Design Problem

■ In the general setting:

Making decisions about the placement of data and programs across the sites of a computer network as well as possibly designing the network itself.

■ In Distributed DBMS, the placement of applications entails

→ placement of the distributed DBMS software; and
→ placement of the applications that run on the database
Dimensions of the Problem

- Access pattern behavior
 - dynamic
 - static
- Level of sharing
- Level of knowledge
 - partial information
 - complete information
- Data
- Data + program

Distribution Design

- **Top-down**
 - mostly in designing systems from scratch
 - mostly in homogeneous systems
- **Bottom-up**
 - when the databases already exist at a number of sites
Top-Down Design

Distribution Design Issues

- Why fragment at all?
- How to fragment?
- How much to fragment?
- How to test correctness?
- How to allocate?
- Information requirements?
Fragmentation

- Can’t we just distribute relations?
- What is a reasonable unit of distribution?
 - relation
 - views are subsets of relations ⇝ locality
 - extra communication
 - fragments of relations (sub-relations)
 - concurrent execution of a number of transactions that access different portions of a relation
 - views that cannot be defined on a single fragment will require extra processing
 - semantic data control (especially integrity enforcement) more difficult

Fragmentation Alternatives – Horizontal

PROJ₀¹ : projects with budgets less than $200,000
PROJ₀² : projects with budgets greater than or equal to $200,000

<table>
<thead>
<tr>
<th>PNO</th>
<th>PNAME</th>
<th>BUDGET</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Instrumentation</td>
<td>150000</td>
<td>Montreal</td>
</tr>
<tr>
<td>P2</td>
<td>Database</td>
<td>135000</td>
<td>New York</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PNO</th>
<th>PNAME</th>
<th>BUDGET</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>CAD/CAM</td>
<td>250000</td>
<td>New York</td>
</tr>
<tr>
<td>P4</td>
<td>Maintenance</td>
<td>310000</td>
<td>Paris</td>
</tr>
<tr>
<td>P5</td>
<td>CAD/CAM</td>
<td>500000</td>
<td>Boston</td>
</tr>
</tbody>
</table>
Fragmentation Alternatives – Vertical

PROJ₁: information about project budgets

<table>
<thead>
<tr>
<th>PNO</th>
<th>BUDGET</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>150000</td>
<td>Montreal</td>
</tr>
<tr>
<td>P2</td>
<td>135000</td>
<td>New York</td>
</tr>
<tr>
<td>P3</td>
<td>250000</td>
<td>New York</td>
</tr>
<tr>
<td>P4</td>
<td>310000</td>
<td>Paris</td>
</tr>
<tr>
<td>P5</td>
<td>500000</td>
<td>Boston</td>
</tr>
</tbody>
</table>

PROJ₂: information about project names and locations

<table>
<thead>
<tr>
<th>PNO</th>
<th>PNAME</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Instrumentation</td>
<td>Montreal</td>
</tr>
<tr>
<td>P2</td>
<td>Database Develop.</td>
<td>New York</td>
</tr>
<tr>
<td>P3</td>
<td>CAD/CAM</td>
<td>New York</td>
</tr>
<tr>
<td>P4</td>
<td>Maintenance</td>
<td>Paris</td>
</tr>
<tr>
<td>P5</td>
<td>CAD/CAM</td>
<td>Boston</td>
</tr>
</tbody>
</table>

Degree of Fragmentation

finite number of alternatives

<table>
<thead>
<tr>
<th>tuples or attributes</th>
</tr>
</thead>
</table>

Finding the suitable level of partitioning within this range
Correctness of Fragmentation

- **Completeness**
 - Decomposition of relation R into fragments $R_1, R_2, ..., R_n$ is complete if and only if each data item in R can also be found in some R_i.

- **Reconstruction**
 - If relation R is decomposed into fragments $R_1, R_2, ..., R_n$, then there should exist some relational operator \bigvee such that
 \[R = \bigvee_{1 \leq i \leq n} R_i \]

- **Disjointness**
 - If relation R is decomposed into fragments $R_1, R_2, ..., R_n$, and data item d_i is in R_j, then d_i should not be in any other fragment R_k ($k \neq j$).

Allocation Alternatives

- **Non-replicated**
 - partitioned: each fragment resides at only one site

- **Replicated**
 - fully replicated: each fragment at each site
 - partially replicated: each fragment at some of the sites

- **Rule of thumb:**
 \[
 \frac{\text{read - only queries}}{\text{update queries}} \geq 1 \quad \text{replication is advantageous,}
 \]
 otherwise replication may cause problems
Comparison of Replication Alternatives

<table>
<thead>
<tr>
<th></th>
<th>Full-replication</th>
<th>Partial-replication</th>
<th>Partitioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY PROCESSING</td>
<td>Easy</td>
<td>Same Difficulty</td>
<td></td>
</tr>
<tr>
<td>DIRECTORY MANAGEMENT</td>
<td>Easy or Non-existant</td>
<td>Same Difficulty</td>
<td></td>
</tr>
<tr>
<td>CONCURRENCY CONTROL</td>
<td>Moderate</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>RELIABILITY</td>
<td>Very high</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>REALITY</td>
<td>Possible application</td>
<td>Realistic</td>
<td>Possible application</td>
</tr>
</tbody>
</table>

Information Requirements

- Four categories:
 - Database information
 - Application information
 - Communication network information
 - Computer system information
Fragmentation

- Horizontal Fragmentation (HF)
 - Primary Horizontal Fragmentation (PHF)
 - Derived Horizontal Fragmentation (DHF)
- Vertical Fragmentation (VF)
- Hybrid Fragmentation (HF)

PHF – Information Requirements

- Database Information
 - relationship

 ![Database Diagram]

 - cardinality of each relation: \(\text{card}(R) \)
PHF - Information Requirements

Application Information

- **simple predicates**: Given $R[A_1, A_2, ..., A_n]$, a simple predicate p_j is

 $p_j : A_i \theta \text{ Value}$

 where $\theta \in \{=, \leq, \geq, \neq\}$, $\text{Value} \in D_i$ and D_i is the domain of A_i.

 For relation R we define $Pr = \{p_1, p_2, ..., p_m\}$

 Example:

 $PNAME = \text{"Maintenance"}$

 $\text{BUDGET} \leq 200000$

- **minterm predicates**: Given R and $Pr=\{p_1, p_2, ..., p_m\}$

 define $M=\{m_1, m_2, ..., m_r\}$ as

 $M=\{m_i \mid m_i = \wedge_{p_j \in Pr} p_j^*, 1 \leq j \leq m, 1 \leq i \leq z\}$

 where $p_j^* = p_j$ or $p_j^* = \neg(p_j)$.

Example

m_1: $PNAME = \text{"Maintenance"} \wedge \text{BUDGET} \leq 200000$

m_2: $\neg(PNAME = \text{"Maintenance"}) \wedge \text{BUDGET} \leq 200000$

m_3: $PNAME = \text{"Maintenance"} \wedge \neg(\text{BUDGET} \leq 200000)$

m_4: $\neg(PNAME = \text{"Maintenance"}) \wedge \neg(\text{BUDGET} \leq 200000)$
PHF – Information Requirements

- Application Information
 - minterm selectivities: \(\text{sel}(m_i) \)
 - The number of tuples of the relation that would be accessed by a user query which is specified according to a given minterm predicate \(m_i \).
 - access frequencies: \(\text{acc}(q_i) \)
 - The frequency with which a user application \(q_i \) accesses data.
 - Access frequency for a minterm predicate can also be defined.

Primary Horizontal Fragmentation

Definition:

\[
R_j = \sigma_{F_j}(R), \quad 1 \leq j \leq w
\]

where \(F_j \) is a selection formula, which is (preferably) a minterm predicate.

Therefore,

A horizontal fragment \(R_j \) of relation \(R \) consists of all the tuples of \(R \) which satisfy a minterm predicate \(m_i \).

\[
\downarrow
\]

Given a set of minterm predicates \(M \), there are as many horizontal fragments of relation \(R \) as there are minterm predicates.

Set of horizontal fragments also referred to as minterm fragments.
PHF – Algorithm

Given: A relation R, the set of simple predicates Pr
Output: The set of fragments of $R = \{R_1, R_2, \ldots, R_w\}$ which obey the fragmentation rules.

Preliminaries:
- Pr should be complete
- Pr should be minimal

Completeness of Simple Predicates

- A set of simple predicates Pr is said to be complete if and only if the accesses to the tuples of the minterm fragments defined on Pr requires that two tuples of the same minterm fragment have the same probability of being accessed by any application.

- Example:
 - Assume PROJ[PNO,PNAME,BUDGET,LOC] has two applications defined on it.
 - Find the budgets of projects at each location. (1)
 - Find projects with budgets less than 200000. (2)
Completeness of Simple Predicates

According to (1),

\[Pr = \{ \text{LOC} = \text{"Montreal"}, \text{LOC} = \text{"New York"}, \text{LOC} = \text{"Paris"} \} \]

which is not complete with respect to (2).

Modify

\[Pr = \{ \text{LOC} = \text{"Montreal"}, \text{LOC} = \text{"New York"}, \text{LOC} = \text{"Paris"}, \text{BUDGET} \leq 200000, \text{BUDGET} > 200000 \} \]

which is complete.

Minimality of Simple Predicates

- If a predicate influences how fragmentation is performed, (i.e., causes a fragment \(f \) to be further fragmented into, say, \(f_i \) and \(f_j \)) then there should be at least one application that accesses \(f_i \) and \(f_j \) differently.
- In other words, the simple predicate should be relevant in determining a fragmentation.
- If all the predicates of a set \(Pr \) are relevant, then \(Pr \) is minimal.

\[
\frac{\text{acc}(m_i)}{\text{card}(f_i)} \neq \frac{\text{acc}(m_j)}{\text{card}(f_j)}
\]
Minimality of Simple Predicates

Example:

\[Pr = \{ \text{LOC} = \text{Montreal}, \text{LOC} = \text{New York}, \text{LOC} = \text{Paris}, \text{BUDGET} \leq 200000, \text{BUDGET} > 200000 \} \]

is minimal (in addition to being complete).
However, if we add

\[\text{PNAME} = \text{"Instrumentation"} \]

then \(Pr \) is not minimal.

COM_MIN Algorithm

Given: a relation \(R \) and a set of simple predicates \(Pr \)

Output: a complete and minimal set of simple predicates \(Pr' \) for \(Pr \)

Rule 1: a relation or fragment is partitioned into at least two parts which are accessed differently by at least one application.
COM_MIN Algorithm

1. **Initialization**:
 - find a \(p_i \in Pr \) such that \(p_i \) partitions \(R \) according to Rule 1
 - set \(Pr' = p_i \); \(Pr \leftarrow Pr - p_i \); \(F \leftarrow f_i \)

2. **Iteratively add predicates to \(Pr' \) until it is complete**
 - find a \(p_j \in Pr \) such that \(p_j \) partitions some \(f_k \) defined according to minterm predicate over \(Pr' \) according to Rule 1
 - set \(Pr' = Pr' \cup p_j \); \(Pr \leftarrow Pr - p_j \); \(F \leftarrow F \cup f_i \)
 - if \(\exists p_k \in Pr' \) which is nonrelevant then
 - \(Pr' \leftarrow Pr' - p_k \)
 - \(F \leftarrow F - f_k \)

PHORIzONTAL Algorithm

Makes use of COM_MIN to perform fragmentation.

Input: a relation \(R \) and a set of simple predicates \(Pr \)

Output: a set of minterm predicates \(M \) according to which relation \(R \) is to be fragmented

1. \(Pr' \leftarrow \text{COM_MIN} (R, Pr) \)
2. determine the set \(M \) of minterm predicates
3. determine the set \(I \) of implications among \(p_i \in Pr \)
4. eliminate the contradictory minterms from \(M \)
PHF – Example

- Two candidate relations: PAY and PROJ.
- Fragmentation of relation PAY
 - Application: Check the salary info and determine raise.
 - Employee records kept at two sites ⇒ application run at two sites
 - Simple predicates
 - \(p_1: \text{SAL} \leq 30000 \)
 - \(p_2: \text{SAL} > 30000 \)
 - \(Pr = \{p_1, p_2\} \) which is complete and minimal \(Pr' = Pr \)
 - Minterm predicates
 - \(m_1: (\text{SAL} \leq 30000) \)
 - \(m_2: \text{NOT}(\text{SAL} \leq 30000) = (\text{SAL} > 30000) \)

PHF – Example

<table>
<thead>
<tr>
<th>PAY(_1)</th>
<th>PAY(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>SAL</td>
</tr>
<tr>
<td>Mech. Eng.</td>
<td>27000</td>
</tr>
<tr>
<td>Programmer</td>
<td>24000</td>
</tr>
<tr>
<td>TITLE</td>
<td>SAL</td>
</tr>
<tr>
<td>Elect. Eng.</td>
<td>40000</td>
</tr>
<tr>
<td>Syst. Anal.</td>
<td>34000</td>
</tr>
</tbody>
</table>
PHF – Example

[Fragmentation of relation PROJ]

Applications:
- Find the name and budget of projects given their no.
 - Issued at three sites
- Access project information according to budget
 - One site accesses ≤ 200000 other accesses > 200000

Simple predicates
- For application (1)
 - \(p_1 : \text{LOC} = \text{“Montreal”} \)
 - \(p_2 : \text{LOC} = \text{“New York”} \)
 - \(p_3 : \text{LOC} = \text{“Paris”} \)

- For application (2)
 - \(p_4 : \text{BUDGET} \leq 200000 \)
 - \(p_5 : \text{BUDGET} > 200000 \)

\[Pr = Pr' = \{p_1, p_2, p_3, p_4, p_5\} \]

Minterm fragments left after elimination

- \(m_1 : (\text{LOC} = \text{“Montreal”}) \land (\text{BUDGET} \leq 200000) \)
- \(m_2 : (\text{LOC} = \text{“Montreal”}) \land (\text{BUDGET} > 200000) \)
- \(m_3 : (\text{LOC} = \text{“New York”}) \land (\text{BUDGET} \leq 200000) \)
- \(m_4 : (\text{LOC} = \text{“New York”}) \land (\text{BUDGET} > 200000) \)
- \(m_5 : (\text{LOC} = \text{“Paris”}) \land (\text{BUDGET} \leq 200000) \)
- \(m_6 : (\text{LOC} = \text{“Paris”}) \land (\text{BUDGET} > 200000) \)
PHF – Example

<table>
<thead>
<tr>
<th>PROJ₁</th>
<th>PROJ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNO</td>
<td>PNAME</td>
</tr>
<tr>
<td>P1</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>P2</td>
<td>Database Develop.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJ₄</th>
<th>PROJ₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNO</td>
<td>PNAME</td>
</tr>
<tr>
<td>P3</td>
<td>CAD/CAM</td>
</tr>
<tr>
<td>P4</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

PHF – Correctness

- **Completeness**
 - Since Pr' is complete and minimal, the selection predicates are complete.

- **Reconstruction**
 - If relation R is fragmented into $F_R = \{R_1, R_2, \ldots, R_r\}$

 $$R = \bigcup_{i \in FR} R_i$$

- **Disjointness**
 - Mintern predicates that form the basis of fragmentation should be mutually exclusive.
Derived Horizontal Fragmentation

- Defined on a member relation of a link according to a selection operation specified on its owner.
 - Each link is an equijoin.
 - Equijoin can be implemented by means of semijoins.

![Diagram]

DHF – Definition

Given a link L where $\text{owner}(L)=S$ and $\text{member}(L)=R$, the derived horizontal fragments of R are defined as

$$R_i = R \bowtie_F S_i, \quad 1 \leq i \leq w$$

where w is the maximum number of fragments that will be defined on R and

$$S_i = \sigma_{F_i}(S)$$

where F_i is the formula according to which the primary horizontal fragment S_i is defined.
DHF – Example

Given link L_1 where $\text{owner}(L_1)=\text{SKILL}$ and $\text{member}(L_1)=\text{EMP}$

$$\text{EMP}_1 = \text{EMP} \bowtie \text{SKILL}_1$$
$$\text{EMP}_2 = \text{EMP} \bowtie \text{SKILL}_2$$

where

$$\text{SKILL}_1 = \sigma_{\text{SAL} \leq 30000}(\text{SKILL})$$
$$\text{SKILL}_2 = \sigma_{\text{SAL} > 30000}(\text{SKILL})$$

<table>
<thead>
<tr>
<th>EMP</th>
<th>ENO</th>
<th>ENAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4</td>
<td>J. Miller</td>
<td>Programmer</td>
<td></td>
</tr>
</tbody>
</table>

DHF – Correctness

- Completeness
 - Referential integrity
 - Let R be the member relation of a link whose owner is relation S which is fragmented as $F_S = \{S_1, S_2, ..., S_n\}$. Furthermore, let A be the join attribute between R and S. Then, for each tuple t of R, there should be a tuple t' of S such that
 $$t[A]=t'[A]$$

- Reconstruction
 - Same as primary horizontal fragmentation.

- Disjointness
 - Simple join graphs between the owner and the member fragments.
Vertical Fragmentation

- Has been studied within the centralized context
 - design methodology
 - physical clustering
- More difficult than horizontal, because more alternatives exist.
 Two approaches:
 - grouping
 - attributes to fragments
 - splitting
 - relation to fragments

Vertical Fragmentation

- Overlapping fragments
 - grouping
- Non-overlapping fragments
 - splitting

We do not consider the replicated key attributes to be overlapping.

Advantage:

 Easier to enforce functional dependencies
 (for integrity checking etc.)
VF – Information Requirements

Application Information
- Attribute affinities
 - a measure that indicates how closely related the attributes are
 - This is obtained from more primitive usage data
- Attribute usage values
 - Given a set of queries \(Q = \{q_1, q_2, \ldots, q_n\} \) that will run on the relation \(R[A_1, A_2, \ldots, A_n] \),

\[
use(q_i, A_j) = \begin{cases}
1 & \text{if attribute } A_j \text{ is referenced by query } q_i \\
0 & \text{otherwise}
\end{cases}
\]

\(use(q_i, *) \) can be defined accordingly.

VF – Definition of \(use(q_i, A_j) \)

Consider the following 4 queries for relation PROJ

\[
\begin{align*}
q_1: & \quad \text{SELECT} \quad \text{BUDGET} \\
& \quad \text{FROM} \quad \text{PROJ} \\
& \quad \text{WHERE} \quad \text{PNO=Value}
\end{align*}
\]

\[
\begin{align*}
q_2: & \quad \text{SELECT} \quad \text{PNAME, BUDGET} \\
& \quad \text{FROM} \quad \text{PROJ}
\end{align*}
\]

\[
\begin{align*}
q_3: & \quad \text{SELECT} \quad \text{PNAME} \\
& \quad \text{FROM} \quad \text{PROJ} \\
& \quad \text{WHERE} \quad \text{LOC=Value}
\end{align*}
\]

\[
\begin{align*}
q_4: & \quad \text{SELECT} \quad \text{SUM(BUDGET)} \\
& \quad \text{FROM} \quad \text{PROJ} \\
& \quad \text{WHERE} \quad \text{LOC=Value}
\end{align*}
\]

Let \(A_1 = \text{PNO}, A_2 = \text{PNAME}, A_3 = \text{BUDGET}, A_4 = \text{LOC} \)

\[
\begin{bmatrix}
A_1 & A_2 & A_3 & A_4 \\
q_1 & 1 & 0 & 1 & 0 \\
q_2 & 0 & 1 & 1 & 0 \\
q_3 & 0 & 1 & 0 & 1 \\
q_4 & 0 & 0 & 1 & 1
\end{bmatrix}
\]
VF – Affinity Measure $aff(A_i, A_j)$

The attribute affinity measure between two attributes A_i and A_j of a relation $R[A_1, A_2, \ldots, A_n]$ with respect to the set of applications $Q = (q_1, q_2, \ldots, q_q)$ is defined as follows:

$$
aff(A_i, A_j) = \sum_{\text{all queries that access } A_i \text{ and } A_j} \text{(query access)}
$$

$$
\text{query access} = \sum_{\text{all sites}} \text{access frequency of a query} \times \frac{\text{access execution}}{\text{all sites}}
$$

Assume each query in the previous example accesses the attributes once during each execution.

Also assume the access frequencies

q_1 = \begin{bmatrix} 15 & 20 & 10 \end{bmatrix}
q_2 = \begin{bmatrix} 5 & 0 & 0 \end{bmatrix}
q_3 = \begin{bmatrix} 25 & 25 & 25 \end{bmatrix}
q_4 = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}

Then

$$
aff(A_1, A_3) = 15 \times 1 + 20 \times 1 + 10 \times 1 = 45
$$

and the attribute affinity matrix AA is

$$
AA = \begin{bmatrix} 45 & 0 & 45 & 0 \\
0 & 80 & 5 & 75 \\
45 & 5 & 53 & 3 \\
0 & 75 & 3 & 78 \end{bmatrix}
$$
VF – Clustering Algorithm

- Take the attribute affinity matrix AA and reorganize the attribute orders to form clusters where the attributes in each cluster demonstrate high affinity to one another.
- Bond Energy Algorithm (BEA) has been used for clustering of entities. BEA finds an ordering of entities (in our case attributes) such that the global affinity measure

$$AM = \sum_i \sum_j (\text{affinity of } A_i \text{ and } A_j \text{ with their neighbors})$$

is maximized.

Bond Energy Algorithm

Input: The AA matrix
Output: The clustered affinity matrix CA which is a perturbation of AA

1. Initialization: Place and fix one of the columns of AA in CA.
2. Iteration: Place the remaining $n-i$ columns in the remaining $i+1$ positions in the CA matrix. For each column, choose the placement that makes the most contribution to the global affinity measure.
3. Row order: Order the rows according to the column ordering.
Bond Energy Algorithm

“Best” placement? Define contribution of a placement:

$$\text{cont}(A_i, A_h, A_j) = 2\text{bond}(A_i, A_h) + 2\text{bond}(A_h, A_i) - 2\text{bond}(A_i, A_j)$$

where

$$\text{bond}(A_x, A_y) = \sum_{z=1}^{kn} \text{aff}(A_z, A_x) \text{aff}(A_z, A_y)$$

BEA – Example

Consider the following AA matrix and the corresponding CA matrix where A1 and A2 have been placed. Place A3:

$$\text{AA} = \begin{bmatrix}
A_1 & A_2 & A_3 & A_4 \\
A_1 & 45 & 0 & 5 & 0 \\
A_2 & 0 & 80 & 5 & 75 \\
A_3 & 45 & 5 & 53 & 3 \\
A_4 & 0 & 75 & 3 & 78
\end{bmatrix}
\quad \text{CA} = \begin{bmatrix}
A_1 & A_2 \\
A_1 & 45 & 0 \\
A_2 & 0 & 80 \\
A_3 & 45 & 5 \\
A_4 & 0 & 75
\end{bmatrix}$$

Ordering (0-3-1):

$$\text{cont}(A_0, A_3, A_1) = 2\text{bond}(A_0, A_3) + 2\text{bond}(A_3, A_1) - 2\text{bond}(A_0, A_1)$$

$$= 2 \times 0 + 2 \times 4410 - 2 \times 0 = 8820$$

Ordering (1-3-2):

$$\text{cont}(A_1, A_3, A_2) = 2\text{bond}(A_1, A_3) + 2\text{bond}(A_3, A_2) - 2\text{bond}(A_1, A_2)$$

$$= 2 \times 4410 + 2 \times 890 - 2 \times 225 = 10150$$

Ordering (2-3-4):

$$\text{cont}(A_2, A_3, A_4) = 1780$$
Therefore, the CA matrix has to form

\[
\begin{bmatrix}
A_1 & A_3 & A_2 \\
45 & 45 & 0 \\
0 & 5 & 80 \\
45 & 53 & 5 \\
0 & 3 & 75 \\
\end{bmatrix}
\]

When \(A_4 \) is placed, the final form of the CA matrix (after row organization) is

\[
\begin{bmatrix}
A_1 & A_3 & A_2 & A_4 \\
A_1 & 45 & 45 & 0 & 0 \\
A_3 & 45 & 53 & 5 & 3 \\
A_2 & 0 & 5 & 80 & 75 \\
A_4 & 0 & 3 & 75 & 78 \\
\end{bmatrix}
\]
VF – Algorithm

How can you divide a set of clustered attributes \(\{A_1, A_2, \ldots, A_n\} \) into two (or more) sets \(\{A_1, A_2, \ldots, A_i\} \) and \(\{A_i, \ldots, A_n\} \) such that there are no (or minimal) applications that access both (or more than one) of the sets.

![Diagram](image)

VF – Algorithm

Define

- \(TQ \) = set of applications that access only \(TA \)
- \(BQ \) = set of applications that access only \(BA \)
- \(OQ \) = set of applications that access both \(TA \) and \(BA \)

and

- \(CTQ = \) total number of accesses to attributes by applications that access only \(TA \)
- \(CBQ = \) total number of accesses to attributes by applications that access only \(BA \)
- \(COQ = \) total number of accesses to attributes by applications that access both \(TA \) and \(BA \)

Then find the point along the diagonal that maximizes

\[CTQ \times CBQ – COQ^2 \]
VF – Algorithm

Two problems:

1. Cluster forming in the middle of the CA matrix
 - Shift a row up and a column left and apply the algorithm to find the “best” partitioning point
 - Do this for all possible shifts
 - Cost $O(m^2)$

2. More than two clusters
 - m-way partitioning
 - Try $1, 2, \ldots, m-1$ split points along diagonal and try to find the best point for each of these
 - Cost $O(2^m)$

VF – Correctness

A relation R, defined over attribute set A and key K, generates the vertical partitioning $F_R = \{R_1, R_2, \ldots, R_r\}$.

- Completeness
 - The following should be true for A:
 $$A = \bigcup A_{R_i}$$

- Reconstruction
 - Reconstruction can be achieved by
 $$R = \bowtie_{R_i} \forall R_i \in F_R$$

- Disjointness
 - TID’s are not considered to be overlapping since they are maintained by the system
 - Duplicated keys are not considered to be overlapping
Hybrid Fragmentation

Problem Statement

Given

\[F = \{ F_1, F_2, ..., F_n \} \] fragments
\[S = \{ S_1, S_2, ..., S_m \} \] network sites
\[Q = \{ q_1, q_2, ..., q_q \} \] applications

Find the "optimal" distribution of \(F \) to \(S \).

Optimality

- Minimal cost
 - Communication + storage + processing (read & update)
 - Cost in terms of time (usually)
- Performance
 - Response time and/or throughput
- Constraints
 - Per site constraints (storage & processing)
Information Requirements

- Database information
 - selectivity of fragments
 - size of a fragment

- Application information
 - access types and numbers
 - access localities

- Communication network information
 - unit cost of storing data at a site
 - unit cost of processing at a site

- Computer system information
 - bandwidth
 - latency
 - communication overhead

Allocation

File Allocation (FAP) vs Database Allocation (DAP):
- Fragments are not individual files
 - relationships have to be maintained
- Access to databases is more complicated
 - remote file access model not applicable
 - relationship between allocation and query processing
- Cost of integrity enforcement should be considered
- Cost of concurrency control should be considered
Allocation – Information Requirements

- Database Information
 - selectivity of fragments
 - size of a fragment
- Application Information
 - number of read accesses of a query to a fragment
 - number of update accesses of query to a fragment
 - A matrix indicating which queries updates which fragments
 - A similar matrix for retrievals
 - originating site of each query
- Site Information
 - unit cost of storing data at a site
 - unit cost of processing at a site
- Network Information
 - communication cost/frame between two sites
 - frame size

Allocation Model

General Form

\[\text{min}(\text{Total Cost}) \]

subject to

- response time constraint
- storage constraint
- processing constraint

Decision Variable

\[x_{ij} = \begin{cases} 1 & \text{if fragment } F_i \text{ is stored at site } S_j \\ 0 & \text{otherwise} \end{cases} \]
Allocation Model

- **Total Cost**

\[
\sum_{\text{all queries}} \text{query processing cost} + \sum_{\text{all sites}} \sum_{\text{all fragments}} \text{cost of storing a fragment at a site}
\]

- **Storage Cost** (of fragment \(F_j\) at \(S_k\))

\[(\text{unit storage cost at } S_k) \times (\text{size of } F_j) \times x_{jk}\]

- **Query Processing Cost** (for one query)

 - processing component + transmission component

Allocation Model

- **Query Processing Cost**

 - **Processing component**

 access cost + integrity enforcement cost + concurrency control cost

 - **Access cost**

 \[
 \sum_{\text{all sites}} \sum_{\text{all fragments}} (\text{no. of update accesses} + \text{no. of read accesses}) \times x_{ij} \times \text{local processing cost at a site}
 \]

 - **Integrity enforcement and concurrency control costs**

 - Can be similarly calculated
Allocation Model

- **Query Processing Cost**

 Transmission component

 cost of processing updates + cost of processing retrievals

 → **Cost of updates**

 \[\sum_{\text{all sites}} \sum_{\text{all fragments}} \text{update message cost} + \sum_{\text{all sites}} \sum_{\text{all fragments}} \text{acknowledgment cost} \]

 → **Retrieval Cost**

 \[\sum_{\text{all fragments}} \min_{\text{all sites}} (\text{cost of retrieval command} + \text{cost of sending back the result}) \]

Constraints

- **Response Time**

 execution time of query ≤ max. allowable response time for that query

 → **Storage Constraint (for a site)**

 \[\sum_{\text{all fragments}} \text{storage requirement of a fragment at that site} \leq \text{storage capacity at that site} \]

 → **Processing constraint (for a site)**

 \[\sum_{\text{all queries}} \text{processing load of a query at that site} \leq \text{processing capacity of that site} \]
Allocation Model

- **Solution Methods**
 - FAP is NP-complete
 - DAP also NP-complete

- **Heuristics based on**
 - single commodity warehouse location (for FAP)
 - knapsack problem
 - branch and bound techniques
 - network flow

Allocation Model

- **Attempts to reduce the solution space**
 - assume all candidate partitionings known; select the “best” partitioning
 - ignore replication at first
 - sliding window on fragments