
An End-to-End Security Auditing Approach for
Service Oriented Architectures

Mehdi Azarmi, Bharat Bhargava,
Pelin Angin, Rohit Ranchal

Computer Science Department

Purdue University

SRDS 2012

1

Norman Ahmed, Asher Sinclair,
Mark Linderman

Air Force Research Laboratory

Rome, NY

Lotfi Ben Othmane

Eindhoven University of
Technology, Department of
Mathematics and Computer

Science

Outline

•  Background
•  Problem Statement
•  Proposed Solutions
•  Evaluation (And transition to Cloud)
•  Future Directions
•  Conclusion

2

What	 is	 SOA?
•  Service	 Oriented	 Architectures	 (SOA)	 facilitate	 the	

interoperable	 and	 seamless	 interac:ons	 among	 services.	 The	
need	 to	 communicate	 with	 other	 service	 partners	 demands	 a	
seamless	 integra:on	 of	 services	 across	 organiza:onal	
boundaries.	 	

•  Defini:on	 proposed	 by	 the	 Open	 Group,	 the	 Object	 Management	 Group	
(OMG),	 and	 OASIS:	
–  Service-‐Oriented	 Architecture	 (SOA)	 is	 an	 architectural	 style	 in	 which	 a	

system	 is	 composed	 from	 a	 series	 of	 loosely	 coupled	 services	 that	
interact	 with	 each	 other	 by	 sending	 messages.	 	

–  In	 order	 to	 be	 independent	 from	 each	 other,	 each	 service	 publishes	 its	
descrip3on,	 which	 defines	 its	 interface	 and	 expresses	 constraints	 and	
policies	 that	 must	 be	 respected	 in	 order	 to	 interact	 with	 it.	 A	 service	 is	
thus	 a	 building	 block	 for	 SOA	 applica:ons.	

3

Security Challenges in SOA
•  A new threat landscape (Large attack surface)

–  Diverse security administration domains
•  Security across organizational boundaries

–  User/services may get compromised

•  Unauthorized external service invocation
–  User has no control on external service invocation within an

orchestration or through a service in another service domain
•  Businesses place a lot of trust in their partners (trust is not

transitive!)
•  Data leakage

–  Intermediate steps of service execution might expose messages to
hostile threats (data leakage)

•  Violations and malicious activities in a trusted service domain
remain undetected

•  Once one of the services is compromised, the whole system should
not fall apart! (APTs)

4

Problem Statement

•  The	 channels	 of	 communica:on	 between	 the	 par:cipa:ng	
en::es	 in	 a	 SOA	 applica:on	 are	 much	 more	 vulnerable:	
–  Compared	 to	 opera:ng	 systems	 or	 within	 the	 boundaries	
of	 an	 organiza:on’s	 computer	 network	

–  To	 alleviate	 the	 security	 vulnerabili:es	 that	 were	
introduced	 in	 the	 complex	 context	 of	 SOA	 applica:ons,	
numerous	 and	 oOen	 overlapping	 security	 standards	 by	 the	
industry	 actors	 exist.	

•  How	 to	 provide	 End-‐to-‐End	 audi8ng	 in	 SOA?	
•  How	 to	 define	 and	 build	 trust	 across	 domains?	

–  The	 trust	 issue	 is	 more	 complex	 in	 inter-‐organiza:onal	
context	 than	 it	 is	 in	 tradi:onal	 fields	 of	 compu:ng

5

SOA End to End Security Architecture

6

Attack Model

•  Attackers may have full access to the in-transit SOAP
messages (MITM attacks)

•  Attackers may gain full control of certain number of
services in a domain.

•  Some domains may have inside attackers
•  Trust broker (TTP) is secure.
•  Cloud providers support Trusted Computing facilities

(which is realistic with vTPM)

7

Proposed Approach

To address these challenges, we designed and
implemented:
–  A comprehensive security architecture for SOA.
–  A novel service invocation control mechanism for SOA using

dynamic taint analysis (TA)
–  A trust broker (TB) system that maintains trust and classifies

services. TB is used for dynamic validation and verification of
services and keeps track of history of service invocations.

–  functionality for using widely adopted web service WS-*
standards (WS-Security, WS-Trust)

–  A prototype implementation of proposed approaches based on
open source technologies

8

System Architecture and SOA Baseline
Scenario

1.  UDDI Registry request
2.  Forwarding the

service list to Trust
Broker and receive a
categorized list

3.  Invoking a selected
service

4.  Second invocation by
service in domain A

5.  Invoking a service in
public service domain

6.  End points (Reply to
user)

9

Trust Broker

1.  Calculates trust for a given set of services:
•  Given a set of services identified with UDDI service keys, Trust Broker

returns trust categories for all of those services as determined by the
Trust Evaluation Subsystem.

2.  Manages end to end user/service-invocation session.
10

Trust Broker
Trust Evaluation Subsystem
– Classification of services into Trust categories

•  Certified (supports WS-* specifications and has Taint
Analysis Module)

•  Trusted (having Trust value above threshold)
•  Untrusted (having Trust value below threshold)

– Trust calculation is based on parameters such as:
•  WS-* support specified in Service Level Agreement (SLA)
•  Trustworthiness of services in Orchestration specified in

SLA
•  History of previous service runs (Using sessions)
•  Taint analysis feedback
•  User experience feedback 11

Trust Broker

Trust Evaluation Subsystem
•  Calculating Trust

–  Using weighted moving average model
–  Recent feedbacks for a service are weighted more heavily than

feedback further in the past
–  The trust value for a service S, with SLA L, getting feedback F

at time t is updated using the equation:

where α < 0.5 and β is evaluated based on the appropriate WS-* supported

12

LFtTtT ss ×−+×−+−××=)1(])1()1([)(βααβ

sT

Trust Broker

Session Management Subsystem
•  Extending the Trust boundary

–  Manages end to end service invocation session
»  User creates a session with Trust Broker and selected service

•  Maintaining end to end Trust sessions across
different domains

•  Auditing service behavior including violation and
malicious activities
–  Taint Analysis and user feedback to Trust Broker for

updating Trust
–  Trust Maintenance

13

Taint Analysis

•  What is Taint Analysis/IFC (Information Flow
Control)?

•  How it fits into the proposed architecture?

–  Independent of services (We do not need to
change the services or access the source code
of services)

–  Interception of Service execution (Service will
remain transparent)

14

Taint Analysis

•  Using AOP (Aspect Oriented Programming)
–  Instrumenting classes based on predefined pointcuts
–  Low performance overhead (ideal solution)

•  How it works?
–  Load-time instrumentation
–  The whole Application server is under control
–  Flexible granularity

•  Package/Class level
•  Method level
•  Field level

–  Instrumenting classes in action pipeline

15

Taint Analysis of Services

16

Taint Analysis

•  Where to deploy this module?
– Only in Trusted Service Domains

•  Detection of insider attacks
•  Detection of compromised services
•  Detection of outbound connections

–  In Public Domain
•  Enforcing service composition policies

17

Interaction of Taint Analysis and Trust
Broker

18

Evaluation of the Proposed Solution

•  Security Evaluation
–  The implemented prototype will be evaluated in terms

of its effectiveness in mitigating various attacks
including the following attacks

–  XML Rewriting Attack

•  Performance Evaluation
–  Response Time
–  Throughput

19

XML Rewriting Attack

l  XML rewriting attack commonly refers to the class of
attacks which involve in modifying the SOAP message.
(Replay, Redirect, Man in the middle, multiple header
etc.)

l  Exploring how certain XML rewriting attacks can be
detected by the Taint Analysis component and Trust
Broker

WS Client Attacker Web service
provider

Cloud Performance Evaluation

•  Why Cloud computing?
–  Service-oriented
–  Utility-based
–  Shared
–  SLA-driven

•  Service domains were placed in Amazon EC2 AMIs
(Amazon Machine Instances)

•  We have conducted experiments to measure the
performance impact of using cloud computing.

•  We installed and configured the following components in
the Amazon Cloud (same configuration as on-site):
–  Jboss ESB Server and services
–  Trust Broker
–  UDDI 21

LAN Setup Client!

ROME!

Weather service!

Certified !
evacuation timer

service!

Trust Broker!

getEvacuationTime!

TA!
getWeatherReport!

sessionFeedback!

Create session!

BOSTON!

DAYTON!

22

LAN-Setting 300 Requests

23

LAN-Setting 400 Requests

24

Cloud Setup – Baseline

25

Cloud Setup – Taint Analysis

26

Amazon EC2- 300 Requests

27

Amazon EC2- 400 Requests

28

Conclusion

•  Proposed end to end security challenges
in SOA

•  Proposed a flexible security architecture
for auditing SOA

•  Proposed new holistic monitoring system
based on IFC and taint analysis

•  Conducted experiments on different
settings

29

Future Directions

•  IFC Policy Enforcement
•  Using TPMs along with taint analysis

framework to provide a stronger security
•  Providing active defense and attack-

resiliency using cloud computing

30

Questions?

31

