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ABSTRACT: A transaction is a transformation 
of state which has the properties of 
atomicity (all or nothing), durability 
(effects survive failures) and consistency 
(a correct transformation). The 
transaction concept is key to the 
structuring of data management 
applications. The concept seems to have 
applicability to programming systems in 
general. This paper restates the 
transaction concepts and attempts to put 
several implementation approaches in 
perspective. It then describes some areas 
which require further study: (1) the 
integration of the transaction concept with 
the notion of abstract data type, (2) some 
techniques to allow transactions to be 
composed of sub-transactions, and (3) 
handling transactions which last for 
extremely long times (days or months). 

CONTENTS 

INTRODUCTION: What's a Transaction 
A GENERAL MODEL OF TRANSACTIONS 
IMPLEMENTATION TECHNIQUES 

Nonstop (TN): Making failures rare 
UPDATE IN PLACE: a poison apple? 
TIME-DOMAIN ADDRESSING: one solution 
LOGGING AND LOCKING: another solution 

LIMITATIONS OF KNOWN TECHNIQUES 
NESTED TRANSACTIONS 
LONG-LIVED TRANSACTIONS 
INTEGRATION WITH PROGRAMMING LANGUAGE 

SUMMARY 
ACKNOWLEDGMENTS 
REFERENCES 

INTRODUCTION: What is a transaction? 

The transaction concept derives from 
contract law. In making a contract, two or 
more parties negotiate for a while and then 
make a deal. The deal is made binding by 
the joint signature of a document or by 
some other act (as simple as a handshake or 
nod). If the parties are rather suspicious 
of one another or just want to be safe they 
appoint an intermediary (usually called an 
escrow officer) to coordinate the 
commitment of the transaction. 

The Christian wedding ceremony gives a good 
example of such a contract. The bride and 
groom "negotiate" for days or years and 
then appoint a minister to conduct the 
marriage ceremony. The minister first asks 
if anyone has any objections to the 
marriage; he then asks the bride and groom 
if they agree to the marriage. If they 
both say "I do", he pronounces them man and 
wife. 

Of course, a contract is simply an 
agreement. Individuals can violate it if 
they are willing to break the law. But 
legally, a contract (transaction) can only 
be annulled if it was illegal in the first 
place. Adjustment of a bad transaction is 
done via further compensating transactions 
(including legal redress). 

The transaction concept emerges with the 
following properties: 
Consistency: the transaction must obey 

legal protocols. 
Atomicity: it either happens or it does 

not: either all are bound by the 
contract or none are. 

Durability: once a transaction is 
committed, it cannot be abrogated. 

CH1701-2/81/0000/0144$00.75 @ 1981 IEEE 
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A GENERAL MODEL OF TRANSACTIONS 

Translating the transaction concept to the 
realm of computer science, we observe that 
most of the transactions we see around us 
(banking, car rental, or buying groceries) 
may be reflected in a computer as 
transformations of a system state. 

A system state consists of records and 
devices with changeable values. The system 
state includes assertions about the values 
of records and about the al lowed 
transformations of the values. These 
assertions are called the system 
consistency constraints. 

The system provides actions which read and 
transform the values of records and 
devices. A collection of actions which 
comprise a consistent transformation of the 
state may be grouped to form a transaction. 
Transact ions preserve the sys tern 
consistency constraints -- they obey the 
laws by transforming consistent states into 
new consistent states. 

Transactions must be atomic and durable: 
either all. actions are done and the 
transaction is said to commit, or none of 
the effects of the transaction survive and 
the transaction is said to abort. 

These definitions need slight refinement to 
allow some actions to be ignored and to 
account for others which cannot be undone. 
Actions on entities are categorized as: 

unprotected : the action need not be undone 
OK redone if the transaction must be 
aborted OK the entity value needs to 
be reconstructed. 

protected: the action can and must be 
undone or redone if the transaction 
must be aborted OK if the entity value 
needs to be reconstructed. 

real: once done, the action cannot be 
undone. 

Operations on temporary files and 
transmission of intermediate- messages are 
examples of unprotected act ions. 
Conventional database and message 
operations are examples of protected 
actions. Transact ion commitment and 
operations on real devices (cash dispensers 
and airplane wings) are examples of real 
actions. 

Each transaction is defined to have exactly 
one of two outcomes: committed OK aborted. 
All protected and real actions of committed 
transactions persist, even in the presence 
of failures. On the other hand, none of 
the effects of protected and real actions 
of an aborted transaction are ever visible 
to other transactions. 

Once a transaction commits, its effects can 
only be altered by running further 
transactions. For example, if someone is 
underpaid, the corrective action is to run 
another transaction which 
additional 

pays 
sum. Such post f acZ 

transactions are called 
transactions. 

compensating 

A simple transaction is a linear sequence 
of actions. A complex transaction may have 
concuKKency within a transaction; the 
initiation of one action may depend on the 
outcome of a group of actions. Such 
transact ions seem io have transactions 
nested within them, although the effects of 
the nested transactions are only visible to 
other parts of 
1). 

the transaction (see Figure 

Figure 1. Two transactions. Tl is a 
simple sequence of actions. T2 is a 
more complex transaction which demon- 
strates parallelism and nesting within 
a transaction. 

Nonstop (TM) : Making failures rare 

One way to get transaction atomicity and 
durability is to build a perfect system 
which never fails. Suppose YOU built 
perfect hardware which never failed and 
software which did exactly what it was 
supposed to do. Your system would be very 
popular and all transactions would always 
be successful. But the system would fail 
occasionally, because the people who 
adapted your system to their environmeat 
would make some mistakes (application 
programming errors) and the people who 
operated the system would make some 
mistakes (data entry and DKOCedUKal 
errors). Even with very careful 
management, the system would fail every few 
months or years and at least one 
transaction in 100 would fail due to data- 
entry error OK authorization error [Japan]. 
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One may draw two conclusions from this: 
1. You don’t have to make a perfect 

system, one that fails once every 
thousand years is good enough to 
please most customers. 

2. Even if the system is perfect, some 
transactions will abort because of 
data-entry error, insufficient funds, 
operator CancelatiOni or timeout. 

This section discusses techniques for 
“almost perfect” systems and explains. their 
relationship to transaction processing. 

Imperfection comes in several flavors. A 
system may fail because of a design error 
or because of a device failure. The error 
may become visible to a user or redundant 
checks may detect the failure. 

A system is unreliable if it does the wrong 
thing (does not detect the error). A 
system is unavailable if it does not do the 
right thing w.ithin a specified time limit. 
Clearly, high availability is harder to 
achieve than high reliability. 

John Von Neumann is credited with the 
observation that a very reliable (and 
available) system can be built from 
unreliable components [Von Neumann]. Von 
Neumann’s idea was to use 
majority logic on 

redundancy and 
a grand scale (20,080 

wires for one wire) in order to get mean 
times to failure measured in decades. Von 
Neumann was thinking in terms of neurons 
and vacuum tubes which have mean .times to 
failures measured in days and which are 
used in huge quantities, (millions or 
billions) in a system. In addition, Von 
Neumann’s model was flat so that any 
failure in a chain broke the whole chain. 

Fortunately, computer systems do not need 
redundancy factors of 28.000’ in order to‘ 
get very -long mean times to failure. 
Unlike Von Neumann’s nerve nets, computer 
systems are hierarchically composed of 
modules and each module is self-checked so 
that it either operates correctly or 
detects its failure and does nothing. Such 
modules are called fail-fast. Fail-fast 
computer modules such as’ processors and 
memories achieve mean times to failure 
measured in months. Since relatively few 
modules make up a 
than 1001, 

system (typically less 
very limited’ redundancy is 

needed to improve the system reliability. 

Consider the simple case of disks. A 
typical disk fails about once a year. 
Failures arise from bad spots on the disk, 
physical failure of the spindle 
electronic failure of the path to the dis!: 
It takes about an hour to fix a disk or get 
a spare disk to replace it. If the disks 
are duplexed (mirrored) and if they fail 
independent1.y then the pair will both be 
down about once every three thousand years. 
More realistic analysis gives a mean time 
to failure of 800 years. So a system with 

eight pairs of disks would have an 
unavailable disk pair about once a century. 
Without mirroring the same system would 
have an unavailable disk about eight times 
a year. 

Although duplexed disks have been used 
since the late sixties [Heistand] we have 
been slow to generalize from this 
experience to the observation that: 

* Mean time to failures of modules are 
measured in months. 

* Modules can be made fail-fast: either 
they work properly. or they fail to 
work. 

* Spare modules give the appearance of 
mean time to repair measured in 
seconds or minutes. 

* Duplexing such modules gives mean 
times to failure measured in 
centur ies. 

The systematic application of these ideas 
t6 both hardware and software produces 
highly reliable and highly available 
systems. 

High availability requires rethinking many 
concepts of system design. Consider for 
example, the issue of system maintenance: 
one must be able to plug components into 
the system while it is operating. At the 
hardware level this requires Underwriters 
Laboratory Approval that there are no high 
voltages around and requires that 
components tolerate high power drains’ and 
surges and, and, and,... At the software 
level this means that there is no “SYSGEN” 
and that any program or data structure can 
be replaced while the system is operating. 
These are major departures from most 
current system designs. 

Commercial versions of systems which 
provide continuous service are beg-inning to 
appear in the marketplace. Perhaps the 
best known art the Tandem systems. Tandem 
calls its approach to high availability 
NonStoP [a Tandem 
systems typically have 

trademark). Their 
mean times to 

failure between one and ten years. At the 
hardware lev.el, modules and paths are 
duplexed and all components are designed 
for reliable and fail-fast operation 
[ Katzmanl . At the software level, the 
system is ,structured as a meseage-based 
operating system in which each process may 
have a backup process which continues the 
work of the primary process should the 
primary process or its supporting hardware 
fail [Bartlettll, [Bartlett21 . Alsberg 
proposed a related technique {Alaberg]. 

It is not easy to build a highly available 
system. Given such a system, it is non- 
trivial to program fault-tolerant 
applications unless other tools are 
provided: takeover by the backup process 
when the primary process fails is delicate. 
The backup process must somehow continue 

146 



the computation where it left off without 
propagating the failure to other processes. 

One strategy for writing fault-tolerant 
applications is to have the primary process 
“checkpoint” its state to the backup 
process prior to each operation. If the 
primary fails, the backup process picks up 
the conversation where the primary left 
off. Resynchronizing the requestor and 
server processes in such an event is very 
subtle. 

Another strategy for writing fault-tolerant 
software is to collect all the processes of 
a computation together as a transaction and 
to reset them all to the init ial 
transaction state in case of a failure. In 
the event of a failure, the transaction is 
undone (to a save point or to the 
beginning) and continued from that point by 
a new process. The backout and restart 
facilities provided by transact ion 
management free the application programmer 
from concerns about failures or process 
pairs. 

The implementors of the transaction concept 
must use the primitive process-pair 
mechanism and must deal with the subtleties 
of Nonstop; but thereafter, all programmers 
may rely on the transaction mechanism and 
hence may easily write fault-tolerant 
software [Barr] . Programs in such a system 
look no different from programs in a 
conventional system except that they 
contain the verbs BEGIN-TRANSACTION, 
COMMIT-TRANSACTION and ABORT-TRANSACTION. 

Use of the transaction concept allows the 
application programmer to abort the 
transaction in case the 
system state looks b’ad. 

input data or 
This feature comes 

at no additional cost because the mechanism 
to undo a transaction is already in place. 

In addition, if transact ions are 
implemented with logging, then the 
transaction manager may be used to 
reconstruct the system state from an old 
state plus the log. This provides 
transaction durability in the presence of 
multiple failures. 

In summary, Nonstop (TM) techniques can 
make computer systems appear to have 
failure rates measured in decades 
centuries. In practice, systems ha:: 
failure rates measured in months or years 
because of operator error (about one per 
year) and application program errors 
(several per year) [Japan] . These now 
become the main limit of system reliability 
rather than the software or hardware 
supplied by the manufacturer. 

This section showed the need for the 
transaction concept to ease the 
implementat ion of fault-tolerant 
applications. There are two apparently 

different approaches to implementing the 
transaction concept: time-domain addressing 
and logging plus locking. The 
sections explain these two 

following 
approaches and 

contrast them. 

To give a preview of the two techniques, 
logging clusters the current state of all 
objects together and relegates old versions 
to a history file called a log. Time 
doma in addressing clusters the complete 
history (all versions) of each object with 
the object. Each organization will be seen 
to have some unique virtues. 

UPDATE IN PLACE: A poison apple? 

When book-keeping was done with clay 
tablets or paper and ink, accountants 
developed some clear rules about good 
accounting practices. One of the cardinal 
rules is double-entry bookkeeping so that 
calculations are self checking, thereby 
making them fail-fast. A second rule is 
that one never alters the books; if an 
error is made, it is annotated and a new 
compensating entry is made in the books. 
The books are thus a complete history of 
the transactions of the business. 

The first computer systems obeyed these 
rules. The book-keeping entries were 
represented on punched cards or on tape as 
records. A run would take in the old 
master and the day’s activity, represented 
as records on punched cards. The result 
was a new master. The old master was never 
updated. This was due in part to good 
accounting practices but also due to the 
technical aspects of cards and tape: 
writing a new tape was easier than re- 
writing the old tape. 

The advent of direct access storage (disks 
and drums) changed this. It was now 
possible to update only a part of a file. 
Rather than copying the whole disk whenever 
one part was updated, it became attractive 
to update just the parts that changed in 
order to construct the new master. Some of 
these techniques, notably side files and 
differential files [Severence] did not 
update the old master and hence followed 
good accounting techniques. But for 
performance reasons, most disk-based 
systems have been seduced into updating the 
data in-place. 

TIME-DGMAIN ADDRESSING: one solution 

Update-in-place strikes many systems 
designers as a cardinal sin: it violates 
traditional accounting practices which have 
been observed for hundreds of years. There 
have been several proposals for systems in 
which objects are never altered, rather an 
object is considered to have a time history 
and object addresses become <name,time> 
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rather than simply name. In such a system, 
an object is not “updated”, it is “evolved” 
to have some additional information. 
Evolving an object consists of creating a 
new value and appending it as the current 
(as of this time) value of the object. The 
old value continues to exist and may be 
addressed by specifying any time within the 
time interval that value was current. Such 
systems are called “time-domain addressing” 
or “version-oriented systems”. (Some call 
them immutable object systems but I think 
that is a misnomer since objects do change 
values with time.) 

Davies and Bjork proposed an 
implementat ion for time-domain addressing 
as “general ledger” in which each entity 
had a time sequence of values [Davies], 
[Bjorkl. Their system not only kept these 
values but also keljt the chain of 
dependencies so that if an error was 
discovered, the compensating transact ion 
could run and the new value could be 
propagated to each transaction that 
depended on the erroneous data. The 
internal book-keeping and expected poor 
performance of such a system discouraged 
most who have looked at it. Graham Wood at 
University of Newcastle showed that the 
dependency information grows exponent ially 
[Wood]. 

Dave Reed has made the most complete 
proposal for a transaction system based on 
time-domain addressing [Reedll. In Reed’s 
proposal an entity E has a set of values Vi 
each of which is valid for a time period: 
For example the entity E and its value 
history might be denoted by: 

E: <VO, [TO,Tl)>, <Vl, [Tl,T2)>, <V2, [T2,*)> 
meaning that E had value VO from time TO up 
to Tl, at time Tl it got value Vl and at 
time T2 it got value V2 which is the 
current value. Each transaction is 
assigned a unique time of execution and all 
of its reads and writes are interpreted 
with respect to that time. A transaction 
at time T3 reading entity E gets the value 
of the entity at that time. In the example 
above, if T3>T2 then the value V2 will be 
made valid for the period [T2,T3). A 
transaction at time T3 writing value V3 to 
entity E starts a new time interval: 

E: CVO, [TO,Tl)>,<Vl, [Tl,T2)>,<V2, [T2,T3)>, 
<V3, [T3,*) > 

If T2 >= T3 then the transaction is aborted 
because it is attempting to rewrite 
history. 

The writes of the transaction all depend 
upon a comm i t record. At transact ion 
commit, the system validates (makes valid) 
all of the updates of the transaction. At 
transaction abort the system invalidates 
all of the updates. This is done by 
setting the state of the commit record to 
commit or abort and then broadcasting the 
transaction outcome. 

This is a simplified description of Reed’s 
proposal. The full proposal has many other 
features including a nested transaction 
mechanism. In addition, Reed does not use 
“real” time but rather “pseudo-time” in 
order to avoid the difficulties 
implementing a global clock. See [Reed;: 
and [Svobodova] for a very understandable 
presentations of this proposal. 

_--------_--------__--------------- ------ 

Figure 2. Representation of versions of 
object E. ’ Three committed versions and 
one proposed version are shown. When 
version V3 is committed or aborted, the 
commit record and object header will be 
updated. Adapted from [Svobodoval . 

Reed observes that this proposal is a 
unified solution to both the concurrency 
control problem and the reliability 
problem. In addition, the system allows 
applications the full power of time domain 
addressing. One can easily ask questions 
such as “What did the books look like at 
year-end?” 

There are some problems with time-domain 
addressing proposals. 

1) Reads are writes: reads advance the ( 

( 

clock on an object and therefore update 
its header. This may increase I/O 
activity. 

2) Waits are aborts: In most cases a 
locking system will cause conflicts to 
result in one process waiting for 
another. In time-domain systems, 
conflicts abort the writer. This may 
preclude long-running “batch” 
transactions which do many updates. 

(3) Timestamps ff;;yo,” sf,n~‘i;dsgr;;~~~~~ty: 
reading a 
million t imestamps. A simple 102 
hierarchy allows sequential (whole 
file) and direct (single record) 
locking against the same data (at the 
same time. ) 
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(4) Real operations and pseudo-time: If one 
reads or writes a real device, it is 
read at some real time or written at . 
some real time (consider the rods of a 
nuclear reactor, or an automated teller 
machine which consumes and dispenses 
money). It is unclear how real time 
correlates with pseudo-time and how 
writes to real devices are modeled as 
versions. 

As you can see from this list, not all the 
details of implementing a time domain 
addressing system have been worked out. 
Certainly the concept is valid. All but 
the last issue are performance issues and 
may well be solved by people trying to 
build such systems. Many people are 
enthusiastic about this approach, and they 
will certainly find ways to eliminate or 
ameliorate these problems. In particular, 
Dave Reed and his colleagues at MIT are 
building such a system [Svobodova]. 

LOGGING AND LOCKING: another solution 

Logging and locking are an alternative 
implementation of the transaction concept. 
The legendary Greeks, Ariadne and Theseus 
invented logging. Ariadne gave Theseus a 
magic ball of string which he unraveled as 
he searched the Labyrinth for the Minotaur. 
Having slain the Minotaur, Theseus followed 
the string back to the entrance (rather 
than remaining lost in the Labyrinth). 
This string was his log allowing him to 
undo the process of entering the Labyrinth. 
But the Minotaur was not a protected object 
so its death was not undone by Theseus' 
exit. 

Hansel and Gretel copied Theseus' trick as 
they wandered into the woods in search of 
berries. They left behind a , trail of 
crumbs which would allow them to retrace 
their steps (by following the trail 
backwards) and would allow their parents to 
find them by following the trail forwards. 
This was the first undo and redo log. 
Unfortunately, a bird ate the crumbs and 
caused the first log failure. 

The basic idea of logging is that every 
undoable action must not only do the action 
but must also leave behind a string, crumb 
or undo log record which allows the 
operation to be undone. Similarly, every 
redoable action must not only do the 
operation but must also generate a redo log 
record which allows the operation to be 
redone. Based on Hansel's and Gretel's 
experiences, these log records should be 
made out of strong stuff (not something a 
bird would eat). In computer terms, the 
records should be kept, in stable storage-- 
usually implemented by keeping the records 
on several non-volatile devices, each with 
independent failure modes. Occasionally, a 
stable copy of each object should be 

recorded so that the current state may be 
reconstructed from the old state. 

“ND0 LOG RECORD & 
REDO LOG RECORD 

REDO OP 

r’ 

REDO LOG= 

Figure 3. The DO-UNDO-REDO protocol. The 
execution of each protected action gener- 
Ites a log record which allows the act- 
ion to be undone or redone. Unprotected 
rctions need not generate log records. 
\ctions which are not undoable (called 
real actions) use a related but slightly 
lifferent protocol (see next figure). 

The log records for database operations are 
very simple. They have the form: 

NAME OF TRANSACTION: 
PREVIOUS LOG RECORD OF THIS TRANSACTION: 
NEXT LOG RECORD OF THIS TRANSACTION: 
TIME: 
TYPE OF OPERATION: 
OBJECT OF OPERATION: 
OLD VALUE: 
NEW VALUE: 

The old and new values can be complete 
copies of the object, but more typically 
they just encode the changed parts of the 
object. For example, an update of a field 
of a record of a file generally records the 
names of the file, record and field along 
with the old and new field values rather 
than logging the old and new values of the 
entire file or entire record. 

The log records of a transaction are 
threaded together. In order to undo a 
transaction one undoes each action in its 
log. This technique may be used both for 
transaction abort issued by the program and 
for cleaning after 
(uncommitted) tran%ctions 

incomplete 
in case of a 

system problem such as deadlock or hardware 
failure. 

In the event that the current state of an 
object is lost, one may reconstruct the 
current state from an old state in stable 
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storage by using the redo log to redo all 
recent committed actions on the old state. 

Some actions need not generate log records. 
Actions on unprotected objects (e.g. 
writing on a scratch file) , and act ions 
which do not change the object state (e.g. 
reads of the object) need not generate log 
records. 

On the other hand, some act ions must 
initially only generate log records which 
will be applied at transaction commit. A 
real action which cannot be undone must be 
deferred until transaction commit. In a 
log-based system, such actions are deferred 
by keeping a redo log of deferred 
operations. When the transact ion 
successfully commits, the recovery system 
uses this log to do the deferred actions 
(for the first time). These actions are 
named (for example by sequence number) so 
that duplicates are discarded and hence the 
actions are restartable (see below). 

REDO LOG RECORD 

?igure 4. Real actions (ones that cannot 
)e undone) must be deferred until commit. 
The logging approach to this is to apply 
the redo log of deferred operations as 
?art of commit completion. 

Another detail is that the undo and redo 
operations must be restartable, that is if 
the operation is already undone or redone, 
the operation should not damage or change 
the object state. The need for 
restartability comes from the need to deal 
with failures during undo and redo 
processing . Restartability is usually 
accomplished with version numbers (for disk 
pages) and with sequence numbers (for 
virtual circuits or sessions). 
Essentially, the undo or redo operation 
reads the version or sequence number and 
does nothing if it is the desired number. 
Otherwise it transforms the object and the 
sequence number. 

?igure 5: UNDO and REDO must be restart- 
ible, that is if the action has already 
lappened, they must not alter the object. 

.---------------------------------------- 

In a log-based scheme, transaction comm i t 
is signaled by writing the commit record to 
the log. If the transaction has 
contributed to multiple logs then one must 
be careful to assure that the commit 
appears either in all logs or in none of 
the logs. Multiple logs frequently arise 
in distributed systems (since there are 
generally one or more logs per node) but 
also arise in central systems. 

The simplest strategy to make commit an 
atomic action is to allow only the active 
node of the transaction to decide to commit 
or abort (all other participants are slaves 
and look to the active node for the commit 
or abort decision). Rosenkrantz, Sterns 
and Lewis describe such a scheme 
[Rosenkrantz] . 

It is generally desirable to allow each 
participant in a transact ion to 
unilaterally abort the transaction prior to 
the commit. If this happens, all other 
participants must also abort. The two- 
phase commit protocol is intended to 
minimize the time during which a node is 
not allowed to unilaterally abort 
transaction. It is very similar to th: 
wedding ceremony in which the minister asks 
“Do you?” and the participants say ‘I do” 
(or “No wayI’) and then the minister says 
“I now pronounce you’, or “The deal is 
off”. At commit, the two-phase commit 
protocol gets agreement from each 
participant that the transact ion ’ 
prepared to commit. The participaZ 
abdicates the right to unilaterally abort 
once it says “I do” to the prepare request. 
If all agree to commit, then the commit 
coordinator broadcasts the commit 
If unanimous consent ii 

message. 
not achieved, the 

transaction aborts. Many variations on 
this protocol are known (and probably many 
more will be published). 
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If transactions run concurrently, one 
transaction might read the outputs (updates 
or messages) of another transaction. If 
the first transaction aborts, then undoing 
it requires undoing the updates or messages 
read by the second transaction. This in 
turn requires undoing the second 
transaction. But the second transaction 
may have already committed and so cannot be 
undone. To prevent this dilemma, real and 
protected updates (undoable updates) of a 
transaction must be hidden from other 
transactions until the transaction commits. 
To assure that reading two related records 
or rereading the same record will give 
consistent results, one must also stabilize 
records which a transaction reads and keep 
them constant until the transaction 
commits. Otherwise a transaction could 
reread a record and get two different 
answers [Eswaranl. 

There appear to be many ways of achieving 
this input stability and hiding outputs. 
But they all seem to boil down to the 
following ideas: 

* A transaction has a set of inputs nI”. 
* A transaction has a set of outputs “0”. 
* Other transactions may read (0 1 II but 

must not read or write “0”. 
Some schemes try to guess the input and 
output sets in advance and do set 
intersection (or predicate intersection) at 
transaction scheduling time to decide 
whether this transaction might conflict 
with some already executing transactions. 
In such cases, initiation of the new 
transaction is delayed until it does not 
conflict with any running transaction. 
IMS/360 seems :zdhave been the first to try 
this scheme, 1t has been widely 
rediscovered. It has not been very 
successful. IMS abandoned predeclaration 
(called “intent scheduling”) in 1973 
[Obermarck] . 

A simpler and more efficient scheme is to 
lock an object when it is accessed. This 
technique dynamically computes the I and 0 
sets of the transaction. If the object is 
already locked, then the requestor waits. 
Multiple readers can be accommodated, by 
distinguishing two lock modes : one 
indicating update access and another 
indicating read access. Read locks are 
compatible while update locks are not. 

An important generalization is to allow 
locks at multiple granular it ies. Some 
transactions want to lock thousands of 
records while others only want to lock just 
a few. A solution is to allow transactions 
to issue a lock as a single predicate which 
covers exactly the records they want 
locked. Testing for lock conflict involves 
evaluating or testing membership in such 
predicates [Eswaranl . This is generally 
expensive. A compromise is to pick a fixed 
set of predicates, organize them into a 
directed acyclic graph and lock from root 

to leaf. This is a compromise between 
generality and efficiency [Grayl]. 

If a transaction T waits for a transaction 
T’ which is waiting for T, both 
transactions will be stalled forever in 
deadlock. Deadlock is rare, but it must be 
dealt with. Deadlock must be detected (by 
timeout or by looking for cycles in the 
who-waits-for-whom graph), a set of victims 
must be selected and they must be aborted 
(using the log) and their locks freed 
[Grayl], [Beeri]. In practice waits seem 
to be rare (one transaction in 1000 
[Beeri]) and deadlocks seem to be miracles. 
But it appears that deadlocks per second 
rise as the square of the degree of 
multiprogramming and as, the fourth power of 
transaction size [Gray3], indicating that 
deadlocks may be a problem in the future as 
we see large transactions or many 
concurrent transactions. 

SUMMARY 

The previous sections discussed apparently 
different approaches to implementing the 
transaction concept: time-domain 
addressing and logging. It was pointed out 
that to make log operations restartable, 
the object or object fragments are tagged 
with version numbers. Hence, most logging 
schemes contain a form of time-domain 
addressing. 

If each log record is given a time stamp, 
then a log can implement time-domain 
addressing. If Gretel had written a time 
on each crumb, then we could find out where 
they were at a certain time by following 
the crumbs until the desired time interval 
was encountered. Dogging systems write the 
old value out to the log and so do not 
really discard old values. Rather, the log 
is a time-domain addressable version of the 
state and the disk contains the current 
version of the state. 

Time-domain addressing schemes “garbage 
co1 lect ” old versions into something that 
looks very much like a log and they use 
locks to serialize the update of the object 
headers [Svobodoval . 

I conclude from this that despite the 
external differences between time domain 
addressing and logging schemes, they are 
more similar than different in their 
internal structure. There appear to be 
difficulties in implementing time-domain 
addressing. Arguing by analogy, Dave. Reed 
asserts that every locking and logging 
trick has an analogous trick for time- 
domain addressing. If this is true, both 
schemes are viable implementations of 
transactions. 
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LIMITATIONS OF KNOWN TECHNIQUES 

The transaction concept was adopted to ease 
the programming of certain applications. 
Indeed, the transaction concept is very 
effective in areas such as airlines 
reservation, electronic funds transfer or 
car rental. But each of these applications 
has simple transactions of short duration. 

I see the following difficulties with 
current transaction models: 

1. Transactions cannot be nested inside 
transactions. 

2. Transactions are assumed to last 
minutes rather than weeks. 

3. Transactions are not unified with 
programming languages. 

NESTED TRANSACTIONS 

Consider implementing a travel agent 
system. A transaction in such a system 
consists of: 

1. Customer calls the travel agent giving 
destination and travel dates. 

2. Agent negotiates with airlines for 
flights. 

3. Agent negotiates with car rental 
companies for cars. 

4. Agent negotiates with hotels for 
rooms. 

5. Agent receives tickets and 
reservations., 

6. Agent gives customer tickets and gets 
credit card number. 

7. Agent bills credit card. 
8. Customer uses tickets. 

Not infrequently, the customer cancels the 
trip and the agent must undo the 
transaction. 

The transaction concept as described thus 
far crumbles under this example. Each 
interaction with other organizations is a 
transaction with that organization (is an 
atomic, consistent durable transformation). 
The agent cannot unilaterally abort an 
interaction after it completes, rather the 
agent must run a compensating transact ion 
.to reverse the previous transaction (e.g., 
cancel reservation) . The customer thinks 
of this whole scenario as a single 
transaction. The agent views the fine 
structure of the scenario, treating each 
step as an action. The airlines and hotels 
see only individual actions but view them 
as transactions. This example makes it 
clear that actions may be transactions at 
the next lower level of abstraction. 

An approach to this problem which seems to 
offer some help is to view a transaction as 
a collection of: 

* actions on unprotected objects 
* protected actions which may be undone 

or redone 
* real actions which may be deferred but 

not undone 
* nested transactions which may be undone 

by invoking compensating transactions. 
Nested transactions differ from protected 
actions because their effects are visible 
to the outside world prior to the commit of 
the parent transaction. 

When a nested transaction is run, it 
returns as a side ef feet the name and 
parameters of the compensating transaction 
for the nested transaction: This 
information is kept in a log of the parent 
transaction and is invoked if the parent is 
undone. This log needs to be user-visible 
(part of the database) so that the user and 
application can know what has been done and 
what needs to be done or undone. In most 
applications, a transaction already has a 
compensating transaction so generating the 
compensating transaction (either coding it 
or invoking it) is not a major programming 
burden. If all else fails, the 
compensating transaction might just send a 
human the message “Help, I can’t handle 
this”. 

This may not seem very satisfying, but it 
is better than the entirely manual process 
which is in common use today. At least in 
this proposal, the recovery system keeps 
track of what the transaction has done and 
what must be done to undo it. 

At present, application programmers 
implement such applications using 
technique called a “scratchpad” (in I$ 
and a “transaction work area” in CICS. The 
application programmer keeps the 
transaction state (his own log) as a record 
in the database. Each time the transaction 
becomes active, it reads its scratchpad. 
This reestablishes the transaction state. 
The transaction either advances and inserts 
the new scratchpad in the database or 
aborts and uses the scratchpad as a log of 
things to undo. In this instance, the 
application programmer is implementing 
nested transactions. It is general 
facility that should be includ:d in the 
host transaction management system. 

Some argue that nested transactions are not 
transactions. They do have some of the 
transaction properties: 

Consistent transformation of the state, 
Either all actions commit or are undone 
by compensation. 
Once committed, cannot be undone. 

They use the BEGIN, COMMIT and ABORT verbs. 
But they do not have the property of 
atomicity; others can see the uncommitted 
updates of nested transactions. These 
updates may subsequently be undone by 
compensation. 

LONG-LIVED TRANSACTIONS 

A second problem with the travel agent 
example is that transactions are suddenly 
long-lived. At present the largest 
airlines and banks have about 10,000 
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terminals and about 100 active transactions 
at any instant. These transactions live 
for a second or two and are gone forever. 
Now suppose that transact ions with 
lifetimes of a few days or weeks appear. 
This is not uncommon 
as travel, insurance, 

in applications s;;; 
government, 

electronic mail. There will be thousands 
of concurrent transactions. At least in 
database applications, the frequency of 
deadlock goes up with the square of the 
multiprogramming level and the fourth power 
of the transaction size [Gray3]. You might 
think this is a good argument against 
locking and for time-domain 
Time-domain addressing 

addressing. 
has the same 

problem. 

Again, the solution I see to this problem 
is to accept a lower degree of consistency 
[Gray21 so that only “active” transactions 
hold locks. This will mean that the 
updates of uncommitted transact ions are 
visible to other transact ions. This in 
turn means that the UNDO and REDO 
operations of one transaction will have to 
commute with the DO operations of others. 
(I.e. if transact ion Tl updates entity E 
and then T2 updates entity E and then Tl 
aborts, the update of T2 should not be 
undone.) If some object is only 
manipulated with additions and 
subtractions, and if the log records the 
delta rather than the old and new value, 
then UNDO an REDO may be made to commute 
with DO. IMS Fast Path uses the fact that 
plus and minus commute to reduce lock 
contention. No one knows how far this 
trick can be generalized. 

A minor problem with long-running 
transactions is that current systems tend 
to abort them at system restart. When only 
100 transactions are active and people are 
waiting at terminals to resubmit them this 
is conceivable (but not nice). When 10,000 
transactions are lost at system restart 
then the old approach of discarding them 
all at restart is inconce ivable. Active 
transactions may be salvaged across system 
restarts by using transaction save points: 
a transaction declares a save point and the 
transaction (program and data) is reset to 
its most recent save point in the event of 
a system restart. 

INTEGRATION WITH PROGRAMMING LANGUAGES 

How should the transaction concept be 
reflected in programming languages? The 
proposal I favor is providing the verbs 
BEGIN, SAVE, COMMIT and ABORT. Whenever a 
new object Wee and its operations are 
defined, the protected operations on that 
type must generate undo and redo log 
records as well as acquiring locks if the 
object is shared. The type manager must 
provide UNDO and REDO procedures which will 
accept the log records and reconstruct the 
old and new version of the object. If the 

operation is real, then the operation must 
be deferred and the log manager must invoke 
the type manager to actually do the 
operation at commit time. If the operation 
is a nested transaction, the operation must 
put the name of the compensating 
transaction and the input to the 
compensating transaction in the undo log. 
In addition, the Wee manager must 
participate in system checkpoint and 
restart or have some other approach to 
hand1 ing system failures and media 
failures. 

I’m not sure that this idea will work in 
the general case and whether the concept of 
transaction does actually generalize to 
non-EDP areas of programming. The 
performance of logging may be prohibitive. 
However, the transaction concept has been 
very convenient in the database area and 
may be applicable to some parts of 
programming beyond conventional transaction 
processing. Brian Randell and his group at 
Newcastle have a proposal in this area 
[Randell]. The artificial intel igence 
languages such as Interlisp support 
backtracking and an UNDO-REDO facility. 
Barbara Liskov has been exploring the idea 
of adding transactions to the language Clu 
and may well discover a new approach. 

SUMMARY 

Transactions are not a new idea, they go 
back thousands of years. The idea of a 
transformation being consistent, atomic and 
durable is simple and convenient. Many 
implementation techniques are known and we 
have practical experience with most of 
them. However, our concept of transact ion 
and the implementation techniques we have 
are inadequate to the task of many 
applications. They cannot handle nested 
transactions, long-lived transactions and 
they may not fit well into convent ional 
programming systems. 

We may be seeing the Peter Principle in 
operation here : “every good idea is 
generalized to its level of 
inapplicability”. But I believe that the 
problems I have outlined here (long-lived 
and nested transactions) must be solved. 

I am optimistic that the transaction 
concept provides a convenient abstraction 
for structuring applications. People 
implementing such applications are 
confronted with these problems and have 
adopted expedient solutions. One 
contribution of this paper is to abstract 
these problems and to sketch 
generalizations of techniques in common use 
which address the problems. I expect that 
these general techniques will allow both 
long-lived and nested transactions. 
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