An Experimental Analysis of Replicated Copy
Control During Site Failure and Recovery *

Bharat Bhargava
Paul Noll
Donna Sabo

Department of Computer Sciences
Purdue University
West Lafavette, IN 47907

Abstract

The funcvion of replicared copy control 38 o main-
tain the consistency of coples during periods of site
failure and recovery, The objectives of our research
are to examine the effect of Failures on the consis-
tency of replicated copies, to measure the rare ar
which inconsistency can be removed, and to imeasure
the overheads associated with replicated copy con-
tral. To conduct our research we have extended the
prototype system RAID to utilize the ideas of session
numbers, nominal session vectors, fail-locks, and con-
trol transictions for replicated copy control. Ton this
paper we discuss the results of thoee experimeonts. In
experiment 1 we measured the overhead for ful-locks
maintenance, the overhead for conteol transactions,
and the overhead for copier transactions. In experi-
ment 2 we observed the effects of site falune om dara
availability. In experiment 3 we examined the main-
ft'"i.‘ltlf'l" ||r| |'||hi.“il|'|'|.|:'lll' Irf ||'El|h -'1.T|'|.I l'l.'illl".'\l' 1|||'|'|r'|}_" LI
faslure and recovery,

1 Introduction

A distribured darabase system consists of logical data
items which are replicated ar different sites to in-
crease availability and fault wolerance. Maimtaining
the consistency of replicated copies during site failure
and recovery is an ongoing area of research |[Bern$4]
[ElABSS]. '

The ideas of session nwmbers, nowminel session
vectors, fal-locks. and control transactions have
been proposed as a design of the read-one/write-
all-available copies protocol as a solution to the
replicated copy control problem [Bhar8fa] [Bhar87]
To investigate these ideas, we implemented o
stripped down version of the prototype svstem RALD

*This work was partislly supportel by grants from UNISYS
Corp., NASA, and ATHMICS

[BharS6h] and conducted experiments to obtain pe-
sults on the impact of site filuve on dota availabil-
ity and the consistency of replicated copies. We
also measured the overhisad of maintaining consistent
copies through periods of site failure and recovery,

The next two subsections discuss a specific repli-
cated copy control algorithm and how it was imple
mented. Three experiments are detailed in sections
2.3, anil 4 of this paper. Appendix A contains the
Transaction commit processing,

1.1 Background

To maintain consisteney of copies during site ful-
ure, each transaction ciiplovs the read-one/ write-all-
available copies (ROWAA) strategy. A protocol using
the ROWAA strategy allows transaction processing
as long as a single copy is available, I o travsacuon
ol din operational site knows that a partealar siee &
is down, the transaction does not attempt to read o
vy froom site & or to sutnd ani li[r(liLTr' tor =it b Tlis
sivves the time that would be wasted in waiting for
responses from an unavailable site and also redgees
the possibility of aborting or blocking transactions

Chue protoc il iil'.“igll 15 boisieel on thie leleas of sesston
numbers and nominal session vectors in conjunction
with the ROWAA suategy. The prool of correct-
ness of this protocol s given i [BharB6al. A ses-
sion number identifies o time period in which a site
is up (operational). A site which has failed such that
it is no longer processing transactions is said to be
doumn. A session number is also useful in determining
if the status of a site has changed during the execu-
tion of a transaction. A nominal session vector for
a site consists of the site's own session number and
the perceived session numbers of the other sites in
the system. A site uses its nominal session vector
ti determine which sites are operational (only opera-
tional sites can participate in a protocal based on the
ROWAA strategy).

A control transaction is used 1o signal a change

in a nominal session vector. A control transaction
of type 1 s issued by o recovering site to announee
that it 15 preparing to bevome operational. Tt causes
the nominal session vectors of the operational sites
to be updated with the recovering site’s new session
number and also obtains a copy of the session vector
and fail-locks from an operationa site for the recov-
ering site. A control transaction of fype 2 s issued
by & site to annoonoes that it has determimed 1hat one
or more sites which were operational have failed. Tt
causes the nominal session vectors of the remaining
operational sites to be updated to indicate the tran-
sition of the failed sites from an opecational state to
i nonoperational state,

To identify out-of-date data items one recovering,
sites, the concept of Tail-locks is used [Bhars7]). This
idea is adopted from the concept of a lock in concur-
rency comtrol It]gn[itlllib where a lock on a data item
represents the fact to all other vansactions that the
locked item is |||’!il'|g used by a transaction. A repli-
cated copy contral algorithm uses a fail-lock 1o rep-
resent the fact that a copy of a data item s beng
updated while some other copies are unavadlable duoe
to site failure or network partitioning,

In omir replicated copy control algorithm, each Copy
for a data item has a il-lock bit for each site, Fal-
lock bits are set 11'\' an operational site on behalf of a
failed site which has missed an update. A recovering
site collects its fail-locks from the operational sites
to determine which data items missed upnlates, A
recovering site can distinguish ont-of-date data items
from llp-lll_n—llu‘l.tr data items so tlw :L;r-I|J-||.'qn,l duta
items are made avallable for transaction provessing,
A recovering site clears a fail-lock bit for a data item
after it has become refreshed by a write on such an
out-of-date data item. A recovering site can use a
caprer transaction to refresh an out-of-date copy. A
copier transaction causes a read from a good data
item on another operational site and @ write to the
data item on the recovering site, Fail-locks should
be fully replicated to increase fault woleranee. The
replication of fail-locks is discussed in [Bharg7),

1.2 Implementation Choices for Our
Experiments

RAID s an experimental system being developed on
VAXes and SUNs under the Unix operating system
[Bhar86h]. Database sites in RAID communicate over
an Ethernet network. We stripped down the pro-
cessing of the RAID svstem in order to obtain re-
sults which were relevant to replicated copy control,
Factored out were the offects of network COL-
cations, concurrency control, and data input /output.

[n the resulting syvstem. which we call mini-RALD.
database sites were implemented as Unix proeesses
(o one processor with one process per site). Due
vo this, the influence of communication delayvs on the
Ethernet is not considered. Each site kept a copy of
the database, nomimal session vector, and fail-locks
and executed the same protocol to maincain the can-
sisteney of these ohjects.

Since our effort was focused on abitwining clear mea-
surements of data availability and overhoad costs the
following assumptions were made:

1. We assumed that the distributed database sys-
tem was equipped with a reliable message pass-
ing farility: no messages were lost; messages ar-
rived and were processed in the order that they
were sent; and 1o cerors in transmission altered
the messages, Our system did not attempt 1o
check for communication errors or correct them

2 Our system did not include concurrency control
and transactions were processod serially. Due o
this ASSUTNEPION, OUF INeASUrements were jnide-
pendent of the interference and schoduling delays
from concurrency control provessing,

. We assumed thar each site performed diata 170
as necessary, Our system kept data copies within
the virnal memory of each process which repri-
sented o site. Due to this assuingation, our meien-
surements were independent of 170 overheads

4. We assumed that the database was fully copli-
ciberl. We also assummed, without loss of generil-
ity, that the data fems used in our experiments
represented only the portion of the database con-
.-tll.-t-llng, of vory I'n-qm-m Iz,' refereneed IlHlFI 1ems,

Weimplemented 4 nominal session vector as an
array o records, with each reeord [qu}llﬁi‘lﬂiﬂg A site
The information maintained for a site included s
perceived session number and its stace. The possible
states of a site included the status information: site
15 up, site is down, site is waiting to recover, and site
15 terminating.

We implemented fail-locks witl a bit map for each
data itemn. The size of each bit map was less than
or equal to the number of possible sites, Each bit
represented a site with a value of 1 in the sth bit
indicating that a fail-lock was set for the uth site for
the data item. This implementation allowed the fail-
lock operations to be performed very quickly.

We implemented a managing site to provide in-
teractive control of system actions. [t was wsed
to cause sites to fail aned recover and 1o initdate 4

database trapsaction to g site, Site Dilure was sing-
Jated by sending a message to a site to indicate that
the site showld not participate in any further system
actions. A failed site would remain inactive untll re
covery was initiated from the managing site. The fol-
lowing system parameters were defined through the
IMANAZING Site:

o the database size in terms of the number of data
items

e the number of database sites for the transaction
processing (not including the managing site)

o the maximum number of operations per trans-
action, where an operation was detined o be a
read or write of a database dara ivem,

A database transaction was generated by the
mianaging site and consisted of a random nomber of
operations {from 1 to the maxinmm specified for the
system). There was an equal probability of an oper-
ation being a read or a write and each operation was
for a randomly chosen data item from the database.
This corresponds 1o our assumption of considering
only the set of most frequently referenced data items
in the database, All of these data items have appros-
imately equal probabilities of being referenced. In
the near future, we hope to repeat our experiments
with the well-known benclunarks ET1 from Tandem
Corporation [Anon85] and the Wisconsin benchimark
from the University of Wisconsin |Bite83],

Database transactions were prnrr':iﬁni h_l,- a two-
phase commit protocol. The site which received
a transaction from the mamaging site acted as the co-
ordinutor for the protocol. Tt will be referred to in
this paper as the coordimating site. The remaining
database sites which were operational ar the time the
transaction started will be referved to as proariiciiit-
mg sttes, The precise actions of a coordinating site
and a participating site are deseribed wore fully in
Appendix A of this papoer.

Fail-locks were maintained during the commitment
of data copies, As a transaction committed a partic-
ular copy on a site, the nominal seseion vector was
examined and the fail-lock bit was cleared for each
operational site and the fail-lock bit was set for each
failed site. Note that this resulted in some fail-lock
bits being re-cleared for an operational site. However,
for our system this implementation was more efficient
than conditionally performing fail-lock maintenance
based on a site's state.

A copier transaction was issued on demand by a
coordinating site during its recovery period and was
completed before phase one of the commit protocol

began. Il 4 coordinating site was unable to complete
all necessary copier transactions the database trans-
action was aborted, A special tvpe of transaction
was inplemeanted to allow a coordinating site w in-
form other sites of the fail-lock Lits cleared by copier
transactions. This special transaction was initisted
by a courdinating site after all necessary eopier trans-
actions had been issued and the correct values for the
data items in the copier transactions had been writ-
ten at the coordinating site.

2 Experiment 1: Overhead

Measurements

An experiment was eomdueted to measure the perfor-
wance of the ROWAA protocal. The overhead asso-
ciated with keeping consistent replicated copies was
studied by theee factors:

s the processing necessary for fail-lock mainte-
e

s the time required by control transactions

o the time required by copler transactions.

2.1 Design of Experiment

This experiment used the mini-RAID svstem de-
seribed in the previous section of this paper. Sets of
rransactions were run through the svstem repeatodly
over i two month period and the execution times of
provessing events were recorded after a stable state of
transaction processing was aclieved. The times pre
senved here are the aversges of the recorded times
Exceution times were measured in the software by
referencing the processor elack.

It should he stressed that the average times are not
intended to represent the absolute performance of the
system but rather the performance of the system for a
particular contiguration of system parameters. Thus
the comparson of average times is of mare interest
than the numerical value of each average time.

Intessite communications were an important come
ponent of execution times. Since sites were abstracted
as Unix processes on a single processor, these commu-
nication costs reduced to the cost of inerprocess com-
munications. The average time for a single commu-
pication from one site o another site was measured
as nine milliseconds.

2.2 Measured Data

The following svstem parameters were used:

o Size of the froguently refereneed portion of the
database = 50 itoms

e Number of sites = 4

o Maximuon transaction size = W jtems

2.2.1 Ovwerhead for Fail-locks Maintenanes

The averhead for fail-locks maintenance is the cost

of elearmg and setting fail-locks during the comimit-
" ment of data copies. This commitment is part of the
two phase commit protocoel used for database trans-
artion processing. Measurements were made by run-
ning a set of transactions with the fail-locks main-
tenance code remove] from the software and then
re-runtiing the sime set of transactions with the fail-
locks mamtenance code meluded in the software. The
transaction time on a coordinating site was taken as
the elapsed time between the initial reception of the
database wansaction and the completion of the twao
phase commir protocol. The transaction time on a
participating site wis taken as the elapsed time be-
tween the start of the site’s participation in phase
one of the protocol and the completion of the site’s
participation in phase two. The transactions did nom
LETerate any copier transactions.

Tramsaction
titne with
fail-lucks code

Transaction
time withiout
fail-locks rode

Coordinating site 176 ms 186 ms
Participating site M) s 97 ms

2.2.2 Overhead for Control Transactions

Times were measured for the processing of control
transactions. The time for a type 1 control trans-
action to complete at a recovering site was 190 mil-
liseeonds, This includes the recovery announcement
which goes from the recovering site to each opera-
tional site and the installation of a new session vector
and fail-locks. The time for & type 1 control transac-
tion is dependent on the number of sites in the system
because an intersite communication is needed for each
FECOVErY announoement,

The time for a tvpe 1 control transaction to com-
plete at an operational site was 50 milliseconds. It
consisty of the formatting and sending of a message
with session vector and fail-locks. Since only one -
tersite communication is required (between the op-
crationa site and the recovering site), this time is
independent of the number of sites in the system.

Heswiver, 1t 8 dependent an the size of the dataluse
bevause a large increase in the number of data items
fand thus fail-locks) would require more storage for
fail-locks and could inerease the amount of time to
transmit the message containing the Bil-locks.

The time for a type 2 eontrol transaction to com-
plete was G8 milliseeonds. This includes the sending
of the failure announcement to a particular site and
the apdating of the session vector at that site. This
timme is independent of the number of sites in the sys-
1.

2.2.3 Overhead for Copier Transactions

Messurements were miade for b databise transaction
which included the generation of ane copier transac-
tion. The seenurio was that a coordinating site re-
coived o database transaetion which ineluded & vead
operation for a Fail-locked copy. A copier transaction
wits then run to get ancup-tosdate copy. The transie-
tion time was taken as the elapsed time between the
initial reception of the database teansaction, the com-
pletion of the copier transaction, and the completion
of the two phase commit protoesl. The transaction
tine was an average of 270 millisecomds,

The averhead for a site which received a copy re-
quest was 25 millisceonds. This ineludes the time to
formit a response with the specified copies and the
sendling of the response to the coondinating site,

The time for a transaction to clear fail-locks in-
cludes the sending of the message to a particular site
and the elearing of the approprate fail-locks on tha
sites. This tiene was messured to b 20 milliseconds.

The transaction time of 270 milliseconds was an
nerease HF I-il-:ﬂ' T ”11" t1Ime Ejl il |]'.||i||‘|;|:1|r trans=
action which peneriated no copier transactions, How-
evier, approgimately 30 of this cost wis made up
of the cost of transactions nesded to clear fail-locks
after a copier transaction. Therefore, an implementa-
tion which climinated these wansactions by embed-
ding the necessary fail-locks information in the two
phase commit protocol could significantly reduce this
overhead,

2.3 Conclusions of Experiment 1

The overhead in fail-locks maintenance caused o
slight increase in transaction processing times. The
potential impact of this overhead was lessened by the
incorporation of fail-locks processimg into the commit
protoend.,

The overhead for a control transaction was com-
parable to the cost of o small database transaction
However, the relative infrequency of the contral trans-

actions would grearly reduce the average cost of this
overhead,

The overhead for copier transactions had an impact
on a recovering site. There was a significant inerease
in time for a database transaction which generated
a copier transaction. Therefore, this overhead may
require the most consideration when making desipgn
choices. We discuss this point further in experiment
2. In any case. the mereased overhend for o recover-
ing site must be weighed against the increased data
availability achieved for the site,

3 Experiment 2: Data Avail-
ability on a Recovering Site

The ROWAA provocol provides high daca availabil-
ity on & recovering site since a down site mav become
operational and quickly begin transaction processing
using, the up-to-date portion of its database. To fur-
ther increase data availability and fauli toleranee we
must ensure that a site with an out-of-dare copy re-
freshes the copy before all other sites with an up-to-
date copy go down. o this experiment we studied
the rate at which the fail-locks for out-of-date Cipies
are cleared during the recovery period.

3.1 Design of Experiment

The mini-RAID system deseribied earlier was used for
this experiment. For a simple two site case, we Gailod
one site und processed transactions until most of the
copies on the down site were fall-locked by the oper-
ational site. We then brought the failid site ap and
provessed transactions until the recovering site hal
completely recovered (e, all out-of-date copivs were
refreshed). Transactions wore seqquentially mumbaerisd
from 1 for identification.

3.1.1 Measured Data

The Parimeters below wore chosen to opable us to
ohserve the recovery period for a simple system. If the
ratio of the maximum transaction size to the muimber
of data items being considered is large then most of
the data items would be fail locked for the down site
after processing only a few transactions.

® Size of the frequently referenced portion of the
database = 50 items

& Number of sites = 2 (sites 0 and 1)

o Maximum transaction size = 5 items

To study a complete recovery period we used the ol
lowing seenario for the experiment .

o Initially both sites were up with consistent and
up-toedare copies,

o Bofore transaction 1. wiee cavsed site 0 to Fall,

e For transactions 1-100 we kept site 0 down and
processed transactions on site |

= Before transaction 101, site U was brought up,

o Trapsactions were processed on both sites until
site: () was completely recovered with all fail-locks
rlieared

We observed that processing 100 transactions on site
1 while site O was down resulted in setting fail-locks
for over 90% of the copies on site (0. After biringing
site 0 up, 160 additional transactions were needed in
order to completely recover site 0,

For each wansaction wo recorded the pumber of
fail-locks set, the number of fail-locks cleared, and the
mumber of copier transactions requested. The graph
in Fignre 1 fllustrates the measured data in terms of
the number of fail-locked vopies after the processing
of a cortain number of transactions. The peak in the
graph corresponds 1o the point at which site () was
brought up and began its recovery. To the left of the
peak site O was down aned fail-locks were being set on
site 1 for the copies that were being updated on sie
1 bt not on site 0. To the right of the peak fail-locks
were cleared for the out-of-date copies heing refreslod
on site [by wrile aperations m transactions and by
copier transactions requestedd by e recovering site
Only two copier transactions were roguested by site
U during s recovery period.

3.1.2 Analysis of Data

The graph shows thar while a high percentage of
the database is [ail-locked, fail-locks are cleared very
rapidly. As the percentage of the data items fail-
locked decreases, more transactions are required to
clear fail-locks. The first 10 fail-locks were cleared
in only 6 transactions and the last 10 fail-locks were
eleared in 106 transactions!

3.2 Conclusions of Experiment 2

We conclude that the rate at which fail-locks are
cleared is directly related to the percentage of data
iems fnal-locked. Future ilII;JlHII‘iEJITﬂTJHILS could take
advantage of this fact 1o decrease the length of the
FECUVETY Fu'rhui.

Dataliwse sige = 50

Transaction size = 5

all -
i~
3=
Number of
Fuil- Locks
o 20|
10—
(1 ==
| | 1 | | l 1 _| |]] | |
i) 20] il S0 100 1200 LY TG0 IR0 2000 20 240 MG

Numiber of Transactions

Figure 12 Data availability during failure and recovery

One idea is o divide the recovery peciond into two
steps. Before beginuing the first step, a recovering
site compntes the percentage of the frequently refier-
enced copies that are fail-locked, If this percentage 15
greater than some threshold value, the recovering site
enters step ome. Otherwise the recovering site omits
the first step and enters step two. In the first step
copies are refreshed in the same manner as in our im-
plementation, (e, by normal transaction processing
and by the recovering site requesting copier transi-
tions on demand). Onee the percentage of copies fail-
locked drops below the threshold the site enters step
two of its recovery. In the second step the recovering
site beging Lo issue copier transactions moa "hateh™
mode. Copier transactions are generated even though
no transactions have arrived on the recovering site
with o read request for any of the remaining out-of-
date copies. This canses the out-of-date copies to
be refreshed and hastens the completion of recovery,
This two step method would increase fault tolerance
by decreasing the possibility of a site’s recovery being
blocked by the failure of other sites.

In a partially replicared database svstem using
the ROWAA protocol, data availability could be in-
ereased by creating a control transaction of type 3.
Using this control transaction, a site having the last
up-to-date copy of a data item would create a copy

on a back-up site thar his no copy of that data item
{assume a back-up site exists or we have a partially
replicared database). This inereased ilata availability
wontld hive the cost of the type 3 control rransaction
plus the cost of removing copies of data items from
sites anee these addinonal copies were not needed any
more.

4 Experiment 3: Consistency
of Replicated Copies

In this experitment we observed Low site failures affect
the consistency of replicated copies. Note that since
eatch set fail-lock represents an inconsistent copy, the
number of fail-locks set is & mensure of inconsisteney.

4.1 Design of Experiment

The mini-RAID system that we implemented was
used for this experiment. We observed two simple
scenarios with multiple sites recovering concurrently,

4.2 Measured Data
4.2.1 Scenario 1

The following parameters were chosen for the Hrst
Srenaria,

s Size of the frequently referenced portion of the
database = S0 items

o Number of sites = 2
o Maxbmum transaction size = 5 items

Transactions were processed and sites were failed in
the following order

o Initially both sites were up with consistent and
up-to=date copies,

e Before transaction 1. site O failed.

» For transactions 1-25 we kept site 0 down and
processed transactions on site 1,

& Befure transaction 26, we brought site 0 up and
failed site 1.

o For transactions 26-50 we keprt site 1 down and
processed transactions on sive (1

« Before transaction 51, we brought site 1 up.

e Transactions 51-120 were processed on both
sites.

The graph in Figure 2 illustrates the measured data
for both sites. The hasic shape of the graph for each
site is similar to the graph of a single site recovering
shown in Figure 1. In this scanario the fact that siee 1
went down for part of site (1's recovery period cansed
some of the dava items Gl locked on site O to be
totally unavailable. During this time fail-locks were
cleared on site 0 U!Il}' l'_l__'i' transoction writes because
site 1 was not available to receive copler transactions,
The inability to get up-to-date copies via copler trans-
actions forced site 0 to abort 13 transactions

4.2.2 Scenario 2

The parameters below were used for the second sce-
nario.

® Size of the frequently referenced portion of the
database = 50 items.

e Number of sites = 4
o Maximum transaction size = 5 items

Transactions were processed and sites were failed in
the order listed below.

o Initinlly all sites were up with consistent and up-

tidate copies.
e Defore transaction 1, we failed site 1),

e For transactions 1-25 we kepr site O down anid
provessed transactions on the remaining sites.

o Before transaction 26, we brought site O up and
failed site 1.

o For transactions 26-30 we kept site 1 down and
processed transactions on the remaining sites,

s Before transaction 51, we brought site 1 up and
failed site 2.

o Fuor transactions 51-T5 we kept site 2 down and
processed transactions on the remaining sites,

= Before transaction 76, we hroughr sive 2 up and
fadled site 5.

o For transactions 76-100 we kept site 3 down and
processed transactions on the remaining sites

e Before transaction 101, we lrought site 3 up.
o Transactions 101-160 were processed an all sites,

The graph in Figure 3 illustrates the measured data
for each site. Again, the basic shape of the graph for
cach site is similar to that for the single site recov-
ery. Since the sites wem down singly in succession
and only once, an up-to-date copy of & data item was
always available on some site. Thus the sites were
able to recover without any aborted transactions due
to data being unavailable.

4.3 Conclusion of Experiment 3

During site failure the copy of the database on the
failed site quickly becomes inconsistent with the ather
copies of the database on operational sites. Write op-
erations in database transactions and copier transac-
tions requested by the recovering site are able to bring
the database back 1o a consistent state relatively fast.

5 Conclusions

A distributed database system that employs the
ROWAA protocol has a higher degree of data avail-
ability at the operational sites (since failed sites can
be ignored) and at the recovering sites [due 1o fail-
locks). In experiment 1 we determined the overheads
present in our implementation of the protocol. The
cost of the overhead for copier transactions may be

30

25

20

Number of
Fuil-Lorks
Set

o}

Number of
Fail-Locks
Set

Transaction size = &

Databasie size = 500

- — wmiw
witd |
I
| | | [| | | | | | | | | |
o1 200 30 4o S0 GO0 FOO RO 90 OU 1100 120 130
Numbier of Transactions
Figure 20 Database Inconsistency (seenario 1)
Database size = 50 Transaction size = 5
L e wiE 0
=== st
- rJl_‘ LTI T L
I_I —l — L |
1
=] 1
| =1
v L
I8 ¥ }
]
i J h
A
I &
ER L L
i | ¥ LL
L [-
- e | A | ._IJ
| | | | | l | | | | | | | | l | | |

0 10 20 30 40 50 60 7O R0 90 100 110 120 130 140 150 160 170

Number of Transactions

Figure 3: Database [nconsistency (scenario 2)

the most important consideration for implementors
We fonned that the response time for database trans-
actions on a vecovering site which reguired copie
transactions was significantly higher than datalbase
Eransactions not regquiring copier transactions.

In experiment 2 we observed that the rate at which
fail-locks were cleared during site recovery was depen-
dent on the percentage of copies fail-locked. Based on
our analysis, we suggested a two step recovery periad
to increase the fault tolerance of a system. We also
suggested the creation of control transaction 3 to in-
crease data availability

In experiment 3 we eximined congistency control
during site fuilure and recovery, We found that fail-
locks can properly track the location of the corree
values for ditn toms even when these values are
spread out over multiple sites. This allowed trans.
action processing to continue after the cceurrence of
suceessive site fuilures.

The fact that transactions were randomly gener-
ated in our implementation may be of concern w
some who say that in reality transactions are not ran-
dom and actually all data items are accessed with
different probabilities. We made the assumption that
in a database there is a subset of data items that s
frequently referencesd. We also assumed that the data
iterms i this set have approximately equal probabil-
ities of being accessed. The remaining part of the
database is accessal less Frequently, Including these
rarely accessed data items i our experiments woulid
not significantly alter our resiles,

Another issue that we must address s the Gt that
studlies have shown that vpically reads are far more
corunon than writes. We haoee implemented the nu-
ber of reads to be approsimately equal to the aamnber
of writes. This assumption may be to our disadvan-
tage during the time that fal-locks are beng <ot A
fail loek is set for cach down site OVEryY LI b write o
eration is performed on a daca item, This reduces oug
data availability more quickly than if we had assumed
that writes oceur leas often than reads. However, this
assumption also has the effect of inereasing data avail-
ability more quickly during recovery with fewer copier
transactions. In our implementation many of the fail-
locks were cleared by writes instead of by copier trans-
actions requested by a recovering site. I reads ocour
maore commonly than writes then more copier trans-
actions would probably be requested by a recovering
site during recovery, Sinee the probabilities remained
constant throughout the experiments, valid compear-
izons can be made between the scenarios.

We implemented our mind-RAID system in the O
programming language under the Unix operating sys-
tem. Interested researchors may contact us for o copy

of the source code to repest (hese experimonts or to
conduct thelr own,

In the near future, we hope tu ropeat onr exper:
iments using, benchmeaok sets of transactions, Wi
also plan to run this protocol in the complete RATD
systern and take into account other factors such as
concurrency eontral and conununication delays aoposs
machines.

A Transaction Commit Proto-
col

This flp[u'luli?{ contans a ilHI'IIle—qT.‘llil' r|l'.‘\'{'|'LT][|rp|| of
the two phase commit protocol used by our system,
Although it is not explicitly stated i tus desenpoon,
multiple copier transactions can be generated for a
database transaction

Actions at the coordinating site

receive database transaction from managing site:

if transaction contains read operation for a
fail-locked copy then

[* mun copier tansaction *f

issue copy Tequest tooan operational site which

has up-toedate copy;

il copy update returned by othier site then
update databiase and clear Eail-lock(s);
run special transaction o elear fail-locks
at other sites;

else il ather site is now down il
abwort datihase transaction;
run comtral type 2 transaction
annonunee Gl
end il
el 0F

if datahbase transaction not aborted then
/* begin phase one of protocol *f
issue copy update for written items to every
aperational site;
il ack received from all participating sites then
/* begin phase two of protocol */
send commit indication to participating
sites;
if commit ack not received from all
participating sites then
run control type 2 trapsaction to
announce failure;
enil if
cennmit datiabise data iteims;

update fail-locks for dita items,
else [* a participating site has failed */
abort database transaction:
ri control type 2 transaction to announee
failure;
end il
end if

~Actions at a participating site

£ phase one of protacal *f

receive copy update from coordinating site;

send ack to coordinating site;

if commit indication receivid then
commit databuse data items,
update fail-locks for data items:

else if abort bndication received then
iliscard the copy updates;

else * coordinating site has failed */
run eontral type 2 trunsaction to announee
Failure:;

end 1f

References

[Anon83) Anon, et. al., "A measure of rransaction
provessing power”, Dutemation, vol. 31, no. 7.
112-118, Apeil 1, 1985,

{Bern84] P. A, Bernstein, and N, Goodman, ™ An al-
gorithan for voncurrency control and recovery i
replicated distributed databases” 400 Trans
Dutahase Syst.. vol. 9. no. d, 506-615, Dec. 1081,

[Bl:urSﬂal B. Bhargava, and Z Ruan, "Site recov-
ery in replicated distributed database systems”
Sieth IEEE International Conference on Dis.
tributed Computing Systems, 621-627, May 1986,

[Bhir86h] B, Bhargava, and J. Riedl, " The design of
an adaptable distribured system” [EEE COMP-
S5AC Conferemee, 114-122, Oct. 1986.

[Bhar&7] B. Bhargava, "Transaction processing ancd
consistency control of replicated copies during
failures,” Journal of Management Information
Systems, Oct. 1987, vol. 4, no. 2.

(Bitt83] D. Bitton, D.J. DeWitt, and C. Turhyfil,
"Benchmarking database systoms: a SvSLPTRALIC
approach”™, Proceedings VLDB Conference. Ot
1983,

[E1ALSS| A, El Abbadi, D. Skeen, and F. Christian,
“An efficient fault tolerant protacel for repli-
cated data management”, Proe. {th ACM Synp
on Prime. of Database Systems, Portland, Ore-
gon, 215229, March, 1955,

