
Multimedia Computing and Networking (MMCN '05), Jan 19 2005.

Verifying Data Integrity in Peer-to-
Peer Media Streaming

Presented by

1Ahsan Habib

Joint work with

2Dongyan Xu, 2Mikhail Atallah,
2Bharat Bhargava, and 1John Chuang

1University of California at Berkeley, 2Purdue University
{habib,chuang}@sims.berkeley.edu, {dxu,mja,bb}@cs.purdue.edu

Verifying data integrity in P2P media streaming 2

Problem Statement

When watching The Matrix over the Internet
from several untrustworthy peers, how to
ensure in real time

The data are not corrupted
The data belong to The Matrix not Star Wars

Verifying data integrity in P2P media streaming 3

Setup

Many-to-one (not one-to-
many, i.e., multicast)

PROMISE [MM ’03]

Supplier selection is
done by underlying
P2P substrate

The content is video data
Watched in real time
Bandwidth requirement is
high, and
Session duration is long
(hours) PROMISE Peer Selection

Verifying data integrity in P2P media streaming 4

Challenges

Like multicast, there is no trusted authority to
sign all packets

Peers are not trustworthy. Signing by peers is not
acceptable to others

Verify the integrity of the content in real time
Validate the content

Verifying data integrity in P2P media streaming 5

Contribution

Propose two protocols to verify data integrity in
P2P media streaming
Provide a detailed analysis among existing and
proposed protocols
Compare protocols for communication and
computation overheads
Simulation and wide area Internet
experimental study to show their performance

Verifying data integrity in P2P media streaming 6

Outline

Introduction
Setup, challenges, and contribution

Existing tools and techniques
Proposed Solution

BOPV
TFDP

Analytical comparison
Simulation and experimental results
Conclusion

Verifying data integrity in P2P media streaming 7

Existing Tools/Techniques

Digital signature
RSA signature scheme [Comm of ACM ’78]

One time signature [CCS ’01], k-time signature [CCS ’99]

Signature chain
TESLA, EMSS [S&P ’00, NDSS ’01]

Signature tree
SAIDA [S&P ’02]

Tree chaining [TON ’99] uses Merkle tree [Crypto ’89]

File sharing
Key escrow [EC ’01]

Rate-less Erasure-code with homomorphic hash function [S&P ’04]

Verifying data integrity in P2P media streaming 8

Our solution (Preliminaries)
Streaming model

Suppliers set, P={P1, P2, P3, …, Pm}
Media file consists of blocks B= {B1, B2, …, BM}
Block consists of packets Bi= {pi1, pi2, …, pil}
A series of N blocks makes a group

Adversary model
Insert garbage data during streaming. A peer can
pretend to have a file without actually having it.

A point of reference (S)
S is Hollywood in legal content distribution model or
S is stored in a distributed fashion

Verifying data integrity in P2P media streaming 9

Block Oriented Probabilistic
Verification (BOPV) Protocol

1. P0 authenticates itself to S
2. S generates secret key Ki=1…M for each

block Bi, computes n (N > n) digests
σj=1…n for each group and sends
them to P0

3. P0 gives key(s) to each supplier peer
4. Each peer supplies Bi and its digest.

P0 matches digests from step 2 and 4.

1

23 4

P0

Pi

Pj

S

Verifying data integrity in P2P media streaming 10

BOPV (Cont’d)
Probabilistic verification

S provides n digests for N blocks (N > n).
P0 does not verify all blocks
Probability to cheat in r blocks by a peer,

An example: The Matrix
File size 1.3 GBytes
1 digest for 1 packet ≈ 26 MB digests to download from S
One block contains 32 pkts, digests ≈ 0.79 MB
Verifying 8 out of 16 blocks, digests ≈ 406 KB

Having 128 pkts per block, digests ≈ 107 KB

 −

=

n

N

n

rΝ

rn,N,])cheat(Pr[

Verifying data integrity in P2P media streaming 11

Probabilistic verification

N=16, n=8, r=1, Pr[cheat] = 50%
N=16, n=9, r=4, Pr[cheat] = 1%

1 block corrupt in 10 groups, Pr[cheat] = 0.002
2 blocks corrupt in 6 groups, Pr[cheat] = 0.0008

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Number of groups

P
ro

ba
bi

lit
y(

ch
ea

t)

r=1
r=2

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

Number of blocks verified (n)

P
ro

ba
bi

lit
y(

ch
ea

t)

r=2
r=3
r=4

Verifying data integrity in P2P media streaming 12

Limitation (BOPV)

If a packet is lost, the whole block is useless
Multiple hashes (BOPV + MH) [S&P ’00, IBM TR ’97]

Each packet contains digests of other packets
If a packet is lost, its digest can be found in other packets

FEC (BOPV + FEC)
FEC is used to encode digests
t packets (instead of k<t) are sent by the senders and k
out of t packets are required to recover all packets
FEC overhead, α = t/k

Heavily depends on S. Initial digest download is
also high.

Verifying data integrity in P2P media streaming 13

Tree-based Forward Digest Protocol
(TFDP)

Build Merkle tree for a
media file
Besides data, peers
cache digests to
compute the root
Peers forward digests
first before data
Nmin blocks are verified
at a time. Number of
extra digest =)/(log)1(minNMd d−

H6

1615141312111098765431 2

H4H3H2H1

P1 P3P2

H7H5

3126252221191817 3230292827242320

H15

H13 H14

H12H11H10H9

H8

Verifying data integrity in P2P media streaming 14

TFDP

1. P0 authenticates itself to S
2. S provides P0 the digest of the root of

the tree
3. P0 tells the suppliers to send the digests

to verify Nmin blocks.
4. The assigned peers send P0 the digests of the leaves and other

digests to verify the root digest
5. P0 computes the root digest with the digests at step 4 and verifies

it with the digest at step 2.
6. If there is a match, P0 signals all suppliers to send data

P0 verifies each block individually during streaming

The process is repeated for the whole file.

1

23 4

P0

Pi

Pj

S

5 6

Verifying data integrity in P2P media streaming 15

Analytical Comparison

Compute communication and computation
overheads for each protocol

Communication overhead: extra bytes downloaded by the
receiver for integrity verification
Computation overhead: time to compute digest, decode,
and verify signature. Use openSSL crypto library and
Reed-Solomon code for FEC.

Symbols
Total blocks = M, total packets in a block = l, FEC
overhead = α, probability to verify a packet = v, extra
digest to send with each packet (BOPV+MH) = β

Verifying data integrity in P2P media streaming 16

Communication Overhead

Download Download
from suppliers from S

BOPV+MH 20Mlβ + (20+K)Mv

BOPV + FEC 20Mlα + (20+K)Mv

SAIDA (128+20l)Mα

Tree Chaining (128+20logl)Ml

TFDP 20[Ml+M+M/Nminlog(M/Nmin)]α + 20

Verifying data integrity in P2P media streaming 17

Computation Overhead

MMl+M/Nmin[(Nmin-1)log(M/Nmin)]TFDP

MM(2l-1)Tree Chaining

MMM(l+1)SAIDA

MM(l+1)vBOPV + FEC

M(l+1)vBOPV+MH

Sign
verify

Digest
decode

Digest computation

Verifying data integrity in P2P media streaming 18

Comparing Protocols

• Communication and computation overhead for The Matrix.

• Tree chaining has very high comm overhead (208 Bytes per pkt)

• TFDP outperforms others especially when l is small.

20 40 60 80 100 120
25

30

35

40

45

Block size (l)

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(B

yt
es

/P
kt

)

Tree Chain
BOPV+MH
BOPV+FEC
TFDP
SAIDA

20 40 60 80 100 120

20

40

60

80

100

120

140

160

Block size (l)

C
om

pu
ta

tio
n

O
ve

rh
ea

d
(S

ec
.)

Tree Chain
BOPV+MH
BOPV+FEC
TFDP
SAIDA

Verifying data integrity in P2P media streaming 19

Experimental evaluation (Simulation)

Use Gilbert model for
bursty packet loss
Compute fraction of
verifiable packets during
streaming
SAIDA shows it’s better
than EMSS, we show we
are better than SAIDA
More than 97% of packets
are verifiable all the time

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 500 1000 1500 2000 2500 3000 3500
Fr

ac
tio

n
of

 v
er

if
ia

bl
e

pa
ck

et
s

Time (sec)

TFDP
SAIDA

Verifying data integrity in P2P media streaming 20

Experimental evaluation (Planet-Lab)

Use PROMISE
implementation to conduct
experiments in Planet-lab
test-bed
In our experiments

The stream can tolerate 20%
packet loss due to FEC
Fraction of verifiable packets is
≥ 0.95 except a few instances
when it goes to 0.90.
Use video trace of Star Wars
IV, and From Dusk till Dawn

 0

 10

 20

 30

 40

 50

 60

 70

 1 1.2 1.4 1.6 1.8 2

of
 u

nd
ec

od
ed

 b
lo

ck
s

α

Exp 1
Exp 2

Verifying data integrity in P2P media streaming 21

Conclusion

We address an important security issue for P2P
media streaming
Our protocols reduce communication and
computation overhead
Tolerate bursty packet losses using FEC for digests
Packet verifying probability is 97% or higher even
when the loss is 20%
In TFDP, a peer can verify data block by block and
thus can become a supplier immediately in
BITTORRENT-style file sharing system.

Verifying data integrity in P2P media streaming 22

THANK YOU

