
The Transaction Concept: Virtues and Limitations

Jim Gray

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino Ca. 99014

ABSTRACT: A transaction is a transformation
of state which has the properties of
atomicity (all or nothing), durability
(effects survive failures) and consistency
(a correct transformation). The
transaction concept is key to the
structuring of data management
applications. The concept seems to have
applicability to programming systems in
general. This paper restates the
transaction concepts and attempts to put
several implementation approaches in
perspective. It then describes some areas
which require further study: (1) the
integration of the transaction concept with
the notion of abstract data type, (2) some
techniques to allow transactions to be
composed of sub-transactions, and (3)
handling transactions which last for
extremely long times (days or months).

CONTENTS

INTRODUCTION: What's a Transaction
A GENERAL MODEL OF TRANSACTIONS
IMPLEMENTATION TECHNIQUES

Nonstop (TN): Making failures rare
UPDATE IN PLACE: a poison apple?
TIME-DOMAIN ADDRESSING: one solution
LOGGING AND LOCKING: another solution

LIMITATIONS OF KNOWN TECHNIQUES
NESTED TRANSACTIONS
LONG-LIVED TRANSACTIONS
INTEGRATION WITH PROGRAMMING LANGUAGE

SUMMARY
ACKNOWLEDGMENTS
REFERENCES

INTRODUCTION: What is a transaction?

The transaction concept derives from
contract law. In making a contract, two or
more parties negotiate for a while and then
make a deal. The deal is made binding by
the joint signature of a document or by
some other act (as simple as a handshake or
nod). If the parties are rather suspicious
of one another or just want to be safe they
appoint an intermediary (usually called an
escrow officer) to coordinate the
commitment of the transaction.

The Christian wedding ceremony gives a good
example of such a contract. The bride and
groom "negotiate" for days or years and
then appoint a minister to conduct the
marriage ceremony. The minister first asks
if anyone has any objections to the
marriage; he then asks the bride and groom
if they agree to the marriage. If they
both say "I do", he pronounces them man and
wife.

Of course, a contract is simply an
agreement. Individuals can violate it if
they are willing to break the law. But
legally, a contract (transaction) can only
be annulled if it was illegal in the first
place. Adjustment of a bad transaction is
done via further compensating transactions
(including legal redress).

The transaction concept emerges with the
following properties:
Consistency: the transaction must obey

legal protocols.
Atomicity: it either happens or it does

not: either all are bound by the
contract or none are.

Durability: once a transaction is
committed, it cannot be abrogated.

CH1701-2/81/0000/0144$00.75 @ 1981 IEEE
144

A GENERAL MODEL OF TRANSACTIONS

Translating the transaction concept to the
realm of computer science, we observe that
most of the transactions we see around us
(banking, car rental, or buying groceries)
may be reflected in a computer as
transformations of a system state.

A system state consists of records and
devices with changeable values. The system
state includes assertions about the values
of records and about the al lowed
transformations of the values. These
assertions are called the system
consistency constraints.

The system provides actions which read and
transform the values of records and
devices. A collection of actions which
comprise a consistent transformation of the
state may be grouped to form a transaction.
Transact ions preserve the sys tern
consistency constraints -- they obey the
laws by transforming consistent states into
new consistent states.

Transactions must be atomic and durable:
either all. actions are done and the
transaction is said to commit, or none of
the effects of the transaction survive and
the transaction is said to abort.

These definitions need slight refinement to
allow some actions to be ignored and to
account for others which cannot be undone.
Actions on entities are categorized as:

unprotected : the action need not be undone
OK redone if the transaction must be
aborted OK the entity value needs to
be reconstructed.

protected: the action can and must be
undone or redone if the transaction
must be aborted OK if the entity value
needs to be reconstructed.

real: once done, the action cannot be
undone.

Operations on temporary files and
transmission of intermediate- messages are
examples of unprotected act ions.
Conventional database and message
operations are examples of protected
actions. Transact ion commitment and
operations on real devices (cash dispensers
and airplane wings) are examples of real
actions.

Each transaction is defined to have exactly
one of two outcomes: committed OK aborted.
All protected and real actions of committed
transactions persist, even in the presence
of failures. On the other hand, none of
the effects of protected and real actions
of an aborted transaction are ever visible
to other transactions.

Once a transaction commits, its effects can
only be altered by running further
transactions. For example, if someone is
underpaid, the corrective action is to run
another transaction which
additional

pays
sum. Such post f acZ

transactions are called
transactions.

compensating

A simple transaction is a linear sequence
of actions. A complex transaction may have
concuKKency within a transaction; the
initiation of one action may depend on the
outcome of a group of actions. Such
transact ions seem io have transactions
nested within them, although the effects of
the nested transactions are only visible to
other parts of
1).

the transaction (see Figure

Figure 1. Two transactions. Tl is a
simple sequence of actions. T2 is a
more complex transaction which demon-
strates parallelism and nesting within
a transaction.

Nonstop (TM) : Making failures rare

One way to get transaction atomicity and
durability is to build a perfect system
which never fails. Suppose YOU built
perfect hardware which never failed and
software which did exactly what it was
supposed to do. Your system would be very
popular and all transactions would always
be successful. But the system would fail
occasionally, because the people who
adapted your system to their environmeat
would make some mistakes (application
programming errors) and the people who
operated the system would make some
mistakes (data entry and DKOCedUKal
errors). Even with very careful
management, the system would fail every few
months or years and at least one
transaction in 100 would fail due to data-
entry error OK authorization error [Japan].

145

One may draw two conclusions from this:
1. You don’t have to make a perfect

system, one that fails once every
thousand years is good enough to
please most customers.

2. Even if the system is perfect, some
transactions will abort because of
data-entry error, insufficient funds,
operator CancelatiOni or timeout.

This section discusses techniques for
“almost perfect” systems and explains. their
relationship to transaction processing.

Imperfection comes in several flavors. A
system may fail because of a design error
or because of a device failure. The error
may become visible to a user or redundant
checks may detect the failure.

A system is unreliable if it does the wrong
thing (does not detect the error). A
system is unavailable if it does not do the
right thing w.ithin a specified time limit.
Clearly, high availability is harder to
achieve than high reliability.

John Von Neumann is credited with the
observation that a very reliable (and
available) system can be built from
unreliable components [Von Neumann]. Von
Neumann’s idea was to use
majority logic on

redundancy and
a grand scale (20,080

wires for one wire) in order to get mean
times to failure measured in decades. Von
Neumann was thinking in terms of neurons
and vacuum tubes which have mean .times to
failures measured in days and which are
used in huge quantities, (millions or
billions) in a system. In addition, Von
Neumann’s model was flat so that any
failure in a chain broke the whole chain.

Fortunately, computer systems do not need
redundancy factors of 28.000’ in order to‘
get very -long mean times to failure.
Unlike Von Neumann’s nerve nets, computer
systems are hierarchically composed of
modules and each module is self-checked so
that it either operates correctly or
detects its failure and does nothing. Such
modules are called fail-fast. Fail-fast
computer modules such as’ processors and
memories achieve mean times to failure
measured in months. Since relatively few
modules make up a
than 1001,

system (typically less
very limited’ redundancy is

needed to improve the system reliability.

Consider the simple case of disks. A
typical disk fails about once a year.
Failures arise from bad spots on the disk,
physical failure of the spindle
electronic failure of the path to the dis!:
It takes about an hour to fix a disk or get
a spare disk to replace it. If the disks
are duplexed (mirrored) and if they fail
independent1.y then the pair will both be
down about once every three thousand years.
More realistic analysis gives a mean time
to failure of 800 years. So a system with

eight pairs of disks would have an
unavailable disk pair about once a century.
Without mirroring the same system would
have an unavailable disk about eight times
a year.

Although duplexed disks have been used
since the late sixties [Heistand] we have
been slow to generalize from this
experience to the observation that:

* Mean time to failures of modules are
measured in months.

* Modules can be made fail-fast: either
they work properly. or they fail to
work.

* Spare modules give the appearance of
mean time to repair measured in
seconds or minutes.

* Duplexing such modules gives mean
times to failure measured in
centur ies.

The systematic application of these ideas
t6 both hardware and software produces
highly reliable and highly available
systems.

High availability requires rethinking many
concepts of system design. Consider for
example, the issue of system maintenance:
one must be able to plug components into
the system while it is operating. At the
hardware level this requires Underwriters
Laboratory Approval that there are no high
voltages around and requires that
components tolerate high power drains’ and
surges and, and, and,... At the software
level this means that there is no “SYSGEN”
and that any program or data structure can
be replaced while the system is operating.
These are major departures from most
current system designs.

Commercial versions of systems which
provide continuous service are beg-inning to
appear in the marketplace. Perhaps the
best known art the Tandem systems. Tandem
calls its approach to high availability
NonStoP [a Tandem
systems typically have

trademark). Their
mean times to

failure between one and ten years. At the
hardware lev.el, modules and paths are
duplexed and all components are designed
for reliable and fail-fast operation
[Katzmanl . At the software level, the
system is ,structured as a meseage-based
operating system in which each process may
have a backup process which continues the
work of the primary process should the
primary process or its supporting hardware
fail [Bartlettll, [Bartlett21 . Alsberg
proposed a related technique {Alaberg].

It is not easy to build a highly available
system. Given such a system, it is non-
trivial to program fault-tolerant
applications unless other tools are
provided: takeover by the backup process
when the primary process fails is delicate.
The backup process must somehow continue

146

the computation where it left off without
propagating the failure to other processes.

One strategy for writing fault-tolerant
applications is to have the primary process
“checkpoint” its state to the backup
process prior to each operation. If the
primary fails, the backup process picks up
the conversation where the primary left
off. Resynchronizing the requestor and
server processes in such an event is very
subtle.

Another strategy for writing fault-tolerant
software is to collect all the processes of
a computation together as a transaction and
to reset them all to the init ial
transaction state in case of a failure. In
the event of a failure, the transaction is
undone (to a save point or to the
beginning) and continued from that point by
a new process. The backout and restart
facilities provided by transact ion
management free the application programmer
from concerns about failures or process
pairs.

The implementors of the transaction concept
must use the primitive process-pair
mechanism and must deal with the subtleties
of Nonstop; but thereafter, all programmers
may rely on the transaction mechanism and
hence may easily write fault-tolerant
software [Barr] . Programs in such a system
look no different from programs in a
conventional system except that they
contain the verbs BEGIN-TRANSACTION,
COMMIT-TRANSACTION and ABORT-TRANSACTION.

Use of the transaction concept allows the
application programmer to abort the
transaction in case the
system state looks b’ad.

input data or
This feature comes

at no additional cost because the mechanism
to undo a transaction is already in place.

In addition, if transact ions are
implemented with logging, then the
transaction manager may be used to
reconstruct the system state from an old
state plus the log. This provides
transaction durability in the presence of
multiple failures.

In summary, Nonstop (TM) techniques can
make computer systems appear to have
failure rates measured in decades
centuries. In practice, systems ha::
failure rates measured in months or years
because of operator error (about one per
year) and application program errors
(several per year) [Japan] . These now
become the main limit of system reliability
rather than the software or hardware
supplied by the manufacturer.

This section showed the need for the
transaction concept to ease the
implementat ion of fault-tolerant
applications. There are two apparently

different approaches to implementing the
transaction concept: time-domain addressing
and logging plus locking. The
sections explain these two

following
approaches and

contrast them.

To give a preview of the two techniques,
logging clusters the current state of all
objects together and relegates old versions
to a history file called a log. Time
doma in addressing clusters the complete
history (all versions) of each object with
the object. Each organization will be seen
to have some unique virtues.

UPDATE IN PLACE: A poison apple?

When book-keeping was done with clay
tablets or paper and ink, accountants
developed some clear rules about good
accounting practices. One of the cardinal
rules is double-entry bookkeeping so that
calculations are self checking, thereby
making them fail-fast. A second rule is
that one never alters the books; if an
error is made, it is annotated and a new
compensating entry is made in the books.
The books are thus a complete history of
the transactions of the business.

The first computer systems obeyed these
rules. The book-keeping entries were
represented on punched cards or on tape as
records. A run would take in the old
master and the day’s activity, represented
as records on punched cards. The result
was a new master. The old master was never
updated. This was due in part to good
accounting practices but also due to the
technical aspects of cards and tape:
writing a new tape was easier than re-
writing the old tape.

The advent of direct access storage (disks
and drums) changed this. It was now
possible to update only a part of a file.
Rather than copying the whole disk whenever
one part was updated, it became attractive
to update just the parts that changed in
order to construct the new master. Some of
these techniques, notably side files and
differential files [Severence] did not
update the old master and hence followed
good accounting techniques. But for
performance reasons, most disk-based
systems have been seduced into updating the
data in-place.

TIME-DGMAIN ADDRESSING: one solution

Update-in-place strikes many systems
designers as a cardinal sin: it violates
traditional accounting practices which have
been observed for hundreds of years. There
have been several proposals for systems in
which objects are never altered, rather an
object is considered to have a time history
and object addresses become <name,time>

147

rather than simply name. In such a system,
an object is not “updated”, it is “evolved”
to have some additional information.
Evolving an object consists of creating a
new value and appending it as the current
(as of this time) value of the object. The
old value continues to exist and may be
addressed by specifying any time within the
time interval that value was current. Such
systems are called “time-domain addressing”
or “version-oriented systems”. (Some call
them immutable object systems but I think
that is a misnomer since objects do change
values with time.)

Davies and Bjork proposed an
implementat ion for time-domain addressing
as “general ledger” in which each entity
had a time sequence of values [Davies],
[Bjorkl. Their system not only kept these
values but also keljt the chain of
dependencies so that if an error was
discovered, the compensating transact ion
could run and the new value could be
propagated to each transaction that
depended on the erroneous data. The
internal book-keeping and expected poor
performance of such a system discouraged
most who have looked at it. Graham Wood at
University of Newcastle showed that the
dependency information grows exponent ially
[Wood].

Dave Reed has made the most complete
proposal for a transaction system based on
time-domain addressing [Reedll. In Reed’s
proposal an entity E has a set of values Vi
each of which is valid for a time period:
For example the entity E and its value
history might be denoted by:

E: <VO, [TO,Tl)>, <Vl, [Tl,T2)>, <V2, [T2,*)>
meaning that E had value VO from time TO up
to Tl, at time Tl it got value Vl and at
time T2 it got value V2 which is the
current value. Each transaction is
assigned a unique time of execution and all
of its reads and writes are interpreted
with respect to that time. A transaction
at time T3 reading entity E gets the value
of the entity at that time. In the example
above, if T3>T2 then the value V2 will be
made valid for the period [T2,T3). A
transaction at time T3 writing value V3 to
entity E starts a new time interval:

E: CVO, [TO,Tl)>,<Vl, [Tl,T2)>,<V2, [T2,T3)>,
<V3, [T3,*) >

If T2 >= T3 then the transaction is aborted
because it is attempting to rewrite
history.

The writes of the transaction all depend
upon a comm i t record. At transact ion
commit, the system validates (makes valid)
all of the updates of the transaction. At
transaction abort the system invalidates
all of the updates. This is done by
setting the state of the commit record to
commit or abort and then broadcasting the
transaction outcome.

This is a simplified description of Reed’s
proposal. The full proposal has many other
features including a nested transaction
mechanism. In addition, Reed does not use
“real” time but rather “pseudo-time” in
order to avoid the difficulties
implementing a global clock. See [Reed;:
and [Svobodova] for a very understandable
presentations of this proposal.

----------------__--------------- ------

Figure 2. Representation of versions of
object E. ’ Three committed versions and
one proposed version are shown. When
version V3 is committed or aborted, the
commit record and object header will be
updated. Adapted from [Svobodoval .

Reed observes that this proposal is a
unified solution to both the concurrency
control problem and the reliability
problem. In addition, the system allows
applications the full power of time domain
addressing. One can easily ask questions
such as “What did the books look like at
year-end?”

There are some problems with time-domain
addressing proposals.

1) Reads are writes: reads advance the (

(

clock on an object and therefore update
its header. This may increase I/O
activity.

2) Waits are aborts: In most cases a
locking system will cause conflicts to
result in one process waiting for
another. In time-domain systems,
conflicts abort the writer. This may
preclude long-running “batch”
transactions which do many updates.

(3) Timestamps ff;;yo,” sf,n~‘i;dsgr;;~~~~~ty:
reading a
million t imestamps. A simple 102
hierarchy allows sequential (whole
file) and direct (single record)
locking against the same data (at the
same time.)

148

(4) Real operations and pseudo-time: If one
reads or writes a real device, it is
read at some real time or written at .
some real time (consider the rods of a
nuclear reactor, or an automated teller
machine which consumes and dispenses
money). It is unclear how real time
correlates with pseudo-time and how
writes to real devices are modeled as
versions.

As you can see from this list, not all the
details of implementing a time domain
addressing system have been worked out.
Certainly the concept is valid. All but
the last issue are performance issues and
may well be solved by people trying to
build such systems. Many people are
enthusiastic about this approach, and they
will certainly find ways to eliminate or
ameliorate these problems. In particular,
Dave Reed and his colleagues at MIT are
building such a system [Svobodova].

LOGGING AND LOCKING: another solution

Logging and locking are an alternative
implementation of the transaction concept.
The legendary Greeks, Ariadne and Theseus
invented logging. Ariadne gave Theseus a
magic ball of string which he unraveled as
he searched the Labyrinth for the Minotaur.
Having slain the Minotaur, Theseus followed
the string back to the entrance (rather
than remaining lost in the Labyrinth).
This string was his log allowing him to
undo the process of entering the Labyrinth.
But the Minotaur was not a protected object
so its death was not undone by Theseus'
exit.

Hansel and Gretel copied Theseus' trick as
they wandered into the woods in search of
berries. They left behind a , trail of
crumbs which would allow them to retrace
their steps (by following the trail
backwards) and would allow their parents to
find them by following the trail forwards.
This was the first undo and redo log.
Unfortunately, a bird ate the crumbs and
caused the first log failure.

The basic idea of logging is that every
undoable action must not only do the action
but must also leave behind a string, crumb
or undo log record which allows the
operation to be undone. Similarly, every
redoable action must not only do the
operation but must also generate a redo log
record which allows the operation to be
redone. Based on Hansel's and Gretel's
experiences, these log records should be
made out of strong stuff (not something a
bird would eat). In computer terms, the
records should be kept, in stable storage--
usually implemented by keeping the records
on several non-volatile devices, each with
independent failure modes. Occasionally, a
stable copy of each object should be

recorded so that the current state may be
reconstructed from the old state.

“ND0 LOG RECORD &
REDO LOG RECORD

REDO OP

r’

REDO LOG=

Figure 3. The DO-UNDO-REDO protocol. The
execution of each protected action gener-
Ites a log record which allows the act-
ion to be undone or redone. Unprotected
rctions need not generate log records.
\ctions which are not undoable (called
real actions) use a related but slightly
lifferent protocol (see next figure).

The log records for database operations are
very simple. They have the form:

NAME OF TRANSACTION:
PREVIOUS LOG RECORD OF THIS TRANSACTION:
NEXT LOG RECORD OF THIS TRANSACTION:
TIME:
TYPE OF OPERATION:
OBJECT OF OPERATION:
OLD VALUE:
NEW VALUE:

The old and new values can be complete
copies of the object, but more typically
they just encode the changed parts of the
object. For example, an update of a field
of a record of a file generally records the
names of the file, record and field along
with the old and new field values rather
than logging the old and new values of the
entire file or entire record.

The log records of a transaction are
threaded together. In order to undo a
transaction one undoes each action in its
log. This technique may be used both for
transaction abort issued by the program and
for cleaning after
(uncommitted) tran%ctions

incomplete
in case of a

system problem such as deadlock or hardware
failure.

In the event that the current state of an
object is lost, one may reconstruct the
current state from an old state in stable

149

storage by using the redo log to redo all
recent committed actions on the old state.

Some actions need not generate log records.
Actions on unprotected objects (e.g.
writing on a scratch file) , and act ions
which do not change the object state (e.g.
reads of the object) need not generate log
records.

On the other hand, some act ions must
initially only generate log records which
will be applied at transaction commit. A
real action which cannot be undone must be
deferred until transaction commit. In a
log-based system, such actions are deferred
by keeping a redo log of deferred
operations. When the transact ion
successfully commits, the recovery system
uses this log to do the deferred actions
(for the first time). These actions are
named (for example by sequence number) so
that duplicates are discarded and hence the
actions are restartable (see below).

REDO LOG RECORD

?igure 4. Real actions (ones that cannot
)e undone) must be deferred until commit.
The logging approach to this is to apply
the redo log of deferred operations as
?art of commit completion.

Another detail is that the undo and redo
operations must be restartable, that is if
the operation is already undone or redone,
the operation should not damage or change
the object state. The need for
restartability comes from the need to deal
with failures during undo and redo
processing . Restartability is usually
accomplished with version numbers (for disk
pages) and with sequence numbers (for
virtual circuits or sessions).
Essentially, the undo or redo operation
reads the version or sequence number and
does nothing if it is the desired number.
Otherwise it transforms the object and the
sequence number.

?igure 5: UNDO and REDO must be restart-
ible, that is if the action has already
lappened, they must not alter the object.

.--

In a log-based scheme, transaction comm i t
is signaled by writing the commit record to
the log. If the transaction has
contributed to multiple logs then one must
be careful to assure that the commit
appears either in all logs or in none of
the logs. Multiple logs frequently arise
in distributed systems (since there are
generally one or more logs per node) but
also arise in central systems.

The simplest strategy to make commit an
atomic action is to allow only the active
node of the transaction to decide to commit
or abort (all other participants are slaves
and look to the active node for the commit
or abort decision). Rosenkrantz, Sterns
and Lewis describe such a scheme
[Rosenkrantz] .

It is generally desirable to allow each
participant in a transact ion to
unilaterally abort the transaction prior to
the commit. If this happens, all other
participants must also abort. The two-
phase commit protocol is intended to
minimize the time during which a node is
not allowed to unilaterally abort
transaction. It is very similar to th:
wedding ceremony in which the minister asks
“Do you?” and the participants say ‘I do”
(or “No wayI’) and then the minister says
“I now pronounce you’, or “The deal is
off”. At commit, the two-phase commit
protocol gets agreement from each
participant that the transact ion ’
prepared to commit. The participaZ
abdicates the right to unilaterally abort
once it says “I do” to the prepare request.
If all agree to commit, then the commit
coordinator broadcasts the commit
If unanimous consent ii

message.
not achieved, the

transaction aborts. Many variations on
this protocol are known (and probably many
more will be published).

IS0

If transactions run concurrently, one
transaction might read the outputs (updates
or messages) of another transaction. If
the first transaction aborts, then undoing
it requires undoing the updates or messages
read by the second transaction. This in
turn requires undoing the second
transaction. But the second transaction
may have already committed and so cannot be
undone. To prevent this dilemma, real and
protected updates (undoable updates) of a
transaction must be hidden from other
transactions until the transaction commits.
To assure that reading two related records
or rereading the same record will give
consistent results, one must also stabilize
records which a transaction reads and keep
them constant until the transaction
commits. Otherwise a transaction could
reread a record and get two different
answers [Eswaranl.

There appear to be many ways of achieving
this input stability and hiding outputs.
But they all seem to boil down to the
following ideas:

* A transaction has a set of inputs nI”.
* A transaction has a set of outputs “0”.
* Other transactions may read (0 1 II but

must not read or write “0”.
Some schemes try to guess the input and
output sets in advance and do set
intersection (or predicate intersection) at
transaction scheduling time to decide
whether this transaction might conflict
with some already executing transactions.
In such cases, initiation of the new
transaction is delayed until it does not
conflict with any running transaction.
IMS/360 seems :zdhave been the first to try
this scheme, 1t has been widely
rediscovered. It has not been very
successful. IMS abandoned predeclaration
(called “intent scheduling”) in 1973
[Obermarck] .

A simpler and more efficient scheme is to
lock an object when it is accessed. This
technique dynamically computes the I and 0
sets of the transaction. If the object is
already locked, then the requestor waits.
Multiple readers can be accommodated, by
distinguishing two lock modes : one
indicating update access and another
indicating read access. Read locks are
compatible while update locks are not.

An important generalization is to allow
locks at multiple granular it ies. Some
transactions want to lock thousands of
records while others only want to lock just
a few. A solution is to allow transactions
to issue a lock as a single predicate which
covers exactly the records they want
locked. Testing for lock conflict involves
evaluating or testing membership in such
predicates [Eswaranl . This is generally
expensive. A compromise is to pick a fixed
set of predicates, organize them into a
directed acyclic graph and lock from root

to leaf. This is a compromise between
generality and efficiency [Grayl].

If a transaction T waits for a transaction
T’ which is waiting for T, both
transactions will be stalled forever in
deadlock. Deadlock is rare, but it must be
dealt with. Deadlock must be detected (by
timeout or by looking for cycles in the
who-waits-for-whom graph), a set of victims
must be selected and they must be aborted
(using the log) and their locks freed
[Grayl], [Beeri]. In practice waits seem
to be rare (one transaction in 1000
[Beeri]) and deadlocks seem to be miracles.
But it appears that deadlocks per second
rise as the square of the degree of
multiprogramming and as, the fourth power of
transaction size [Gray3], indicating that
deadlocks may be a problem in the future as
we see large transactions or many
concurrent transactions.

SUMMARY

The previous sections discussed apparently
different approaches to implementing the
transaction concept: time-domain
addressing and logging. It was pointed out
that to make log operations restartable,
the object or object fragments are tagged
with version numbers. Hence, most logging
schemes contain a form of time-domain
addressing.

If each log record is given a time stamp,
then a log can implement time-domain
addressing. If Gretel had written a time
on each crumb, then we could find out where
they were at a certain time by following
the crumbs until the desired time interval
was encountered. Dogging systems write the
old value out to the log and so do not
really discard old values. Rather, the log
is a time-domain addressable version of the
state and the disk contains the current
version of the state.

Time-domain addressing schemes “garbage
co1 lect ” old versions into something that
looks very much like a log and they use
locks to serialize the update of the object
headers [Svobodoval .

I conclude from this that despite the
external differences between time domain
addressing and logging schemes, they are
more similar than different in their
internal structure. There appear to be
difficulties in implementing time-domain
addressing. Arguing by analogy, Dave. Reed
asserts that every locking and logging
trick has an analogous trick for time-
domain addressing. If this is true, both
schemes are viable implementations of
transactions.

151

LIMITATIONS OF KNOWN TECHNIQUES

The transaction concept was adopted to ease
the programming of certain applications.
Indeed, the transaction concept is very
effective in areas such as airlines
reservation, electronic funds transfer or
car rental. But each of these applications
has simple transactions of short duration.

I see the following difficulties with
current transaction models:

1. Transactions cannot be nested inside
transactions.

2. Transactions are assumed to last
minutes rather than weeks.

3. Transactions are not unified with
programming languages.

NESTED TRANSACTIONS

Consider implementing a travel agent
system. A transaction in such a system
consists of:

1. Customer calls the travel agent giving
destination and travel dates.

2. Agent negotiates with airlines for
flights.

3. Agent negotiates with car rental
companies for cars.

4. Agent negotiates with hotels for
rooms.

5. Agent receives tickets and
reservations.,

6. Agent gives customer tickets and gets
credit card number.

7. Agent bills credit card.
8. Customer uses tickets.

Not infrequently, the customer cancels the
trip and the agent must undo the
transaction.

The transaction concept as described thus
far crumbles under this example. Each
interaction with other organizations is a
transaction with that organization (is an
atomic, consistent durable transformation).
The agent cannot unilaterally abort an
interaction after it completes, rather the
agent must run a compensating transact ion
.to reverse the previous transaction (e.g.,
cancel reservation) . The customer thinks
of this whole scenario as a single
transaction. The agent views the fine
structure of the scenario, treating each
step as an action. The airlines and hotels
see only individual actions but view them
as transactions. This example makes it
clear that actions may be transactions at
the next lower level of abstraction.

An approach to this problem which seems to
offer some help is to view a transaction as
a collection of:

* actions on unprotected objects
* protected actions which may be undone

or redone
* real actions which may be deferred but

not undone
* nested transactions which may be undone

by invoking compensating transactions.
Nested transactions differ from protected
actions because their effects are visible
to the outside world prior to the commit of
the parent transaction.

When a nested transaction is run, it
returns as a side ef feet the name and
parameters of the compensating transaction
for the nested transaction: This
information is kept in a log of the parent
transaction and is invoked if the parent is
undone. This log needs to be user-visible
(part of the database) so that the user and
application can know what has been done and
what needs to be done or undone. In most
applications, a transaction already has a
compensating transaction so generating the
compensating transaction (either coding it
or invoking it) is not a major programming
burden. If all else fails, the
compensating transaction might just send a
human the message “Help, I can’t handle
this”.

This may not seem very satisfying, but it
is better than the entirely manual process
which is in common use today. At least in
this proposal, the recovery system keeps
track of what the transaction has done and
what must be done to undo it.

At present, application programmers
implement such applications using
technique called a “scratchpad” (in I$
and a “transaction work area” in CICS. The
application programmer keeps the
transaction state (his own log) as a record
in the database. Each time the transaction
becomes active, it reads its scratchpad.
This reestablishes the transaction state.
The transaction either advances and inserts
the new scratchpad in the database or
aborts and uses the scratchpad as a log of
things to undo. In this instance, the
application programmer is implementing
nested transactions. It is general
facility that should be includ:d in the
host transaction management system.

Some argue that nested transactions are not
transactions. They do have some of the
transaction properties:

Consistent transformation of the state,
Either all actions commit or are undone
by compensation.
Once committed, cannot be undone.

They use the BEGIN, COMMIT and ABORT verbs.
But they do not have the property of
atomicity; others can see the uncommitted
updates of nested transactions. These
updates may subsequently be undone by
compensation.

LONG-LIVED TRANSACTIONS

A second problem with the travel agent
example is that transactions are suddenly
long-lived. At present the largest
airlines and banks have about 10,000

152

terminals and about 100 active transactions
at any instant. These transactions live
for a second or two and are gone forever.
Now suppose that transact ions with
lifetimes of a few days or weeks appear.
This is not uncommon
as travel, insurance,

in applications s;;;
government,

electronic mail. There will be thousands
of concurrent transactions. At least in
database applications, the frequency of
deadlock goes up with the square of the
multiprogramming level and the fourth power
of the transaction size [Gray3]. You might
think this is a good argument against
locking and for time-domain
Time-domain addressing

addressing.
has the same

problem.

Again, the solution I see to this problem
is to accept a lower degree of consistency
[Gray21 so that only “active” transactions
hold locks. This will mean that the
updates of uncommitted transact ions are
visible to other transact ions. This in
turn means that the UNDO and REDO
operations of one transaction will have to
commute with the DO operations of others.
(I.e. if transact ion Tl updates entity E
and then T2 updates entity E and then Tl
aborts, the update of T2 should not be
undone.) If some object is only
manipulated with additions and
subtractions, and if the log records the
delta rather than the old and new value,
then UNDO an REDO may be made to commute
with DO. IMS Fast Path uses the fact that
plus and minus commute to reduce lock
contention. No one knows how far this
trick can be generalized.

A minor problem with long-running
transactions is that current systems tend
to abort them at system restart. When only
100 transactions are active and people are
waiting at terminals to resubmit them this
is conceivable (but not nice). When 10,000
transactions are lost at system restart
then the old approach of discarding them
all at restart is inconce ivable. Active
transactions may be salvaged across system
restarts by using transaction save points:
a transaction declares a save point and the
transaction (program and data) is reset to
its most recent save point in the event of
a system restart.

INTEGRATION WITH PROGRAMMING LANGUAGES

How should the transaction concept be
reflected in programming languages? The
proposal I favor is providing the verbs
BEGIN, SAVE, COMMIT and ABORT. Whenever a
new object Wee and its operations are
defined, the protected operations on that
type must generate undo and redo log
records as well as acquiring locks if the
object is shared. The type manager must
provide UNDO and REDO procedures which will
accept the log records and reconstruct the
old and new version of the object. If the

operation is real, then the operation must
be deferred and the log manager must invoke
the type manager to actually do the
operation at commit time. If the operation
is a nested transaction, the operation must
put the name of the compensating
transaction and the input to the
compensating transaction in the undo log.
In addition, the Wee manager must
participate in system checkpoint and
restart or have some other approach to
hand1 ing system failures and media
failures.

I’m not sure that this idea will work in
the general case and whether the concept of
transaction does actually generalize to
non-EDP areas of programming. The
performance of logging may be prohibitive.
However, the transaction concept has been
very convenient in the database area and
may be applicable to some parts of
programming beyond conventional transaction
processing. Brian Randell and his group at
Newcastle have a proposal in this area
[Randell]. The artificial intel igence
languages such as Interlisp support
backtracking and an UNDO-REDO facility.
Barbara Liskov has been exploring the idea
of adding transactions to the language Clu
and may well discover a new approach.

SUMMARY

Transactions are not a new idea, they go
back thousands of years. The idea of a
transformation being consistent, atomic and
durable is simple and convenient. Many
implementation techniques are known and we
have practical experience with most of
them. However, our concept of transact ion
and the implementation techniques we have
are inadequate to the task of many
applications. They cannot handle nested
transactions, long-lived transactions and
they may not fit well into convent ional
programming systems.

We may be seeing the Peter Principle in
operation here : “every good idea is
generalized to its level of
inapplicability”. But I believe that the
problems I have outlined here (long-lived
and nested transactions) must be solved.

I am optimistic that the transaction
concept provides a convenient abstraction
for structuring applications. People
implementing such applications are
confronted with these problems and have
adopted expedient solutions. One
contribution of this paper is to abstract
these problems and to sketch
generalizations of techniques in common use
which address the problems. I expect that
these general techniques will allow both
long-lived and nested transactions.

ACKNOWLEDGMENTS

153

This paper owes an obvious debt to the
referenced authors. In addition, the
treatment of nested and long-lived
transactions grows from discussions with
Andrea Barr, Bob Good, Jerry Held, Pete
Homan, Bruce Lindsay, Ron Obermarck and
Franc0 Putzolu. Wendy Bartlett, Andrea
Barr. Dave Gifford and Paul McJones made
several contributions to the presentation.

REFERENCES

[Alsbergl Alsberg, P.A., J.D. Day, "A
principle for Resilient Sharing of
Distributed Resources", Proc. 2nd
Int. Conf. on Software Engineering,
IEEE 1976.

[Bartlett11 Bartlett, J.F., "A Nonstop
Operating System", Eleventh Hawaii
International Conference on System
Sciences, 1978.

[Bartlett21 Bartlett, J.F., "A Nonstop
Kernel", Proceedings of Eighth
Symposium on Operating Systems
Principles, ACM, 1981. (also Tandem
TR 81.4).

[Beeri] Beeri, C., R. Obermarck, "A
Resource Class Independent Deadlock
Detectio Algorithm", IBM RJ-3077
(38123). 1981.

[Bernstein] Bernstein, P.A., D.W. Shipman,
J.B. Rothnie, Concurrency Control in
a System fo Distributed Databases
(SDD-l)., ACM TODS V. 5, No. 1, 1980.

tBorr1 Barr, A.J., "Transaction Monitoring
in Encompass: Reliable Distributed
Transaction Processing", Proceedings
of Very Large Database Conference,
1981. (also Tandem TR 81.3).

[Davies and Bjork] Davies C.T., Bjork L.A.
private communication 1972.

[Bjork] Bjork, L.A., C.T. Davies, "The
Semantics of the Preservation and
Recovery of Integrity in a Data
System", IBM TR-82.540, 1972.

[Eswaran] Eswaran K.E., J.N. Gray, R.A.
Lorie, I.L. Traiger, "On the Notions
of Consistency and Predicate Locks",
CACM V. 19, No. 11, 1976.

[Gray11 Gray, J., "Notes on Database
Operating Systems", Operating
Systems - An Advanced Course,
Springer Verlag Lecture Notes in
Computer Science, V. 60, 1978.

[Gray21 Gray, J., "A Transaction Model",
Automata Languages and Programming,
Springer Verlag Lecture Notes in
Computer Science, V. 80, 1980.

[Gray31 Gray, J., P. Iioman, H. Korth, R.
Obermarck, "A Strawman Analysis of
Deadlock Frequency" To be 'published
in SIGOPS Review.

[Heistand] Heistand, R.E., "Airlines
Control Program System, Concepts and
Facilities" IBM form number GHZO-
1473-1, 1975.

[Japan] Papers from the Tutorial on
Reliable Business Systems in Japan,
AFIPS Press, 1978.

[Katzman] Katzman, J.A., "A Fault-Tolerant
Computing System", Eleventh Hawaii
International Conference on System
Sciences, 1978.

[Obermarck] Obermarck R., "IMS/VS Program
Isolation Feature" IBM RJ2879
(36435), 1980.

[Randelll Randell, B., "System Structure
for Fault Tolerance", IEEE Trans. on
Software Engineering; V. 1, No. 2,
1975.

(Reed11 Reed, D.P., "Naming and
Synchronization in a Decentralized
System", MIT/LCS TR-205, 1978.

[Reed2] Reed, D.P., "Implementing Atomic
Actions on Decentralized Data",
Proc. Seventh ACM/SIGOPS Symposium
on Operating Systems Principles,
1979.

[Rosenkrantz] Rosenkrantz, D.J., R.D.
Stearns, P.M. Lewis, "System Level
Concurrency Control for Database
Systems", ACM TODS, V. 3, No. 2,
1977.

[Severencel Severence, D.G., G.M. Loman,
"Differential Files: Their
Application to Maintenance of Large
Databases", ACM TODS V. 1, No. 3,
1976.

[Svobodoval Svobodova, L. "Management of
Object Histories ' the Swallow
Repository", MIT/L&R-243, 1980.

[van Neumann] Von Neumann, J.
"Probabilistic Logics and the
Synthesis of Reliable Organisms From
Unreliable Components", Automata
Studies Princeton University Press,
1956.

[Wood] wood, W.G., "Recovery Control of
Communicating Processes in a
Distributed System", U. Newcastle upon
Tyne TR-158, 1980.

154

