history g such that h' g' for every site

Definition 2-1. An atomic operation is represented by J.
ai = Aj[x], where i is a unique identification for a transac- A history can be serialized according to the order of
tion, j is a unique identification for a site, A is either R or several events in the progress of a transaction. The instance
W representing read or write operation, and x is one or when the transaction reads the first entity in the database is
more logical database entities. called a and the instance when the transaction writes on

Definition 2-2. Atomic operations are grouped into the first entity is called the event w. The order of
logical units called transactions that preserve the database transactions in the serial history can also be established
consistency if executed alone. based on some other event in between a and w, such as the

Definition 2-3. Two atomic operations (xi, aj conflict instance when a transaction arrives for validation.
if: 1) they belong to different transactions; 2) both access Definition 2-9. A concurrency control algorithm is
the same database entity at the same site; 3) at least one of correct if all its allowed histories are serializable.
them is a write operation. The concurrency controller represents the software

Definition 2-4. The concurrent activities of a module of the system which manages the concurrent access
distributed database system can be modeled as a sequence of the database by transactions issued by users. The
of all atomic operations called the history of the system. purpose of the concurrency control is to guarantee that the
The history is represented by a quadruple h = <D, T, E, concurrent activity does not result in an inconsistent
-r>, where D is a distributed database, Tis the transaction database state.
set, E is the atomic operation set, and ir is a permutation
function which gives the permutation indices for atomic 2.1. Design of Concurrency Control
operations a in h (a E).

For example, if a history h is the following sequence: There are two generic approaches that can be used
to design concurrency control algorithms. The syn-

aoft ... X chronization can be accomplished using three types of
actions:

then ir(a) = 1, 7r(3) = 2, w...,r(c) = EV 1. Wait. If two transactions conflict, the conflicting
operations of the new transaction must wait until the

An atomic operation in a history can be freely rear- operations of the other transaction are completed. The
ranged in the history as long as the order of conflicting ac- wait can be enforced by using locks on database entities or

cessesis proeserved representstheoperationstha
checking time-stamps [7] that can be assigned toA site projection represents the operations that are tascin.Oesml rtclta nue

performed on a site. transactions. One simple protocol that ensures

Definition 2-S. A site projection g' is obtainable from serializability using locks is: 2-phase locking (2PL) [8]. The
the site projection h through conflict preserving exchange protocol requires that in any transaction, all locks must

(cp-exchange) if and only if there exist a, anda2 E E such precede all unlocks. The idea of waiting based on time-
that a, and a2 do not conflict, and the site projections are stamps has been used in [9]. The order of conflicting
of the form: transactions in the serial history is established by the order

of a event. This approach is pessimistic because some

h: 6lal0aA; gi: 61a2a102 transactions could be blocked before knowing their write
set and the conflict type.

where 0, and 62 are strings of atomic operations. The only 2. Validate after computation. Transactions can
difference between h' and g' is that the order of ao and a2 is proceed freely in the system and be validated for correct
reversed. concurrency control just before their commitment. If two

Since only adjacent non-conflicting operations are cp- transactions conflict, some operations of a transaction are
exchanged, cp-exchange necessarily generates equivalent undone or rolled back or else one of the transactions is
histories. Let ht g'/ mean that g' is derived from ht restarted. This approach is called optimistic because it is
through a single cp-exchange, and let -* be the transitive hoped that only a few transactions will be rolled back.
closure of cp-exchange operator. Since recovery and rollback facilities (including logs

Definition 2-6. Two histories are equivalent (in- representing histories) are already provided in most
distinguishable) if they transform a given initial state to the systems, a concurrency control algorithm can take
same final database state. The notation _denotes the advantage of them. Locking and pessimistic time-stamp
equivalence relation between histories, ordering provide a low degree of concurrency [10].

BHARGAVA: RESILIENT CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEMS 439

2.2. Design of Atomicity Control 3.1. General Comments on Validation

An atomicity control system requires that a transac- Since the transactions are isolated from each other
tion is either committed on all sites of a distributed system before they reach the validation stage, while a transaction
or is aborted on all sites. Several transaction atomicity con- Ti is still computing, another transaction Tj could commit
trol protocols have been discussed [11]. They extend the or semi-commit and update the read set of Ti. Hence Ti
2-phase commit protocols [12] for distributed systems must validate against all such Tj.
where multiple failures of sites can occur, e.g., a 3-phase If only the write sets of the semi-committed or com-
commit protocol. Multiple failures of a site might require mitted transactions are kept in the database [14], the con-
several additional rounds of messages before deciding to currency provided by the algorithm will be the same as the
commit or abort. locking algorithm. On the other hand if the read set and

write sets of the committed transaction are available in the
2.3. Design of Integrity Control validation, the degree of concurrency provided by the

algorithm will be higher [4-5]. A theorem (5] shows that in
An integrity control system can ensure that no er- a 2-step transaction model (where all reads precede writes),

roneous values (generated due to an incorrect transaction a rollback in the optimistic approach corresponds to a
processing) are written in the database. Ref. [3] presents a deadlock when locking is used.
short survey of integrity control algorithms and [13]
discusses some performance issues. The integrity assertions
are expressed as predicates on database values and they 4. VALIDATION ON THE INITIATING SITE
must be true for database to be in an integral state.

First the integrity assertions are verified against the
write set. If successful, the transaction validates against all

3. BASIC STEPS IN OPTIMISTIC committed and semi-committed transactions on the site for
CONCURRENCY CONTROL correct concurrency control. The validation step considers

The six steps in the execution and completion of a both the read set and the write set of all transactions. A
transaction are: conflict graph (CG) as defined below is constructed and is

1. Read. The transaction reads the values for the re- checked for cycles. If a cycle exists, the validating transac-
quired database entities into a private work space. This tion is rejected else it is included in the set of semi-
work space could be defined by a set of variables that cor- committed transactions and sent for global validation.
respond one to one with the entities. The set of variables Definition 4-1. A Conflict Graph (CG) for a history h
representing the entities that have been read is called the = <D, T, E, -i > is a digraph < V, E> where V is the set
read set, S(Ri). of vertices representing T, the set of transactions; E is the set

2. Compute. The transaction executes by computing of edges, where < i, j> is an edge if and only if there exist
on the values of the variables in the private workspace and conflicting atomic operations ai, aj for which 7r(oi) < r((),).
obtains a new set of values for its variables. Instead of the order of individual atomic operations,

3. Write in workspace. The new values are written on the edges can also be obtained by considering the order of
local variables in the workspace. The variables correspond a or X events for each transaction.
to the entities that will be updated by this transaction. The Lemma 4-1. The CG of a serial history is acyclic.
set of such entities is called the write set, S(Wi). Proof: The proof is in [5].

4. Validate on the initiating site. The site to whom the Based on the CG and the conflict (dependency) rela-
transaction is submitted is called its initiating site and all tion, a serializability class of histories for distributed
other sites in the distributed system are referred to as database systems has been defined.
remote sites. The transaction validates against the set of Definition 4.2. The class DCP contains all histories
concurrent transactions that have already validated on the that are distributed conflict-preserving.
initiating site. If the transaction is validated on the ini- Definition 4-3. A history h is distributed conflict-
tiating site, it is put into the semi-commit state. preserving if and only if there exists a serial history g such

5. Validate globally. The transaction is sent to all that h - * g for all i E N.
other sites for validation. The validation process on each For a history h in DCP, the site projection h' is
site is identical. serializable since it can derive an equivalent serial site pro-

6. Commit and write in database. If the transaction is jection through a sequence of cp-exchanges, and all site
validated, it is put into the commit state. The local values projections are mutually consistent because the equivalent
of the variables in the workspace become the values of the serial counterparts follow the same serialization order of
corresponding entities in the database. If the transaction transactions. The serializability of the histories in the class
wants to read some entities and then wants to compute DCP can be easily tested by constructing and examining a
before reading additional entities, the read, compute, write graph that can be constructed for each DCP history.
local steps of the transaction can be interleaved. The Theorem 4-1. A history h is in DCP if and only if the
validation step on each site is done in the critical section. CG of h is acyclic.

440 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-32, NO. 5, DECEMBER 1983

Proof. The proof is in [5]. The class DCP contains the There is a difficulty with this rule. Assume that Ti
locking class [10]. semi-commits on site A and T, semi-commits of site B. If

Corollary. For a history with an acyclic CG, the Ti and Ti create a cycle in the conflict graph, then it is
topological sort order of the vertices is the order of tran- possible that that in global validation Ti is rejected on site
sactions in the equivalent serial history. B and TI is rejected on site A. Thus both transactions are

rejected.
To reduce the rejection of all transactions involved in

5. GLOBAL VALIDATION a cycle, the system must set a criterion for rejection which

When a transaction is validated on the initiating site, it is independent of the delays in the message transmission
is put into the semi-commit state on that site. Next it is sent and is independent of when a transaction reached a site.
to all the other sites for global validation. This step is com- For example, a weight can be assigned to each transac-
bined with the first phase of the commit protocol of the tion. This weight can be a function of the age (based of the
atomicity control. A validation similar to that performed at value of the a) of a transaction, the cost of rolling back or
the initiating site is performed at each remote site. If the restarting a transaction, the number of times a transaction
transaction fails either the integrity tests or creates a cycle in has been rejected, etc. If both transactions have the same
the conflict graph, a reject message is sent to the initiating weight, both can be rejected or else the older one can be ac-
site. Otherwise, the transaction enters into the semi-commit cepted. The implementation and performance issues are in
state and an accept message is sent to the initiating site. [4].

When the initiating site receives an acceptance
message from all sites, it commits the transaction and 6. THE OPTIMISTIC CONCURRENCY
sends this information to all sites. This step coincides with CONTROL ALGORITHM
the second phase of the commit protocol of the atomicity
control subsystem. A complete optimistic concurrency control algorithm

When a site receives a message that a transaction has is in the revised version of [4].
been committed, it changes the state of the transaction
from semi-commit to commit. For a rejected transaction, a 7. RESILIENCY FACILITIES DUE TO
global cycle will occur at least at one of the sites because all OPTIMISTIC CONCURRENCY CONTROL
transactions are sent to all sites for validations. Exception
cases are discussed in [4]. The transaction is either commit- The design of optimistic concurrency control as
ted on all sites or rejected at all sites [4]. discussed in the previous sections provides several resilien-

Figure 1 shows the states of the transaction and transi- cy features. This section discusses the treatment of failures
tions. discussed in the introduction.

Read, Integrity | 7.1. Resiliency to Transaction Failure
tart Compute, & Success Semi-Commit

Wrt Locand Local Iniiain If partial updates of an uncommitted transaction are/ ri te Local Val idation \ nitiatingSite
\ l posted in the database and the transaction fails, the

recovery procedures must be invoked. One recovery pro-
-________ Fail cedure using UNDO and REDO logs has been recommend-

ed [15]. The execution of UNDO actions and rollback of
omit Sc Integrity individual transactions can be expensive. It this system, the

Goal Write -SControlFinish. Atomicity' *--executing transactions are transparent to other transac-Control,falrth
Global tions. A failure prompts the system to initialize the values
Validation
_______ of read set and write set variables and to inform the user.

Thus transaction failures are handled fast and without any
Fail cascade effects.

Fig. 1. States of a Transaction. 7.2. Resiliency to Site Failure

Due to variable transmission delays, transactions The system can detect that either a local (initiating)
from two different sites can reach other sites in different site or a remote site for a transaction has failed. The failure
order. Since it is not desirable to block transactions from can occur due to either a hardware or a software failure
progressing, the following rule should be followed. [16]. A failure can change the values of the contents in the

Rule: A transaction cannot be rejected at a site due to memory or any other volatile storage to null. The site can
the validation of some newly arrived transaction after a also refuse to accept any new transactions or might not res-
site has agreed to semi-commit the transaction and sent pond to messages from other sites. In our approach, the
this message to other sites. A semi-committed transaction system changes the state of the transactions on the failed
can only be committed or rejected by the initiating site. site as shown in table 1.

BHARGAVA: RESILIENT CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEMS 441

TABLE 1 b. Lost Messages. This type of failure occurs when the
Local Site Failure messages sent by one site do not reach the designated site.

c. Message Order Messed Up. This occurs when the
Local Site Failure System's Decision at Local Site messages are not delivered in the same order as they were

After Committing/Aborting. Do nothing sent. This can happen due to variable transmission delays.
a local transaction (Assume: Message has been sent to remote

sites) 7.3.1. Network Partition
After Semi-Committing Abort Transaction when local site recovers When a network partitions, the system could decide to
a local transaction Send abort message to other sites

proceed as follows:
During Computing/Validating Abort transaction when local site recovers.

alocaltransaction Send abort message to other sites. a. Do not process any transactions that want to up-
a local trnsactionSend abot messag toothesites.date the database. Allow only retrievals from the database.

This alternative is not very attractive except for special ap-
plications.If a remote site fails, the local site can assume that the b. Process transactions in only one partition. This

remote site has rejected the transaction. But an optimistic b. Ppartition can be chosen based on some criterion such as
solution will be to hope that the transaction will validate
on the remote site. The local site can either wait for the
remote site to recover (causing blocking the transactions) operations) or containment of a majority of sites etc.. The
or assume that the remote site will be validated successful- updates of committed transactions will be sent to the other

partitions when they join the active partition.
ly. Table 2 shows these cases. These two approaches tend to be pessimistic. This ap-

The message sent to the failed remote site can be proach is based on the optimism that few transactions inhandled by the communication system or else spoolers can d p wdifferent partitions will be involved in a cyclic conflict.be used at each site to store messages sent by other sites. There are several alternatives to allow transaction process-
The failed site is required to update itself with all commit- ing in all partitions.
ted transactions from other sites before it may start to ac- g. 1. Alternative 1. The system will allow transaction
cept new transaction for validation. If the recovered site p bn

processing in all the partitions but transactions will remainfinds that its spooler also crashed during its failure, it re- in the semi-commit state and will be subject to validation
quests the other sites to send information about transac-

at unavailable sites when the partitions merge. A conflicttions that were, committed during itS failure. Many in- grp.. smitiedfrec atto i. Te.eutso
teresting protocols for terminating a transaction have been graphacGiois intae fe achprit ia The re of

reiiec fo sit falue transactions in the semi-commit state can be madeproposed [I11]. An approach to resiliency for site failures available to the user with proper warnings and can also bebased on the time-stamp approach has been presented [171. used by other transactions in the same partition. The

merger of semi-committed transactions from several parti-7.3. Resiliency to Communication System Failure tions can proceed as follows:
When one or more of the following types of problems a. Combine CG1, CG2, ..., CGn on one of the sites. If

occur, the communication system has failed. no cycle exists, then commit all transactions. Minimize
a. Network Partition. A network partition occurs rollback if a cycle exists. Unfortunately this minimization

when the sites are separated into two or more partitions is NP-complete because the problem reduces to "Feedback
and the partitions are unable to communicate with each Vertex Problem" [18-19].
other. The sites in one partition can communicate with b. Assign a weight to each transaction in all partitions.
each other. A partition might consist of only one site. Determine the CGi with maximum weight. Select transac-

TABLE 2
Remote Site Failure

Remote Site Failure System's Decision at Local Site System's Decision at Failed Site

Before receiving the remote transaction a. Pessimistic: Wait for failed site to recover a. Pessimistic: Read messages on spooler. If
& validate spooler failed reject the transaction.

b. Optimistic: Commit the transaction based b. Optimistic:Semi-commit the transactionnbefore
on information from other sites & send processing new transactions. If spooler failed,
message to failed site's spooler. (Assume request other sites to send transactions that
failed site will semi-commit the transaction) were committed or aborted during its failure.

After semi-committing the remote Same as b. above Same as b. above
transaction

After aborting the remote transaction Abort the transaction Do nothing

442 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-32, NO. 5, DECEMBER 1983

tions that do not create cycle from other CGj's (j . i) one due to commutative actions of transactions in two different
at a time. There are two ways to deal with transactions that partitions arey and z. The correct value of the database entity
create a cycle: at merge of the partitions can be set to y + z - x.

b. 1 Abort the transaction that creates the cycle. If the commutative property of the transaction can
b.2 Consider each transaction that creates a cycle one not be determined in advance, the system might be able to

at a time and break the cycle by aborting the transaction deterimine it at run time. For example, the system could
that minimize transaction abort. This minimization can be recognize absolute increments and decrements in the
done in computational complexity 0(n3) but will not be database values. Every time the transaction issues an up-
necessarily optimal if a global CG was formed. The date, the system can check whether the transaction is value
minimization of abort can be based on several criterion. based.
For example, reduce the number of transactions that are The system can maintain a log of commutative and
aborted, or reduce the loss of transaction processing cost. noncommutative operations. When the partitions merge, it
The processing cost can be a function of the parameters can be checked if operations in different partitions were
such as I/O cost or CPU cost. Some algorithms to reduce conflicting and at the same time noncommutative. If so the
the number of nodes that must be removed from a graph to transactions will have to partially rollback up to the point
break a cycle are in [6]. The performance of a protocol where they started the noncommutative operations and
based on these ideas is in [20]. will restart from such a point.

2. Alternative 2. Until now, the granularity of
database partition has been considered at the site level. A 7.3.1.1.2. Compensating Operations:
network partition can be defined based on the partitioning
of the entities in the database. One copy of each entity in An operation a, is compensating for the history
the database is designated as the primary copy (or the true u2.u33 ... rn if and only if u(1u2.a3 ... U,n,- a,. With the
copy). Each primary copy has a token. facility of an UNDO log and compensating operations, the

The system allows a transaction to be processed and system might be able to allow the transactions to commit in
commit in a partition if the partition has a primary copy the different partitions.
token for all the database entities needed. Thus transaction When partitions merge, if there is a cycle in the global
processing can continue in more than one partition. How graph, the system can check if the cycle can be broken by
the true copy tokens are maintained determines which removing some semi-committed transactions. If the cycle
transactions can be processed in which partition. A con- in the global conflict graph contains only committed trans-
currency control algorithm that maintains tokens is in [21]. actions the system will be required to undo or compensate
Since no transactions in different partitions can use the a committed transaction. If any committed transaction re-
same entity, the database remains consistent. mains invisible to the environment, i.e., its updates were

never seen by any transaction or user, then it could be
selected to break the cycle. The other possibility is that the
results of the transaction have been read by other transac-

Semantics of the operations of the transactions can be tions which might themselves have stayed invisible to the
used to decrease the amount of transaction abort and to in- environment (transitive invisibility). In such related cases
crease processing in spite of failures. all such transactions can be aborted. If the results of a

committed transaction have been made available to the en-
vironment, depending on the application, the system can
issue a compensating transaction. If none of the transac-

Two operations ai and aj are commutative if ariaj -j- tions involved in the cycle can be compensated, the system
a,. For commutative operations value-based updates are should be programmed to pay a penalty (such as free air-
not allowed. A simple example of a commutable operation fare for overbooked passengers or not sufficient charge to
is "Give Rupees 500 bonus to every employee". If the a customer by a bank).
bonus was 5% of the salary, the operation is not com- The solutions range from keeping all transactions in
mutable. Two adjacent read operations are also com- the semi-commit state to committing transactions in one
mutable. partition or more. The commitment of all the transactions

The commutable operations of transactions can con- is possible with the necessity of a rollback or compensating
tinue to execute in different partitions and after the merge transactions.
of the partitions the values of the database entities can be
set to the consistent state. This can be accomplished by 73.2. Lost Message
remembering the value of the entity at the time of partition
and applying the cumulative changes in the database values A transaction remains in a semi-commit state unless it
from each partition. has been validated at all other sites. Absence of the deci-

For example, if the value of a certain entity wasxat the sion of a remote site will only delay the decision on the
time of partition and at the time of partition merge, the values transaction. A time-out mechanism can be used at each

BHARGAVA: RESILIENT CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEMS 443

site and if a transaction has been in the semi-commit state [9] Rothnie, Bernstein, Fox, Goodman, Hammer, Landers, Reeve,
for a long time due to nonreceipt of the decision of a Shipman, Wong, "Introduction to a system for distributed

remote site, arquetfrtedcisonan erpedatabases (SDD-1)," ACM Trans. Database Systems, vol 5, 1980remote site, a request for the decision can be repeated. If Mar, pp 1-17.
the decision of a site is also sent to other sites, a site might [10] C. Hua, B. Bhargava, "Classes of serializable histories and syn-
be able to get it indirectly from other sites. A lost message chronization algorithms in distributed database systems," Proc.
can thus block only the processing of a transaction but can IEEE Int. Conf. Distributed Computing Systems, Miami, 1982 Oct
cotan fc ytmcnitny

18-22.

not affect system consistency. [11] Dale Skeen, "A decentralized termination protocol," Proc. Symp.
Reliability in Distributed Software and Database Systems, Pitts-

7.3.3. Message Order Reversal burgh, 1981 Jul, pp 21-22.
[12] J. N. Gray, "Notes on database operating systems," pp 393-481,

Some times the requests for global validation for two Operating Systems: An Advanced Course, ed. Goos & Hartmanis,
transactions arrive in a different order than their sending. Springer-Verlag 1978. Lecture Notes in Computer Science 60, also

as IBM Research Report RJ2188.A site will only send requests for validation for two trans- [13] L. Lilien, B. Bhargava, "A scheme for verification of database in-
actions in the semi-commit state if they do not cause a cy- tegrity," IEEE Trans. Software Eng., 1984 Nov.
cle in the conflict graph at that site. If they do not create a [14] H. T. Kung, J. T. Robinson, "On optimistic methods for concur-
cycle in the conflict graph on the remote site, the order of rency control," ACM Trans. Database Systems, vol 6, 1981 Jun, pp

theirarrivl dosnotmatte. Ifboth f the crete a ycle 213-226.
their arrival does not matter. If both of them create a cycle [15] Jim Gray, "The transaction concept: Virtues and limitations,"
they both will be rejected and so once again their order Proc. VLDB Conf., Cannes, France, 1981 Sep 9-11.
does not matter. [16] Randell, Lee, Treleaven, "Reliability issues in computing systems

design," ACM Computing Surveys, vol 10, 1978 Jun.

ACKNOWLEDGMENT [17] Bajaj, Hua, Bhargava, "Time-stamp resiliency to node failures in
distributed systems," Proc. Int. Computer Symp., Taiwan, 1982

This work has been partially supported by the U S Dec 18-20.

[18] M. R. Garey, D. S. Johnson, Computers and Intractability: A
Department of Transportation contract DTRS5680- Guide to the Theory ofNP-Completeness, W. H. Freeman and Co.,
C-0026. Thanks are due to Dr. Cecil Hua for the "DCP San Francisco 1979.
class" and Prof. Errol Lloyd for "complexity" in 7.3.1. [19] s. B. Davidson, "Evaluation of an optimistic protocol for parti-

tioned distributed database system," Technical Report #299,
Princeton Univ. 1982.

REFERENCES [20] B. Bhargava, "Performance evaluation of reliability control
algorithms for distributed database systems," J. Systems and Soft-

[1] B. Bhargava (editor), Concurrency and Reliability in Distributed ware, vol 4, 1984 Jul.
Systems, Van NostrandandReinhold1985InPress[21] T. Minoura, and G. Wiederhold, "Resilient extended true-copy

SytmsB aNostgava,"ReliandlityandsResinholds1985.tIn Prstemss. IEEE token scheme for a distributed database systems," IEEE Trans.[2] B. Bhargava, "Reliability issues in distributed systems," IEEE Software Eng., vol SE-8, 1982 May.
Trans. Software Eng. vol SE-8, Guest Editorial, 1982 May. '

[3] B. Bhargava, L. Lilien, "Reliability in distributed database
systems," Research Report, University of Pittsburgh, 1982 Jul. AUTHOR
Under revision with ACM Computing Surveys.

[4] B. Bhargava, "Performance evaluation of the optimistic concurren- Bharat Bhargava; Computer Science Department; Purdue University,
cy control approach to distributed database systems and its com- West Lafayette, IN 47907, USA.
parison with locking," IEEE Int. Conf. Distributed Computing Prof. Bharat Bhargava teaches at Purdue University. He is pursuing
Systems, Miami, Florida, 1982 Oct 18-22. research to identify principles that are necessary to increase reliability in

[5] B. Bhargava, "Resiliency features of the optimistic concurrency concurrent transaction processing in distributed database systems. He has
control approach for distributed database systems," Proc. IEEE Se- studied the performance of some of these principles as they apply to dif-
cond Symp. Reliability in Distributed Software and Database ferent applications, specifically, the enroute air traffic control system.
Systems Pittsburgh, 1982 Jul 20-21. Bhargava is one of the founders of the IEEE Computer Society's Sym-Sytes Pitbrh 198 Ju 20-21........... . oim on Reliability in Distributed Software and Database Systems. He[6] B. Bhargava, "Concurrency control and reliability in distributed posiu

has served on program committees of the 1982 Distributed Computing
System and 1984 Data Engineering conferences. He was a member of theReinhold 1984. CODASYL Systems committee from 1978-1982. Bhargava received his

[71 L. Lamport, "Time, clocks, and the ordering of events in a Ph D from Purdue University in 1974.
distributed system," Comm. ACM, vol 21, 1978 Jul, pp 558-564.

[8] Eswaran, Gray, Lorie, Traiger, "The notions of consistency and Manuscript TR82-74 received 1982 July 6; revised 1983 November 7.
predicate locks in a database system," Comm. ACM, vol 19, 1976
Nov, pp 624-633.

Manuscripts Received.... For Information, write to the author at the address listed; do NOT write to the Editor

"Maximum likelihood estimation in the right-truncated Weibull distribu- "Opitmal structure for some systems of independent components",
tion", Dallas R. Wingo C1 28 Riverside Ave, 8E O Red Bank, NJ 07701 James Brucker a Dept. of Information Science OI Tokyo Institute of
USA. (TR83-131) Technology OI O-okayama, Meguroku OI Tokyo 152 JAPAN.

(TR83-133)

"A new technique in minimal path and cutset evaluation", Ghauth "A truncation methodology for evaluation of large fault trees", Dr. M.
Jasmon OI Dept. of Electrical Engineering LI University of Malaya LI Modarres LI Dept. of Chemical & Nuclear Engineering LI University of
Pantai Valley LI Kuala Lumpur, MALAYSIA. (TR83-132) Maryland LI College Park, MD 20742 USA. (TR83-134)

