A Decentralized Termination Protocol”

Dals Skeen

Computer Science [Nvision
EECS Depariment
University of Califormia
Berkeley, Califormia

Abstract

The smallest recoverable unit of work in a distributed
database system is a transaction. Whenever site fallures
leave the processing ol a distributed transaction in a
(potentially) unsale state, a fermination protocol is
invoked Lo restore the database Lo a sale state enabling
operational sites to proceed with future transactions. In
Lthis paper we propose one such termination protocol and
sketch a proof of its correciness. The protocel iz an
example of a decentralized protocol. where each site
assumes an equal and symmetric role. The proposed
protocol 1= resilient to all combinations of site failures
that do not partition the netwdbi.

1. Intreduction

The smallest recoverable unit of work in a distri-
buted database systemn is a transacfion. Whenever site
failures leave the processing of a distributed transaction
in a (potentially) unsafe state, & fermination protocol is
invoked. The goal of a termination protoecol iz te move
the database Lo a consistent state by either backing out
the transaction at all participating sites or by {recover-
ably) installing the updates at all operational sites,

In this paper we propose one such termination pro-
tocol and sketch a proof of its correctness. The protocol
is an example of o decentralized prolocol. In & decen-
tralized protocol, each site assumes an equal and sym-
metric role. This can be contrasted with the more popu-
lar centralized protocols where master/slave relation-
ships exist among the sites.

The remainder of the paper is organized as follows,
In the second section, we develop the necessary back-
ground material which includes defining and discussing
termination and decentralized protocols. In the third
section we introduce an example of a nonblocking com-
mit protocol. The example is included for two reasons.
First, an understanding of commil protocel is essential
toward an understanding of termination protocols.
Secondly, it is a good example of a decentralized proto-
col. In the fourth section, we present a decentralized
termination protocol which is resilient to arbitrary site
failures. Aslong as a single site remains operational. the
protocol is guaranteed to terminate the transaction in a
consistent state. We also sketch a brief proof of correct-
ness. The fifth and last section summarizes the atbri-
butes of the proposed protocol.

Throughout the paper. we assume that the underly-
ing communications network provides point-to-point
communications between any Lwo operational sites

This research waa wponsored by the US, Air Force Office of
Sclentific Research Grant 783580, the U.5. Army Research Office Grani
DAAG2e-70-0G-0240, and the Nawal Elecwronics Symems Command Con-
tract NODO3G-T8-C-0013,

CH1632-9/81/0000/0027%00.75 © 1981 IEEE

(however, we do not require that messages be received in
the order sent). We also mssume that the netwerk can
detect and verify site failures by timeouts and by obsery-
ing unsuccessful attempts at retransmission.

In addition to site failures. the proposed protocol
can be made resilient to network partitions, arbitrary
message logs, and to unecertsinty in the type of failure
observed. These extensions are outside the scope of this
paper, but are discussed in [SKEEB1c].

2. Background

By definition a trensaction on a distributed data-
base system is a {logically) atomic eperation: it must be
processed at all sites or at none of them. Designing pro-
tocols for transacltion management thal are resilient to
various failures, including arbitrary site failures and par-
titioning of the communications network. is & wery
difficult problem. We now discuss some of the aspecta of
resilient transaclion management.

Preserving transaction atomicity in the single site
case is a well understood problem [LIND7?8, GRAY79].
The processing of a single transaction 15 viewed as fol-
lows. At some time during its execution, a commi! poind
is reached where the site decides to commit or to obort
the transaction. A commif is an unconditional guarantee
to execule the transaction to completion. even in the
event of multiple [ailures. Similarly. an abort is an
uneconditional guarantee Lo basck sul the transaction so
that none of its results persist. If a failure ozcurs before
the eommilt peinl is reached. then immediately upon
recovery the site will abort the transaction. Both com-
mit and abort are irreveraible.

The problem of guaranteeing transaction atemieity
is compounded when more than one site is involved.
Assuming that each site has a local recovery sirategy
which provides stomicity at the local level, the problem
becomes one of insuring that the sites either unpani-
mously abort or unanimously commit. A mixed decision
results in an inconsistent data base. Protocols for
preserving transaction atomicity are called commit

tocols. Several commit protocols have been proposed
fTLSBTB. ELLI7TY. GRAY79. HAMM7Y9, LAMPT8, LINDTS,
SKEEB1b, STONT3]).

For many applications it is intolerable for opera-
tional sites to be forced Lo indefinitely block the pro-
gress ol a transaction until a failed site has recovered.
Instead, it is preferable for the operational site Lo abort
the transaction (if necessary) so that the locks required
v Lhe transaction can be released. Commil protocols
that never leave transaction processing in & state where
operationel sites must wait until the recovery of a failed
site before a consistent commit decision (e.g. abort or
gommit) can be reached are called nonblocking. Non-
hlnch:in[_pruim::uls have heen proposed in [HA_HH.?'II,

SKEEHLL). In Section J we review a RONDIOCKING commil
protocol and its properties,

Termination Protocols

Termination protocols are used in conjunction with
nonblocking commit protocols. A termination protocol is
invoked when pccurrences of site failures render the
continued execution ef the commit protocol impassible
The purpose of the termnation protocol is Lo identily the
operational sites and move Lhem toward a commit deei-
sion whigh i consistent with both operational sites and
failed sites. It is the responsibility of a nonblocking cem-
mit protocol to always leave transaction processing in a
state such that the terminalion proteceol can proceed.
The major contribution of this paper is the Lermination
protocol presented in Section 4.

Decentralized Protocols

in a (completely) decentrelized protocol, as Lhe
name suggests. there 1s no hierarchical ordering of the
gites, Instead. each site communicales with every other
site, and each site assumes s symmelric role.

A decentralized protosal conmsls ol successive
rounds of message interchanges where every operational
site participates in every round. Within a single round. a
site sends identical messages to all of the other partic:-
paling sites, and then waits to receive a message from
each of them. OFf course, a site may fail while zending its
messages during a round and only send Lo a subset of its
intended recevers.

A very simple example of & decentralized protocol is
the simple decentrolized commit protocol which is the
decentralized analog of the centralized two-phase com-
mit protaeol. Assumning that a transaction has been sent
o each site for processing. the protocel consists of a sine
gle message round whers sach site sends its vote (“yes’
to commit. “no” Lo abort) to all of the other sites. After
a site has collected votes (rom all of the other sites, il
will commit only if all voles were “yes’, Like the iwo-
phase commil protocol, this protocol is functionally
correct but not very robust.

Decentralized protocels require m{n - 1) pownt-to-
point messages during a round, where n is the number of
participants. If a broadeast faeility is present. then this
reduces to n broadeast messages. Therefore, decentral-
{zed protocols are atiractive only in networks where
messages are cheap or a broadcast facility is available
Fortunately, one or bokh of these conditions are likely Lo
be true in a high speed local area network (e.g. ETHER-
NET [METC78]). Hecause af their inherent symmeLry.
decentralized protocols tend to be easier to understand
and to implement Lhan centralized protocols.

9. A Nonblocking Deeentralized Commit Protoeol

We illustraied a simple commit protocol in the pre-
vious section, Unfortunately, it is not a very robust pro-
toeol: it often blocks the progress of a Lransaclion when
gites fail. We now present a nonblocking commil prota-
col. In addition ts serving as anolher, more complex
example of a decentralized prolocol it will also antro-
duce the commen properties of all nonblocking proto-

cols. These properties are used in the design of termina-
tion proloeals, H

The nonblocking decentralized commit protocol was
first introduced in [SKEEB1b].

The Protocol

The nonblocking protocol is derived from the simpls
protocol by adding another message round and delaying

the commit point of a transaction until the end of the
segond round.

In the simple commit protocal, a site would commut
at the end of the single message round if all sites had
voted yes. In the nonblocking version of the protocol. an
all yes vote would trigger a second round of messages.
where sach site sends prepaored to commit messages and
waits. Upon receiwing prepared fo commil meisages
from all of its cohorts, 2 site will then commit the Lran-
sn;:uun. (The protocol is given in its entirety in Figure
1

Whenever & site detects the failure of another site
whilz executing the commit protocol, it will invoke a ter-
mination protocol. The detection of the [ailure and the

subsequent invocation can ccour during either measage
round.

Properties of Nonblecking Commil Protocols

In the nonblocking decentralized commit protocol.
we can idenlily five distinct states in processing a tran-
saction. Briefly, they are: an tnifial state where the site
|5 waiting to receiwve Lhe transaction: a waud state where
the site has voled “yes” and is waiting for all of the other
votes; a prepared state where the site has sent "prepared
to commit” messages and is wailing for a similar mes-

sage from all cohorts: and Lwe final states, sbert and
cammmait.

The transaction states of any commit protocol can
be partitioned ints two sets: committable and noncom-
mittable. A state is called committable if occupancy of
that state by any site implies that all sites have voted
"yes” on committing the transaction. A state that is not
a commitlable state |5 called momcommitiable.' In the
nonblocking commil protocol presented above, both the

Initial Phase. Transaclbion is sent to all sites.

First Round. Each site broadcasts its vote, yes or no,
for the Lransaction. =

If & site receives all yes votes during this round,
then a second round is imtiated. Otberwise, the
sile aborts the transaction.

Second Round. Each sile broadeasts a prepared ta com-
mil message.

Upon receiving a prepored... message {rom each
of its cohorts. a site commits the transaction.

Figure 1. The nonblocking decentralized commit proto-
col

—

Ta eall nomcomemifabls riates sbortsbls would be musleading,

winee & Lransactian that 1 not in e finel commuil slaic &1 &Ny Mic can
#:1] he aborted

prepare state and the commit stale are committable
states; the remaining states are noncommittable.

All nonblocking protocels exhibit the [ollowing pro-
perties {see [SKEEB1b]):

(1} all operational siles occupy committable states
before the transaction is commitied ab any site,

all operational .sites cccupy noncornmittable states
before the transaction is aborted at any site.

{2)

4. A Decentralized Termination Protocaol

A Lermination protocol must guarantee that every
operational site terminates the Lranssction in a con-
siatent state. The correct execution of a termination
protocol depends on the properties af commit protocels
described in Lhe previous seclion.

Two issues complicate the design of a Lermination
protocol. First, it must be resilient to subsequent site
fallures. And second, sites may detect a given lailure at
different points in their protocol. For example, some
sites may detect a [ailure in round one of the nonblock-
ing decentralized protocol while others will nol detect it
until the second round.

First, we will present a stmple decentralized termi-
nalion protocol that is nol resilient Lo further site
faillures during its execution. This will serve to introduce

the basic ideas used in & decentralized termination pro-
Locol.

We will then present an extension of the simple pro-
tocol that is resilient Lo all combinations of site fallures
that do not partition the network. Normally the resilient
termination protocol will require twe rounds of message
interchanges; howsver, additional site failures during the
execution of the protocol may cause additional rounds.
The maxmum number of rounds is equal to the imitial
number of operational sites

Ta simplify notation. we will speak as though sites
senl messages to themselves during a round. We will
2lso refer Lo operational sites simply as the participonts,

A Simple Termination Protocol

The protocol consists of a single round of messages
During this round, the message sent by a site 15 deter-
mined solely by its current transaction state. There are
three possible messages:

abert (I the transaction state is a final abort
state.

commitlable il the transaction state is a com-
mittable state, and

noncommitinble il the transaction state is nei-

ther & committable state nor an abort
state.

Upon receiving messages from all the participants,

& site will move directly Lo a final stale according to the
lollowing ruls:

Simple Commil Rule. If al lvast one cammedtable

message is recewved, then commit the transac-
tion; otherwise, abort it

As an example of using the protocol, consider invok-
ing il from the nonblocking decentralized commat proto.
col described in Section 3, A site will send an abart mee-
sage il it currently ocoupies the abort state; it will send
a commitiable message if it cu.rently occupies either
the prepared state or the commit state; and it will send
a moncommutioble message if il occupies either the

tnitial state or the wait state,

=

It is straightforward to argue the correctness of the
protocol. We observe that the transaction is ceommitted
if and only if one of the participants is initially in & com-
millable state. From the properties of nenblocking com-
mit protocols given in Section 3, we know that cecupancy
of a commitiable state al any site implies that all sites
can commit the transaction: furthermore, itimplies thal
no site has aborted the transaction. Therefore, we con-
clude that the simple terminatian protocol is correct.

This protocol is not very robust as is demonstrated
in the following scenario involving three sites. Let Site |
be the only site in a committable state upon entry into
the termination protocel, and let Site 1 fail after sending
a commiliable message Lo Site 2. AL the end of Lhe first
message round, Sike 2 would have received one commiti-
abie message (from Site 1) and one noncommitiable
message (from Site 3), Site 3 would have received no
messages from Sile | and a noncommitiable message
fram Site 2. Clearly, Site 3 cannol safely proceed until it
queries Site Z as to Lthe state of the (ailed site. If Site 2
fails at this point, Lthen Site 3 must bluck the transac-
Lion.

The protocol cannot be made more robust by chang-
ing the commit rule. For example. if the rule was to
commit only afler all sites had sent commitiable mes-
sages, then a blocking scenario thal is the mirror image
of the above scenario could be contrived. IL is [airly
intuitive (and can be shown formally) that no “single

round” terrmination protocol is resilient to arbitrary site
failures.

A RHesilient Termination Protocol

The design of a resilient "multiple-round” termina-
tion protocol s complicated by two subtle issues. The
first issue is that an operational site may fail immedi-
-ately aftér making a commil decision (and therefore be
unavailable Lo participate in subsequent message
rounds). This was the case in our previous scenario
where Site 2 failed after committing the transaction.
The second 1ssue i5 Lthat often a given site does nol know
the current operational status (i.e. "up” or “down") of
the other sites. In particular, upon entry into a termina-
tion protocol, the identities of Lthe other operational sites
may nol be known.

The second issue van lead to very subtle problems.
Again, consider the scenario where Sile | sends & com-
miffable message to=3ile 2 and then crashes. Site 2
sends out moncommiliable messages, receives the com-
mattable message from Site 1, commits, and Lhen
promptly fails. MNow. Site 3 receives a single noncom-
maftable message (from Sile 2). Lel us assume Lhal Site
31 was not aware that Site 1 was up at the beginning of
the protocol (a reasonable assumption), Then, Site 3
would not suspect that the messages il received were
inconsistent with those recetved by Site 2, and it would
make an inconsistent commil decision.®

We have argued thal & resilient protocol requires at
least two rounds. The protocel thal we now present
requires exactly two message rounds when no site
fallures occur during its execution. Unfortunately, in
the worst case, each site failure may rzquirg nn addi-
tional message round

FThis tllusiraies that mngle round prolocons somelimes make in-
conmaent decimens wnen coth additional mte fadures occur and the in-
formauon concerming the sisius of operational mtes 8 jncomplete
furthermare, Lthe inconsatent decinons go undelected uliess addition-
al measage rounds are added

The protecol presented is an extension of the sumple
protocol. The same three messages = abort, commitl-
able, end noncommittable — will be used again in the
first round and in all subsequent rounds.

The sending of messages during the first round
proceeds as before: a site examines its transaction stake
and sends the appropriate message. However, the

actions triggered by the receipt of the messages differ
froem before.

To define the remainder of Lhe protocol we musl
specily:

(1)
(2)

the rules for the messages sent duning the subse-
quent rounds.

the rules for moving to a final transaction state [i.m.
either commit or abort), and

(3) the rules [or terminating the protoeol (this is
closely linked Lo (2)).

These rules sre obviously interrelated, but we will Lreal
themn sequentially.

The rules for sending messages are simpler and will
be discussed first. The messages sent by a site in Lthe
second round and subsequent rounds will be determined
salely by the messages received during the previous
round. The resder i= rerminded that*during & round 2
site sends the same message to sll (operational) partici-
pants. including itsell. This message io itsell, as any
other messsge, will be used in determining the next
round of messages.?

There are three cases which are treated in the next
three paragraphs. The rules for sending messages ars
summarized in Figure 2a.

The receipt of an abort message by a site during any
round implies that the sender haa sborted the transac-

tion. Therefore, in subsequent rounds the site will send
abort messages.

The receipt of & single committobls message during
the first round implies that the transaction was Comumitt-
able at the sender, and therefore, it is commitlable at ull
sites. The receiver of the commitiable message, being
informed that the transaction is commiltable, should
send ecommitioble messages during all subsequent
rounds. Similarly, o commattable message received dur-
ing & subsequent round implies that all sites can commil.
and will trigger the sending of commaiiable messages in
all of the later rounds.

If only noncommittable messages are received dur-
ing a round, then the site must send moncommittoble
messages in the next round.

From the abave three rules, we infer:

Lemma 1. Onee a site begins sending & commaili-
able (abort) message, it will send thal message in
all subsequent rounds.

We now turn our attention to rules for committing
and aborting the transaction. Clearly. if a site ever
receives an obort message, it should immediately abort
the transaction because the transaction has been
aborted at other sites {in particular, it was aborted by
the sender of the mes=sage). However, committing &
transaction 15 not so straightiorward,

Recall that a majer flaw with the simple termination
protocol is that a site commits alter receiving a aingle
commitiable message. We require s rule analogous Lo
property (1) of nonblocking commit protocols. which

This is Lhe only way that the prevaus mate of the sile plays o 7ois
ia determining the nem stale

First message round:

type of transaction state message senl

final abort state abort

commilttable state commitiable

all other states noncommitiable
Seeond and subsequent rounds:

messages {rom previous round message sent

one or more abort messages abord

one or more commitiable messages comrmittable

all noneammittable messages noncommittable

& Summary of rules for sending messages.

The transaction is terminated transaction if:

messages received final state
a single abort message abort

all committable messages commit

2 guccesmve rounds of messages abort

where all messages are nNoncom
mittable and no site fails
b. Summary of commit and termination rules.

2. Summary of the resilient decentralized termi-
nation pratoesl

stales that all sites must be in a committable state

befare any site commits. This leads us to the following
rule:

Commit Rule. A transaction is committed at a
site only after the receipt of a round consisting
entirely of commiltable messages.

Refors continuing with the termination rules for the
protocol, it will be insiructive to look at a “worst case”
exscution of the protocel. The execution is worst case in
Lhe sense that the mazimem number of message rounds
is required before the transaclion is committed. Only
the rules previously discussed are used.

The worst case execution for five parlicipants is
Wlustrated in Figure 3. (In the fAgure the messages
received by a site during a round comprise a vector,
where the i compenent (s the message receved from
the i** site. O, A. and N sre abbreviations for committ-
able. ahort, snd nencommittable. A dash (=) indicates
\hat o message was received from that site.)

Initially, the first site is the only one in & commith-
able stats, It fails after sending & single message that is
addressed to the second site. In general, during the g
round the k' site fails after sending o single commili-
able message (to the k41 site). Therefore, during each
round ene more site becomes aware that Lhe transaction
15 committable. This continues until the ffth round,

where Site 5 is Lhe sole remaining operational site and it
eommits the transaction.

MESSAGES RECEIVED

SITE 1 SITE 2

initial committable non
stake

round 1 1) CNNNN
round 2 FAILED (1)
round 3 FAILED FAILED
round 4 FAILED FAILED
round 5 FAILED FAILED

SITE 3 SITE 4 SITES
nan nan non

- NNNN ==NNNN -=-NNNN

—CNNN ==NNN ==NNN
(1) —=CNN =—==NN

FAILED (1) - N

FAILED FAILED -

WOTE: (1) site fails after sending a single message

Figure 3. Weorsl case execution of the resillent Ltermination protocol.

Now let us consider the problem of correctly ter-
minating the protocol. If a site eventually receoives al
|lemst one sbort message or eventually recewves commatl-
gbls messages form all sites. then there is no problem.
However, it is possible for the transaction to progress to
a state where all sites are sending noncommaitiable mes-
sages, The protocol must be able to detect this situation
and abort the transaction. We will use the [ollowing rule
to terminate such transactions.

Termination Rule. If a site ever receives two suc-
cessive rounds of noncommiitable messages and
iL detects no site failures between the rounds,
then it can safely abort the transaction.

We will justify this rule later.

We can make one final enhancement to the protocol.
Notice that all sites may not decide to abort at the same
time. For example, let there initially be only one site in
an aborl state, and let the remalning participants be in a
noncommitiable state. If the site in the abort state fails
while sending messages in the first round. then those
participants receiving an abor! message will immediately
abort the transaction, while the others will continue with
subsequent message rounds. To expedite the abortion of
the transaction al all sites, those sites aborting the tran-
saction during the first meassage round should partici-
pate in latter rounds, Thersfore, we will always require &
sits to participate in one addilional message round after
aborting the transaction. Note that this is only & "per-
formance” enhancement; the protocol will eventually
abort the transaction at all sites irrespective ol whether
the sites aborting the transaction participate in the
additional message round.

The commil and termination rules are summarized
in Figure 2b.

Correctnesa Argument

To demonstrate correctness we must show (1) that
the protocol always terminates, and (2) that it terminates
in a consistent state. We will show termination first.

Let n be the number of participants at the begin-
ning of the protocol. Let HI{r} be the sel of sites sending
noncommutablie messages Lo site | during round r

1l

We have:
Lemma 2 N(r+1) c Nfr)

Proof. This follows directly from Lemma 1: for a
site to send a noncommiutiable message in round
r+1, it musl have senl a noncommitiable mes-
sage inround r. =

Lemma 3. It Nir+1) = N{r) # @ then all mes-
sages received by site | during both rounds r and
r+1 were noncommillable messages.

Proof. Withoul loss of generality assume Lhat site
i is operational. The argument proceeds by con-
tradiction. Let Nf{r+1) = N(r) end let round r
contain messages other than moncommiltable
messages. We will only discuss the case where
commifteble messages appear. Thers are two
subcases depending on the message sent by 1
during round r:

Casze 1. Site i sends a noncommitiable message
during round r. In round r+1, it will send a com-
miltable message because it received a committ-
able message during round r (by assumption).
This contradicts the claim HI(r+l} = Nl_{r}.

Caze 2. Site | sends a commitiable message dur-
ing round r. Sinee site | did not fail in round r, all
sites received a committazble message (from i)
during Lhat round. Therefore, in round r+1 all
sites will send commutaoble messages. Aglm this
is a contradiction. =

Lemmas 2 and 3 show that the number of sites send-
ing moncommiltoble messages sither monotonically
decreases toward zero with each round, or Ltwo rounds
will oecur with the same number. In the lormer case,
the transaction will be Lerminaled by the time Lthe
number reaches zero {and this requires at most n
rounds). In the latter case, the transaction will be
aborted because of the termination rule.

To show that a consistent state is reached., we
reqguire the following results:

Lemma 4. During any message round, abort and
committable messages may not both be sant.

Prool. The proof for the first round follows
directly from the properties af nonblooking com-
mit protocols: it 1s never the case that one site I8
in an abart state while another site i5 in & com-
rmiltable state.

From the rules for sending messages, we know
that a round can include a ceriain Lype of mes-
sage only if thal message Lype was present in the
previous round, (This [ollows from the observa-
tion that a given message type musl be received
by a site. before it will be sent by a site 1In the
next round.) By induction, a message Lype can
appear in a later round anly if It was present in

the first round. This cbservation proves Lhe jem-
ma. =

Lemma 4 proves that it is never Lhe case that some
sites are trying Lo abort the transaction by sending abort
messages, while others are trying to commil Lhe transac-
tion by sending commuiable messages. The comrmit rule
\nsures that sites begin to sommit onky after all opera-
tion silos are aware Lhal the transacltion |S ‘eommilts
able.” Finally, the properties ol a nonblockKing commil
protocol insure that no site has aborted the transaction
alter & single site has entered a committable state. Col-

lectively. these results imply the gorrectness of the pro-
Local.

5. Conclusions

We have presented & termination protocol that is
resilient to arbitrary site failures that do not partition
the network. In [SKEES1c] this protocel is extended to
handie network partitions.

The proposed termination protocol is an sxample of
a decentralized protocol. These protocols have several
advantages over centralized protecals — notably they
tepd to be much simpler and easier to implament. Both
ol these advantages are derived from the symmetlry
inherent in all decentralized protocols.

The major disadvantage of decentralized protocols
is the number of messages exchanged during 2 round
{the number of messages is guadratic in the number of
participants). In network cnvironments where either
control messages are cheap or a broadcast facility 14
available or both (e.g. an ETHERNET), the message cost
is reasonable. Moreover, in realistic environments a site
failure should be a rare event; therefore, the cast of the
termination protocol should not be a significant issue.

Since message rounds are costly, an important
demgn goal lor any decentralized protocol is Lo minimize
\he number of rounds, It is easy to show that any resi-
lient protocol regquires a minumum ol lwa message
rounds before it can commit a transsction and, in the
worst case, requires an addilional message round for
mach failure detccted [{SKEEEI-E]] The proposed proto-
col mesets these lower bounds. |n perticular. it requires
exactly Lwa rounds when no additional site fallures ocour
during its execution. Furthermore, a worsi case execu-
tion of the protocol 15 extremely rare in practice.

Finally. the proposed protecol 1s an oplimisiic pro-
tacal — it will commit Lhe Lransaction whenever il 15 sale
Lo do so — and it can be used 1n conunelion with any
nonblocking commit pratecal In environments where
messages are expensive. it reasonable lo run a cens

tralized commit Prutur_'ol and the proposed decantralized
termination protocol.

[ALSETE]

[ELLITT)

[GRAYT3]

[HAMMT9]

[LAMP7E]

[LINDTS]

[SKEEB1a]

[SKEEB1b]

[SKEE81c]

[sTON7S]

REFERENCES b

pisverg, P. and Day. 1. "A Principle for Resi-
lient Sharing of Distributed Resources.”
Proc, Snd [nternational Conference on

Software Enginsering, San Francisco, Ca.,
Detober 1ETE.

Ellis. C.A., A Robust Algorithm for Updating
Duplicate Databases.” Procecdings of the
Seeond Berkeley Workshop on Distributed
Data Management and Computer Networis,
1077, pp. 148-156.

Gray, J. M. "Notes on _Dnhbu:e Operating

Systems.” in Operaling Systems: An
Advenced Course, Springer-Verlag, 1978,

Hammer, M. and Shipman., D.. “Reliability
Mechanisms for SDD-1: A System [or Distri-
buted Databases.” Compuler Corporation of
America, Cambridge, Mass., July 1978,

Lampson, B and Sturgis. H.. "Crash Recovery
in & Distributed Storage System,” Tech.
Repert. Computer Science Laboratery, Kerox
Parc, Palo Alto, California, 1976,

Lindsay, B.G. et al. "Notes on Distributed
Databases”, |BM Research Report, no. RI257]
{July 1979).

Skeen, D. and M. Stonebraker, "A Formal
Mode! of Crash Recovery in & Distributed
System”, JEEE Transaciionz on Saftware
Engineering, (Lo appear).

Skeen. D. “Nonblecking Commit Protocols®,
SIGHOD nternational Conf on Manogement
of Pata. Ann Arbor. Michigan. 1981.

Skeen. [., Crash Hecovery . a Disiributed
Datobase Management System, Pn.D. Thesis,
EECS Department, University of California,
Berkeley (in preparation).

Syonebraker. M. "Concurrency Control and
Conststency of Multiple Copies in Distributed
INGRES.” [EEE Transoctions on Soffware
Engineering, May 1970

